forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 50
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
增加 properties map 到 PostQueryExecutionForKylin #70
Comments
Aaaaaaron
added a commit
that referenced
this issue
Oct 27, 2019
Aaaaaaron
added a commit
that referenced
this issue
Oct 28, 2019
lxian
pushed a commit
to lxian/spark
that referenced
this issue
Sep 24, 2021
…ence index for optimization ### What changes were proposed in this pull request? This PR proposes to move distributed-sequence index implementation to SQL plan to leverage optimizations such as column pruning. ```python import pyspark.pandas as ps ps.set_option('compute.default_index_type', 'distributed-sequence') ps.range(10).id.value_counts().to_frame().spark.explain() ``` **Before:** ```bash == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- Sort [count#51L DESC NULLS LAST], true, 0 +- Exchange rangepartitioning(count#51L DESC NULLS LAST, 200), ENSURE_REQUIREMENTS, [id=Kyligence#70] +- HashAggregate(keys=[id#37L], functions=[count(1)], output=[__index_level_0__#48L, count#51L]) +- Exchange hashpartitioning(id#37L, 200), ENSURE_REQUIREMENTS, [id=Kyligence#67] +- HashAggregate(keys=[id#37L], functions=[partial_count(1)], output=[id#37L, count#63L]) +- Project [id#37L] +- Filter atleastnnonnulls(1, id#37L) +- Scan ExistingRDD[__index_level_0__#36L,id#37L] # ^^^ Base DataFrame created by the output RDD from zipWithIndex (and checkpointed) ``` **After:** ```bash == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- Sort [count#275L DESC NULLS LAST], true, 0 +- Exchange rangepartitioning(count#275L DESC NULLS LAST, 200), ENSURE_REQUIREMENTS, [id=Kyligence#174] +- HashAggregate(keys=[id#258L], functions=[count(1)]) +- HashAggregate(keys=[id#258L], functions=[partial_count(1)]) +- Filter atleastnnonnulls(1, id#258L) +- Range (0, 10, step=1, splits=16) # ^^^ Removed the Spark job execution for `zipWithIndex` ``` ### Why are the changes needed? To leverage optimization of SQL engine and avoid unnecessary shuffle to create default index. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Unittests were added. Also, this PR will test all unittests in pandas API on Spark after switching the default index implementation to `distributed-sequence`. Closes apache#33807 from HyukjinKwon/SPARK-36559. Authored-by: Hyukjin Kwon <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]>
chenzhx
pushed a commit
to chenzhx/spark
that referenced
this issue
Oct 20, 2021
…ence index for optimization ### What changes were proposed in this pull request? This PR proposes to move distributed-sequence index implementation to SQL plan to leverage optimizations such as column pruning. ```python import pyspark.pandas as ps ps.set_option('compute.default_index_type', 'distributed-sequence') ps.range(10).id.value_counts().to_frame().spark.explain() ``` **Before:** ```bash == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- Sort [count#51L DESC NULLS LAST], true, 0 +- Exchange rangepartitioning(count#51L DESC NULLS LAST, 200), ENSURE_REQUIREMENTS, [id=Kyligence#70] +- HashAggregate(keys=[id#37L], functions=[count(1)], output=[__index_level_0__#48L, count#51L]) +- Exchange hashpartitioning(id#37L, 200), ENSURE_REQUIREMENTS, [id=Kyligence#67] +- HashAggregate(keys=[id#37L], functions=[partial_count(1)], output=[id#37L, count#63L]) +- Project [id#37L] +- Filter atleastnnonnulls(1, id#37L) +- Scan ExistingRDD[__index_level_0__#36L,id#37L] # ^^^ Base DataFrame created by the output RDD from zipWithIndex (and checkpointed) ``` **After:** ```bash == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- Sort [count#275L DESC NULLS LAST], true, 0 +- Exchange rangepartitioning(count#275L DESC NULLS LAST, 200), ENSURE_REQUIREMENTS, [id=Kyligence#174] +- HashAggregate(keys=[id#258L], functions=[count(1)]) +- HashAggregate(keys=[id#258L], functions=[partial_count(1)]) +- Filter atleastnnonnulls(1, id#258L) +- Range (0, 10, step=1, splits=16) # ^^^ Removed the Spark job execution for `zipWithIndex` ``` ### Why are the changes needed? To leverage optimization of SQL engine and avoid unnecessary shuffle to create default index. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Unittests were added. Also, this PR will test all unittests in pandas API on Spark after switching the default index implementation to `distributed-sequence`. Closes apache#33807 from HyukjinKwon/SPARK-36559. Authored-by: Hyukjin Kwon <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]> (cherry picked from commit 93cec49) Signed-off-by: Hyukjin Kwon <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
KE issue: https://github.com/Kyligence/KAP/issues/14933
The text was updated successfully, but these errors were encountered: