forked from google-deepmind/scalable_agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiment.py
700 lines (570 loc) · 27.7 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Importance Weighted Actor-Learner Architectures."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import contextlib
import functools
import os
import sys
import dmlab30
import environments
import numpy as np
import py_process
import sonnet as snt
import tensorflow as tf
import vtrace
try:
import dynamic_batching
except tf.errors.NotFoundError:
tf.logging.warning('Running without dynamic batching.')
from six.moves import range
nest = tf.contrib.framework.nest
flags = tf.app.flags
FLAGS = tf.app.flags.FLAGS
flags.DEFINE_string('logdir', '/tmp/agent', 'TensorFlow log directory.')
flags.DEFINE_enum('mode', 'train', ['train', 'test'], 'Training or test mode.')
# Flags used for testing.
flags.DEFINE_integer('test_num_episodes', 10, 'Number of episodes per level.')
# Flags used for distributed training.
flags.DEFINE_integer('task', -1, 'Task id. Use -1 for local training.')
flags.DEFINE_enum('job_name', 'learner', ['learner', 'actor'],
'Job name. Ignored when task is set to -1.')
# Training.
flags.DEFINE_integer('total_environment_frames', int(1e9),
'Total environment frames to train for.')
flags.DEFINE_integer('num_actors', 4, 'Number of actors.')
flags.DEFINE_integer('batch_size', 2, 'Batch size for training.')
flags.DEFINE_integer('unroll_length', 100, 'Unroll length in agent steps.')
flags.DEFINE_integer('num_action_repeats', 4, 'Number of action repeats.')
flags.DEFINE_integer('seed', 1, 'Random seed.')
# Loss settings.
flags.DEFINE_float('entropy_cost', 0.00025, 'Entropy cost/multiplier.')
flags.DEFINE_float('baseline_cost', .5, 'Baseline cost/multiplier.')
flags.DEFINE_float('discounting', .99, 'Discounting factor.')
flags.DEFINE_enum('reward_clipping', 'abs_one', ['abs_one', 'soft_asymmetric'],
'Reward clipping.')
# Environment settings.
flags.DEFINE_string(
'dataset_path', '',
'Path to dataset needed for psychlab_*, see '
'https://github.com/deepmind/lab/tree/master/data/brady_konkle_oliva2008')
flags.DEFINE_string('level_name', 'explore_goal_locations_small',
'''Level name or \'dmlab30\' for the full DmLab-30 suite '''
'''with levels assigned round robin to the actors.''')
flags.DEFINE_integer('width', 96, 'Width of observation.')
flags.DEFINE_integer('height', 72, 'Height of observation.')
# Optimizer settings.
flags.DEFINE_float('learning_rate', 0.00048, 'Learning rate.')
flags.DEFINE_float('decay', .99, 'RMSProp optimizer decay.')
flags.DEFINE_float('momentum', 0., 'RMSProp momentum.')
flags.DEFINE_float('epsilon', .1, 'RMSProp epsilon.')
# Structure to be sent from actors to learner.
ActorOutput = collections.namedtuple(
'ActorOutput', 'level_name agent_state env_outputs agent_outputs')
AgentOutput = collections.namedtuple('AgentOutput',
'action policy_logits baseline')
def is_single_machine():
return FLAGS.task == -1
class Agent(snt.RNNCore):
"""Agent with ResNet."""
def __init__(self, num_actions):
super(Agent, self).__init__(name='agent')
self._num_actions = num_actions
with self._enter_variable_scope():
self._core = tf.contrib.rnn.LSTMBlockCell(256)
def initial_state(self, batch_size):
return self._core.zero_state(batch_size, tf.float32)
def _instruction(self, instruction):
# Split string.
splitted = tf.string_split(instruction)
dense = tf.sparse_tensor_to_dense(splitted, default_value='')
length = tf.reduce_sum(tf.to_int32(tf.not_equal(dense, '')), axis=1)
# To int64 hash buckets. Small risk of having collisions. Alternatively, a
# vocabulary can be used.
num_hash_buckets = 1000
buckets = tf.string_to_hash_bucket_fast(dense, num_hash_buckets)
# Embed the instruction. Embedding size 20 seems to be enough.
embedding_size = 20
embedding = snt.Embed(num_hash_buckets, embedding_size)(buckets)
# Pad to make sure there is at least one output.
padding = tf.to_int32(tf.equal(tf.shape(embedding)[1], 0))
embedding = tf.pad(embedding, [[0, 0], [0, padding], [0, 0]])
core = tf.contrib.rnn.LSTMBlockCell(64, name='language_lstm')
output, _ = tf.nn.dynamic_rnn(core, embedding, length, dtype=tf.float32)
# Return last output.
return tf.reverse_sequence(output, length, seq_axis=1)[:, 0]
def _torso(self, input_):
last_action, env_output = input_
reward, _, _, (frame, instruction) = env_output
# Convert to floats.
frame = tf.to_float(frame)
frame /= 255
with tf.variable_scope('convnet'):
conv_out = frame
for i, (num_ch, num_blocks) in enumerate([(16, 2), (32, 2), (32, 2)]):
# Downscale.
conv_out = snt.Conv2D(num_ch, 3, stride=1, padding='SAME')(conv_out)
conv_out = tf.nn.pool(
conv_out,
window_shape=[3, 3],
pooling_type='MAX',
padding='SAME',
strides=[2, 2])
# Residual block(s).
for j in range(num_blocks):
with tf.variable_scope('residual_%d_%d' % (i, j)):
block_input = conv_out
conv_out = tf.nn.relu(conv_out)
conv_out = snt.Conv2D(num_ch, 3, stride=1, padding='SAME')(conv_out)
conv_out = tf.nn.relu(conv_out)
conv_out = snt.Conv2D(num_ch, 3, stride=1, padding='SAME')(conv_out)
conv_out += block_input
conv_out = tf.nn.relu(conv_out)
conv_out = snt.BatchFlatten()(conv_out)
conv_out = snt.Linear(256)(conv_out)
conv_out = tf.nn.relu(conv_out)
instruction_out = self._instruction(instruction)
# Append clipped last reward and one hot last action.
clipped_reward = tf.expand_dims(tf.clip_by_value(reward, -1, 1), -1)
one_hot_last_action = tf.one_hot(last_action, self._num_actions)
return tf.concat(
[conv_out, clipped_reward, one_hot_last_action, instruction_out],
axis=1)
def _head(self, core_output):
policy_logits = snt.Linear(self._num_actions, name='policy_logits')(
core_output)
baseline = tf.squeeze(snt.Linear(1, name='baseline')(core_output), axis=-1)
# Sample an action from the policy.
new_action = tf.multinomial(policy_logits, num_samples=1,
output_dtype=tf.int32)
new_action = tf.squeeze(new_action, 1, name='new_action')
return AgentOutput(new_action, policy_logits, baseline)
def _build(self, input_, core_state):
action, env_output = input_
actions, env_outputs = nest.map_structure(lambda t: tf.expand_dims(t, 0),
(action, env_output))
outputs, core_state = self.unroll(actions, env_outputs, core_state)
return nest.map_structure(lambda t: tf.squeeze(t, 0), outputs), core_state
@snt.reuse_variables
def unroll(self, actions, env_outputs, core_state):
_, _, done, _ = env_outputs
torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs))
# Note, in this implementation we can't use CuDNN RNN to speed things up due
# to the state reset. This can be XLA-compiled (LSTMBlockCell needs to be
# changed to implement snt.LSTMCell).
initial_core_state = self._core.zero_state(tf.shape(actions)[1], tf.float32)
core_output_list = []
for input_, d in zip(tf.unstack(torso_outputs), tf.unstack(done)):
# If the episode ended, the core state should be reset before the next.
core_state = nest.map_structure(functools.partial(tf.where, d),
initial_core_state, core_state)
core_output, core_state = self._core(input_, core_state)
core_output_list.append(core_output)
return snt.BatchApply(self._head)(tf.stack(core_output_list)), core_state
def build_actor(agent, env, level_name, action_set):
"""Builds the actor loop."""
# Initial values.
initial_env_output, initial_env_state = env.initial()
initial_agent_state = agent.initial_state(1)
initial_action = tf.zeros([1], dtype=tf.int32)
dummy_agent_output, _ = agent(
(initial_action,
nest.map_structure(lambda t: tf.expand_dims(t, 0), initial_env_output)),
initial_agent_state)
initial_agent_output = nest.map_structure(
lambda t: tf.zeros(t.shape, t.dtype), dummy_agent_output)
# All state that needs to persist across training iterations. This includes
# the last environment output, agent state and last agent output. These
# variables should never go on the parameter servers.
def create_state(t):
# Creates a unique variable scope to ensure the variable name is unique.
with tf.variable_scope(None, default_name='state'):
return tf.get_local_variable(t.op.name, initializer=t, use_resource=True)
persistent_state = nest.map_structure(
create_state, (initial_env_state, initial_env_output, initial_agent_state,
initial_agent_output))
def step(input_, unused_i):
"""Steps through the agent and the environment."""
env_state, env_output, agent_state, agent_output = input_
# Run agent.
action = agent_output[0]
batched_env_output = nest.map_structure(lambda t: tf.expand_dims(t, 0),
env_output)
agent_output, agent_state = agent((action, batched_env_output), agent_state)
# Convert action index to the native action.
action = agent_output[0][0]
raw_action = tf.gather(action_set, action)
env_output, env_state = env.step(raw_action, env_state)
return env_state, env_output, agent_state, agent_output
# Run the unroll. `read_value()` is needed to make sure later usage will
# return the first values and not a new snapshot of the variables.
first_values = nest.map_structure(lambda v: v.read_value(), persistent_state)
_, first_env_output, first_agent_state, first_agent_output = first_values
# Use scan to apply `step` multiple times, therefore unrolling the agent
# and environment interaction for `FLAGS.unroll_length`. `tf.scan` forwards
# the output of each call of `step` as input of the subsequent call of `step`.
# The unroll sequence is initialized with the agent and environment states
# and outputs as stored at the end of the previous unroll.
# `output` stores lists of all states and outputs stacked along the entire
# unroll. Note that the initial states and outputs (fed through `initializer`)
# are not in `output` and will need to be added manually later.
output = tf.scan(step, tf.range(FLAGS.unroll_length), first_values)
_, env_outputs, _, agent_outputs = output
# Update persistent state with the last output from the loop.
assign_ops = nest.map_structure(lambda v, t: v.assign(t[-1]),
persistent_state, output)
# The control dependency ensures that the final agent and environment states
# and outputs are stored in `persistent_state` (to initialize next unroll).
with tf.control_dependencies(nest.flatten(assign_ops)):
# Remove the batch dimension from the agent state/output.
first_agent_state = nest.map_structure(lambda t: t[0], first_agent_state)
first_agent_output = nest.map_structure(lambda t: t[0], first_agent_output)
agent_outputs = nest.map_structure(lambda t: t[:, 0], agent_outputs)
# Concatenate first output and the unroll along the time dimension.
full_agent_outputs, full_env_outputs = nest.map_structure(
lambda first, rest: tf.concat([[first], rest], 0),
(first_agent_output, first_env_output), (agent_outputs, env_outputs))
output = ActorOutput(
level_name=level_name, agent_state=first_agent_state,
env_outputs=full_env_outputs, agent_outputs=full_agent_outputs)
# No backpropagation should be done here.
return nest.map_structure(tf.stop_gradient, output)
def compute_baseline_loss(advantages):
# Loss for the baseline, summed over the time dimension.
# Multiply by 0.5 to match the standard update rule:
# d(loss) / d(baseline) = advantage
return .5 * tf.reduce_sum(tf.square(advantages))
def compute_entropy_loss(logits):
policy = tf.nn.softmax(logits)
log_policy = tf.nn.log_softmax(logits)
entropy_per_timestep = tf.reduce_sum(-policy * log_policy, axis=-1)
return -tf.reduce_sum(entropy_per_timestep)
def compute_policy_gradient_loss(logits, actions, advantages):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=actions, logits=logits)
advantages = tf.stop_gradient(advantages)
policy_gradient_loss_per_timestep = cross_entropy * advantages
return tf.reduce_sum(policy_gradient_loss_per_timestep)
def build_learner(agent, agent_state, env_outputs, agent_outputs):
"""Builds the learner loop.
Args:
agent: A snt.RNNCore module outputting `AgentOutput` named tuples, with an
`unroll` call for computing the outputs for a whole trajectory.
agent_state: The initial agent state for each sequence in the batch.
env_outputs: A `StepOutput` namedtuple where each field is of shape
[T+1, ...].
agent_outputs: An `AgentOutput` namedtuple where each field is of shape
[T+1, ...].
Returns:
A tuple of (done, infos, and environment frames) where
the environment frames tensor causes an update.
"""
learner_outputs, _ = agent.unroll(agent_outputs.action, env_outputs,
agent_state)
# Use last baseline value (from the value function) to bootstrap.
bootstrap_value = learner_outputs.baseline[-1]
# At this point, the environment outputs at time step `t` are the inputs that
# lead to the learner_outputs at time step `t`. After the following shifting,
# the actions in agent_outputs and learner_outputs at time step `t` is what
# leads to the environment outputs at time step `t`.
agent_outputs = nest.map_structure(lambda t: t[1:], agent_outputs)
rewards, infos, done, _ = nest.map_structure(
lambda t: t[1:], env_outputs)
learner_outputs = nest.map_structure(lambda t: t[:-1], learner_outputs)
if FLAGS.reward_clipping == 'abs_one':
clipped_rewards = tf.clip_by_value(rewards, -1, 1)
elif FLAGS.reward_clipping == 'soft_asymmetric':
squeezed = tf.tanh(rewards / 5.0)
# Negative rewards are given less weight than positive rewards.
clipped_rewards = tf.where(rewards < 0, .3 * squeezed, squeezed) * 5.
discounts = tf.to_float(~done) * FLAGS.discounting
# Compute V-trace returns and weights.
# Note, this is put on the CPU because it's faster than on GPU. It can be
# improved further with XLA-compilation or with a custom TensorFlow operation.
with tf.device('/cpu'):
vtrace_returns = vtrace.from_logits(
behaviour_policy_logits=agent_outputs.policy_logits,
target_policy_logits=learner_outputs.policy_logits,
actions=agent_outputs.action,
discounts=discounts,
rewards=clipped_rewards,
values=learner_outputs.baseline,
bootstrap_value=bootstrap_value)
# Compute loss as a weighted sum of the baseline loss, the policy gradient
# loss and an entropy regularization term.
total_loss = compute_policy_gradient_loss(
learner_outputs.policy_logits, agent_outputs.action,
vtrace_returns.pg_advantages)
total_loss += FLAGS.baseline_cost * compute_baseline_loss(
vtrace_returns.vs - learner_outputs.baseline)
total_loss += FLAGS.entropy_cost * compute_entropy_loss(
learner_outputs.policy_logits)
# Optimization
num_env_frames = tf.train.get_global_step()
learning_rate = tf.train.polynomial_decay(FLAGS.learning_rate, num_env_frames,
FLAGS.total_environment_frames, 0)
optimizer = tf.train.RMSPropOptimizer(learning_rate, FLAGS.decay,
FLAGS.momentum, FLAGS.epsilon)
train_op = optimizer.minimize(total_loss)
# Merge updating the network and environment frames into a single tensor.
with tf.control_dependencies([train_op]):
num_env_frames_and_train = num_env_frames.assign_add(
FLAGS.batch_size * FLAGS.unroll_length * FLAGS.num_action_repeats)
# Adding a few summaries.
tf.summary.scalar('learning_rate', learning_rate)
tf.summary.scalar('total_loss', total_loss)
tf.summary.histogram('action', agent_outputs.action)
return done, infos, num_env_frames_and_train
def create_environment(level_name, seed, is_test=False):
"""Creates an environment wrapped in a `FlowEnvironment`."""
if level_name in dmlab30.ALL_LEVELS:
level_name = 'contributed/dmlab30/' + level_name
# Note, you may want to use a level cache to speed of compilation of
# environment maps. See the documentation for the Python interface of DeepMind
# Lab.
config = {
'width': FLAGS.width,
'height': FLAGS.height,
'datasetPath': FLAGS.dataset_path,
'logLevel': 'WARN',
}
if is_test:
config['allowHoldOutLevels'] = 'true'
# Mixer seed for evalution, see
# https://github.com/deepmind/lab/blob/master/docs/users/python_api.md
config['mixerSeed'] = 0x600D5EED
p = py_process.PyProcess(environments.PyProcessDmLab, level_name, config,
FLAGS.num_action_repeats, seed)
return environments.FlowEnvironment(p.proxy)
@contextlib.contextmanager
def pin_global_variables(device):
"""Pins global variables to the specified device."""
def getter(getter, *args, **kwargs):
var_collections = kwargs.get('collections', None)
if var_collections is None:
var_collections = [tf.GraphKeys.GLOBAL_VARIABLES]
if tf.GraphKeys.GLOBAL_VARIABLES in var_collections:
with tf.device(device):
return getter(*args, **kwargs)
else:
return getter(*args, **kwargs)
with tf.variable_scope('', custom_getter=getter) as vs:
yield vs
def train(action_set, level_names):
"""Train."""
if is_single_machine():
local_job_device = ''
shared_job_device = ''
is_actor_fn = lambda i: True
is_learner = True
global_variable_device = '/gpu'
server = tf.train.Server.create_local_server()
filters = []
else:
local_job_device = '/job:%s/task:%d' % (FLAGS.job_name, FLAGS.task)
shared_job_device = '/job:learner/task:0'
is_actor_fn = lambda i: FLAGS.job_name == 'actor' and i == FLAGS.task
is_learner = FLAGS.job_name == 'learner'
# Placing the variable on CPU, makes it cheaper to send it to all the
# actors. Continual copying the variables from the GPU is slow.
global_variable_device = shared_job_device + '/cpu'
cluster = tf.train.ClusterSpec({
'actor': ['localhost:%d' % (8001 + i) for i in range(FLAGS.num_actors)],
'learner': ['localhost:8000']
})
server = tf.train.Server(cluster, job_name=FLAGS.job_name,
task_index=FLAGS.task)
filters = [shared_job_device, local_job_device]
# Only used to find the actor output structure.
with tf.Graph().as_default():
agent = Agent(len(action_set))
env = create_environment(level_names[0], seed=1)
structure = build_actor(agent, env, level_names[0], action_set)
flattened_structure = nest.flatten(structure)
dtypes = [t.dtype for t in flattened_structure]
shapes = [t.shape.as_list() for t in flattened_structure]
with tf.Graph().as_default(), \
tf.device(local_job_device + '/cpu'), \
pin_global_variables(global_variable_device):
tf.set_random_seed(FLAGS.seed) # Makes initialization deterministic.
# Create Queue and Agent on the learner.
with tf.device(shared_job_device):
queue = tf.FIFOQueue(1, dtypes, shapes, shared_name='buffer')
agent = Agent(len(action_set))
if is_single_machine() and 'dynamic_batching' in sys.modules:
# For single machine training, we use dynamic batching for improved GPU
# utilization. The semantics of single machine training are slightly
# different from the distributed setting because within a single unroll
# of an environment, the actions may be computed using different weights
# if an update happens within the unroll.
old_build = agent._build
@dynamic_batching.batch_fn
def build(*args):
with tf.device('/gpu'):
return old_build(*args)
tf.logging.info('Using dynamic batching.')
agent._build = build
# Build actors and ops to enqueue their output.
enqueue_ops = []
for i in range(FLAGS.num_actors):
if is_actor_fn(i):
level_name = level_names[i % len(level_names)]
tf.logging.info('Creating actor %d with level %s', i, level_name)
env = create_environment(level_name, seed=i + 1)
actor_output = build_actor(agent, env, level_name, action_set)
with tf.device(shared_job_device):
enqueue_ops.append(queue.enqueue(nest.flatten(actor_output)))
# If running in a single machine setup, run actors with QueueRunners
# (separate threads).
if is_learner and enqueue_ops:
tf.train.add_queue_runner(tf.train.QueueRunner(queue, enqueue_ops))
# Build learner.
if is_learner:
# Create global step, which is the number of environment frames processed.
tf.get_variable(
'num_environment_frames',
initializer=tf.zeros_initializer(),
shape=[],
dtype=tf.int64,
trainable=False,
collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES])
# Create batch (time major) and recreate structure.
dequeued = queue.dequeue_many(FLAGS.batch_size)
dequeued = nest.pack_sequence_as(structure, dequeued)
def make_time_major(s):
return nest.map_structure(
lambda t: tf.transpose(t, [1, 0] + list(range(t.shape.ndims))[2:]), s)
dequeued = dequeued._replace(
env_outputs=make_time_major(dequeued.env_outputs),
agent_outputs=make_time_major(dequeued.agent_outputs))
with tf.device('/gpu'):
# Using StagingArea allows us to prepare the next batch and send it to
# the GPU while we're performing a training step. This adds up to 1 step
# policy lag.
flattened_output = nest.flatten(dequeued)
area = tf.contrib.staging.StagingArea(
[t.dtype for t in flattened_output],
[t.shape for t in flattened_output])
stage_op = area.put(flattened_output)
data_from_actors = nest.pack_sequence_as(structure, area.get())
# Unroll agent on sequence, create losses and update ops.
output = build_learner(agent, data_from_actors.agent_state,
data_from_actors.env_outputs,
data_from_actors.agent_outputs)
# Create MonitoredSession (to run the graph, checkpoint and log).
tf.logging.info('Creating MonitoredSession, is_chief %s', is_learner)
config = tf.ConfigProto(allow_soft_placement=True, device_filters=filters)
with tf.train.MonitoredTrainingSession(
server.target,
is_chief=is_learner,
checkpoint_dir=FLAGS.logdir,
save_checkpoint_secs=600,
save_summaries_secs=30,
log_step_count_steps=50000,
config=config,
hooks=[py_process.PyProcessHook()]) as session:
if is_learner:
# Logging.
level_returns = {level_name: [] for level_name in level_names}
summary_writer = tf.summary.FileWriterCache.get(FLAGS.logdir)
# Prepare data for first run.
session.run_step_fn(
lambda step_context: step_context.session.run(stage_op))
# Execute learning and track performance.
num_env_frames_v = 0
while num_env_frames_v < FLAGS.total_environment_frames:
level_names_v, done_v, infos_v, num_env_frames_v, _ = session.run(
(data_from_actors.level_name,) + output + (stage_op,))
level_names_v = np.repeat([level_names_v], done_v.shape[0], 0)
for level_name, episode_return, episode_step in zip(
level_names_v[done_v],
infos_v.episode_return[done_v],
infos_v.episode_step[done_v]):
episode_frames = episode_step * FLAGS.num_action_repeats
tf.logging.info('Level: %s Episode return: %f',
level_name, episode_return)
summary = tf.summary.Summary()
summary.value.add(tag=level_name + '/episode_return',
simple_value=episode_return)
summary.value.add(tag=level_name + '/episode_frames',
simple_value=episode_frames)
summary_writer.add_summary(summary, num_env_frames_v)
if FLAGS.level_name == 'dmlab30':
level_returns[level_name].append(episode_return)
if (FLAGS.level_name == 'dmlab30' and
min(map(len, level_returns.values())) >= 1):
no_cap = dmlab30.compute_human_normalized_score(level_returns,
per_level_cap=None)
cap_100 = dmlab30.compute_human_normalized_score(level_returns,
per_level_cap=100)
summary = tf.summary.Summary()
summary.value.add(
tag='dmlab30/training_no_cap', simple_value=no_cap)
summary.value.add(
tag='dmlab30/training_cap_100', simple_value=cap_100)
summary_writer.add_summary(summary, num_env_frames_v)
# Clear level scores.
level_returns = {level_name: [] for level_name in level_names}
else:
# Execute actors (they just need to enqueue their output).
while True:
session.run(enqueue_ops)
def test(action_set, level_names):
"""Test."""
level_returns = {level_name: [] for level_name in level_names}
with tf.Graph().as_default():
agent = Agent(len(action_set))
outputs = {}
for level_name in level_names:
env = create_environment(level_name, seed=1, is_test=True)
outputs[level_name] = build_actor(agent, env, level_name, action_set)
with tf.train.SingularMonitoredSession(
checkpoint_dir=FLAGS.logdir,
hooks=[py_process.PyProcessHook()]) as session:
for level_name in level_names:
tf.logging.info('Testing level: %s', level_name)
while True:
done_v, infos_v = session.run((
outputs[level_name].env_outputs.done,
outputs[level_name].env_outputs.info
))
returns = level_returns[level_name]
returns.extend(infos_v.episode_return[1:][done_v[1:]])
if len(returns) >= FLAGS.test_num_episodes:
tf.logging.info('Mean episode return: %f', np.mean(returns))
break
if FLAGS.level_name == 'dmlab30':
no_cap = dmlab30.compute_human_normalized_score(level_returns,
per_level_cap=None)
cap_100 = dmlab30.compute_human_normalized_score(level_returns,
per_level_cap=100)
tf.logging.info('No cap.: %f Cap 100: %f', no_cap, cap_100)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
action_set = environments.DEFAULT_ACTION_SET
if FLAGS.level_name == 'dmlab30' and FLAGS.mode == 'train':
level_names = dmlab30.LEVEL_MAPPING.keys()
elif FLAGS.level_name == 'dmlab30' and FLAGS.mode == 'test':
level_names = dmlab30.LEVEL_MAPPING.values()
else:
level_names = [FLAGS.level_name]
if FLAGS.mode == 'train':
train(action_set, level_names)
else:
test(action_set, level_names)
if __name__ == '__main__':
tf.app.run()