forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNumberOfRectanglesThatCanFormTheLargestSquare.cpp
74 lines (68 loc) · 2.32 KB
/
NumberOfRectanglesThatCanFormTheLargestSquare.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// Source : https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/
// Author : Hao Chen
// Date : 2021-03-27
/*****************************************************************************************************
*
* You are given an array rectangles where rectangles[i] = [li, wi] represents the i^th rectangle of
* length li and width wi.
*
* You can cut the i^th rectangle to form a square with a side length of k if both k <= li and k <=
* wi. For example, if you have a rectangle [4,6], you can cut it to get a square with a side length
* of at most 4.
*
* Let maxLen be the side length of the largest square you can obtain from any of the given rectangles.
*
* Return the number of rectangles that can make a square with a side length of maxLen.
*
* Example 1:
*
* Input: rectangles = [[5,8],[3,9],[5,12],[16,5]]
* Output: 3
* Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5].
* The largest possible square is of length 5, and you can get it out of 3 rectangles.
*
* Example 2:
*
* Input: rectangles = [[2,3],[3,7],[4,3],[3,7]]
* Output: 3
*
* Constraints:
*
* 1 <= rectangles.length <= 1000
* rectangles[i].length == 2
* 1 <= li, wi <= 10^9
* li != wi
******************************************************************************************************/
class Solution {
public:
int countGoodRectangles(vector<vector<int>>& rectangles) {
return countGoodRectangles2(rectangles);
return countGoodRectangles1(rectangles);
}
int countGoodRectangles1(vector<vector<int>>& rectangles) {
int maxLen = 0;
for(auto& rect : rectangles) {
int len = min(rect[0], rect[1]);
maxLen = max(maxLen, len);
}
int cnt = 0;
for(auto& rect : rectangles) {
if (maxLen <= rect[0] && maxLen <= rect[1]) cnt++;
}
return cnt;
}
int countGoodRectangles2(vector<vector<int>>& rectangles) {
int maxLen = 0;
int cnt = 0;
for(auto& rect : rectangles) {
int len = min(rect[0], rect[1]);
if (len > maxLen ) {
cnt = 1;
maxLen = len;
}else if (len == maxLen ) {
cnt++;
}
}
return cnt;
}
};