-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhextrack_batch.py
273 lines (223 loc) · 12.4 KB
/
hextrack_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import cv2
import time
import yaml
import argparse
import logging
import pkg_resources
from pathlib import Path
import os
from tqdm import tqdm
from moviepy.editor import VideoFileClip
import numpy as np
import glob
from matplotlib import pyplot as plt
from src.tracker import Tracker
from src.preprocessing import TimeCorrect
from src.preprocessing import Linearization
from src.preprocessing import GroundTruth
from src.preprocessing import Homography
from src.preprocessing import TrialCut
from src.trial_analysis import TrialAnalysis
# If true, no tracking is performed, can only be used if pos_log_files are already available in the system
ONLY_ANALYSIS = True
# If True, mask is checked, handy to put on False for quick processing and mask does not matter much
Mask_check = False
def find_nearest(array, value):
""""Finds the nearest log file in time (only if timestamp before video timestamp) among all log files in a list"""
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
val = array[idx]
if val > value:
array[idx] = 0
val = find_nearest(array, value)
return val
# Grab frames and return captured frame
class Grabber:
def __init__(self, src):
""""Grabs new frames and passes them on"""
self.src = src
self.capture = cv2.VideoCapture(src)
def next(self):
rt, frame = self.capture.read()
return frame
# Loops through frames, capturing them and applying tracking
class OfflineHextrack:
def __init__(self, cfg, src, n, LED_pos, LED_thresholds, sources):
# Video frame sources (top and bottom)
self.sources = sources
self.cfg = cfg
self.frame_idx = 0
self.n = n
self.mask_init = True
self.made_mask = None
# Create path to csv log file for tracking mouse position and LED-light state
path = pkg_resources.resource_filename(__name__, "/data/interim/position_log_files/{}".format(src[len(src)-29:
len(src)-10]))
if not os.path.exists(path):
try:
os.mkdir(path)
except OSError:
print("Creation of the directory %s failed, this path probably already exists" % path)
self.path = pkg_resources.resource_filename(__name__, '/data/interim/Position_log_files/{}/pos_log_file_{}.csv'
.format(src[len(src)-29:len(src)-10], n))
# Initiation of the Grabbers and Trackers and creation of csv log file
self.grabber = Grabber(src)
self.tracker = Tracker(cfg, pos_log_file=open(self.path, 'w'), name=__name__, LED_pos=LED_pos,
LED_thresholds=LED_thresholds)
logging.debug('HexTrack initialization done!')
# Video reader used to infer amount of frames
self.vid = VideoFileClip(src)
self.duration = self.vid.duration*15
self.src = src
# Loops through grabbing and tracking each frame of the video file
def loop(self):
""""Loop through all frames in video and track mouse positions"""
# tqdm package used to monitor tracking progress
pbar = tqdm(range(int(self.duration)))
for i in pbar:
# Grab next frame, stops loop if no new frame is present (happens when all frames in video tracked)
frame = self.grabber.next()
if frame is None:
break
# Checks if the frame has a mask already, if not, it creates a new mask
if self.mask_init:
self.tracker.apply(frame, self.frame_idx, n=self.n, src=self.src)
elif not self.mask_init:
self.tracker.apply(frame, self.frame_idx, mask_frame=self.made_mask, n=self.n, src=self.src)
if Mask_check:
# At the second frame, show computer-generated mask
# If not sufficient, gives possibility to input user-generated mask
if self.frame_idx == 0:
path = pkg_resources.resource_filename(__name__, "/data/raw/{}/Masks/mask_{}.png"
.format(self.sources[0][len(self.sources[0])-29:
len(self.sources[0])-10], n))
mask = cv2.imread(path)
plt.figure('Mask check')
plt.imshow(mask)
plt.show()
mask_check = input("If the mask is sufficient, enter y: ")
if mask_check != 'y':
input('Please upload custom mask under the name new_mask.png to the output folder'
' and press enter')
mask_path = pkg_resources.resource_filename(__name__, "/Input_mask/new_mask.png")
self.made_mask = cv2.imread(mask_path, 0)
self.mask_init = False
self.frame_idx += 1
# Close down tracker position log file, tqdm progress bar and video reader
self.tracker.close()
pbar.close()
self.vid.reader.close()
def stop(self):
"""Closes the position log files for following steps to be used"""
self.tracker.close()
cv2.destroyAllWindows()
raise SystemExit
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--source', nargs='*', help='Map containing sources')
parser.add_argument('-d', '--debug', action='store_true', help='Debug mode')
parser.add_argument('-c', '--config', help='Configuration file')
parser.add_argument('-n', '--nodes', help='Node location file')
cli_args = parser.parse_args()
logfile = Path.home() / "Videos/hextrack/{}_hextrack_log".format(
time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime(time.time())))
# Construct the shared array to fit all frames
cfg_path = pkg_resources.resource_filename(__name__, '/src/resources/default/default_config_batch.yml')
if cli_args.config is not None:
cfg_path = Path(cli_args.config)
if not cfg_path.exists():
raise FileNotFoundError('Config file not found!')
with open(cfg_path, 'r') as cfg_f:
cfg = yaml.load(cfg_f, Loader=yaml.FullLoader)
if cli_args.source is not None:
cfg['video_map'] = cli_args.source
rootdir = cfg['video_map'][0]
log = None
# Find videos in map and tracks them
for _, _, files in os.walk(rootdir):
for file in files:
if file.endswith("0.avi"):
logs = []
logs_time = []
path_0 = os.path.join(rootdir, file)
# Finds the path towards the top video source and bottom video source
# Note: if bottom video source 1 s late, failsafe in place
path_1 = path_0[:len(path_0) - 5] + "1.avi"
if not os.path.exists(path_1):
path_1 = path_0[:len(path_0)-11] + "{}_cam_1.avi".format(int(path_0[len(path_0)-11])+1)
time = 31536000 * int(path_0[len(path_0) - 29:len(path_0) - 25]) + 2592000 * \
int(path_0[len(path_0) - 24:len(path_0) - 22]) + 86400 * int(
path_0[len(path_0) - 21:len(path_0) - 19]) + \
3600 * int(path_0[len(path_0) - 18:len(path_0) - 16]) + 60 * int(
path_0[len(path_0) - 15:len(path_0) - 13]) \
+ int(path_0[len(path_0) - 12:len(path_0) - 10])
sources = [path_0, path_1]
# Scans through files and finds correct log file within map for each video
# (also works for multiple log files present, always finds log file closest before video time)
for file in files:
if file.endswith('log.xlsx'):
logs.append(file)
try:
logs_time.append(
31536000 * int(file[0:4]) + 2592000 * int(file[5:7]) + 86400 * int(file[8:10]) + 3600
* int(file[11:13]) + 60 * int(file[14:16]) + int(file[17:19]))
except ValueError:
print('Error: This file was read in: {}, if starts with ~$, this is a temporary file,'
' close the excel file next time before starting the pipeline.\n'
' Analysis will proceed as normal.'.format(file))
try:
log_time = find_nearest(logs_time, time)
log_time_y = int(np.floor(log_time / 31536000))
log_time_month = int(np.floor((log_time - log_time_y * 31536000) / 2592000))
log_time_d = int(np.floor((log_time - log_time_y * 31536000 - log_time_month * 2592000) / 86400))
log_time_h = int(np.floor((log_time - log_time_y * 31536000 - log_time_month * 2592000 - log_time_d
* 86400) / 3600))
log_time_m = int(np.floor((log_time - log_time_y * 31536000 - log_time_month * 2592000 - log_time_d
* 86400 - log_time_h * 3600) / 60))
log_time_s = int(np.floor((log_time - log_time_y * 31536000 - log_time_month * 2592000 - log_time_d
* 86400 - log_time_h * 3600 - log_time_m * 60)))
for name in glob.glob(
'{}/{}_{}*{}*{}*log.xlsx'.format(rootdir, path_0[len(path_0) - 29:len(path_0) - 19],
format(log_time_h, '02d'), format(log_time_m, '02d'),
format(log_time_s, '02d'))):
log = name
except ValueError:
print('Error:Log file is probably not present in designated folder')
# Save video paths and log path
paths = [path_0, path_1, log]
try:
# Initiate calculation of the homography matrix, directly corrects all node and LED positions
homography = Homography(__name__, sources=sources)
homography.homography_calc()
# Initiates OfflineHextrack to track mouse positions and save position log files
for n, src in enumerate(sources):
print('Source {} @ {} starting'.format(n, src))
if not ONLY_ANALYSIS:
# Calculate LED position and LED threshold
LED_pos = homography.LEDfind(sources=sources, iterations=200)
LED_thresholds = homography.LED_thresh(sources=sources, iterations=50, LED_pos=LED_pos)
# Track mouse position for entire video
ht = OfflineHextrack(cfg=cfg, src=src, n=n, LED_pos=LED_pos, LED_thresholds=LED_thresholds,
sources=sources)
ht.loop()
logging.debug('Position files acquired')
# Time alignment
tcorrect = TimeCorrect(__name__, sources=sources)
dat_0, dat_1 = tcorrect.correction()
# Linearization
linearization = Linearization(__name__, dat_0, dat_1, sources=sources)
lin_path_0, lin_path_1 = linearization.lin()
# Map to ground truth (relative position)
groundtruth = GroundTruth(__name__, lin_path_0, lin_path_1, sources=sources)
gt_path_0, gt_path_1 = groundtruth.gt_mapping()
gt_path = groundtruth.gt_stitch()
# Trial selection and cutout
trialcut = TrialCut(paths, [gt_path_0, gt_path_1, gt_path], sources)
trialcut.log_data()
trialcut.cut(__name__)
trialcut.cut_stitch(__name__)
# Trial analysis
TrialAnalysis(__name__, paths)
except cv2.error or OSError:
print('Error: Something is wrong with the video file; process is continued without analysis of'
' this particular video')