-
Notifications
You must be signed in to change notification settings - Fork 0
/
dither_pattern.py
93 lines (71 loc) · 2.45 KB
/
dither_pattern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""Error diffusion dither patterns."""
import numpy as np
class DitherPattern:
PATTERN = None
ORIGIN = None
def __init__(self, error_fraction=1.0):
self.PATTERN *= error_fraction
class NoDither(DitherPattern):
"""No dithering."""
PATTERN = np.array(((0, 0), (0, 0)),
dtype=np.float32).reshape(2, 2) / np.float32(16)
ORIGIN = (0, 1)
class FloydSteinbergDither(DitherPattern):
"""Floyd-Steinberg dither."""
# 0 * 7
# 3 5 1
PATTERN = np.array(((0, 0, 7), (3, 5, 1)),
dtype=np.float32).reshape(2, 3) / np.float32(16)
ORIGIN = (0, 1)
class FloydSteinbergDither2(DitherPattern):
"""Floyd-Steinberg dither."""
# 0 * 7
# 3 5 1
PATTERN = np.array(
((0, 0, 0, 0, 0, 7),
(3, 5, 1, 0, 0, 0)),
dtype=np.float32).reshape(2, 6) / np.float32(16)
ORIGIN = (0, 2)
class BuckelsDither(DitherPattern):
"""Default dither from bmp2dhr."""
# 0 * 2 1
# 1 2 1 0
# 0 1 0 0
PATTERN = np.array(((0, 0, 2, 1), (1, 2, 1, 0), (0, 1, 0, 0)),
dtype=np.float32).reshape(3, 4) / np.float32(8)
ORIGIN = (0, 1)
class JarvisDither(DitherPattern):
"""Jarvis-Judice-Ninke dithering."""
# 0 0 X 7 5
# 3 5 7 5 3
# 1 3 5 3 1
PATTERN = np.array(((0, 0, 0, 7, 5), (3, 5, 7, 5, 3), (1, 3, 5, 3, 1)),
dtype=np.float32).reshape(3, 5) / np.float32(48)
ORIGIN = (0, 2)
class JarvisModifiedDither(DitherPattern):
"""Jarvis dithering, modified to diffuse errors to 4 forward x positions.
This works well for double hi-res dithering, since the "best" colour
match to a given pixel may only be accessible up to 4 x-positions further
on. Standard Jarvis dithering only propagates errors for 2 x-positions
in the forward direction, which means that errors may have diffused away
before we get to the pixel that can best take advantage of it.
"""
# 0 0 X 7 5
# 3 5 7 5 3
# 1 3 5 3 1
PATTERN = np.array((
(0, 0, 0, 15, 11, 7, 3),
(3, 5, 7, 5, 3, 1, 0),
(1, 3, 5, 3, 1, 0, 0)), dtype=np.float32).reshape(3, 7)
PATTERN /= np.sum(PATTERN)
ORIGIN = (0, 2)
PATTERNS = {
'floyd': FloydSteinbergDither,
'floyd2': FloydSteinbergDither2,
'floyd-steinberg': FloydSteinbergDither,
'buckels': BuckelsDither,
'jarvis': JarvisDither,
'jarvis-mod': JarvisModifiedDither,
'none': NoDither,
}
DEFAULT_PATTERN = 'floyd'