-
Notifications
You must be signed in to change notification settings - Fork 8
/
finetune.py
324 lines (276 loc) · 14.6 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
from datetime import datetime
import time
import argparse
import json
import pickle
import logging
import numpy as np
from torch_geometric.loader import DataLoader
import hyperopt
from hyperopt import fmin, tpe, hp, Trials, partial, STATUS_OK
import random
from logging_util import init_logger
from train4tune import main
from test4tune import main as test_main
import torch
import statistics
from libauc.losses import AUCMLoss
from libauc.optimizers import PESG
from ogb.graphproppred import PygGraphPropPredDataset, Evaluator
from model import NetworkGNN as Network
from DeeperGCN.utils.ckpt_util import save_ckpt
graph_classification_dataset=['DD', 'MUTAG', 'PROTEINS', 'NCI1', 'NCI109','IMDB-BINARY', 'REDDIT-BINARY', 'BZR', 'COX2', 'IMDB-MULTI','COLORS-3', 'COLLAB', 'REDDIT-MULTI-5K', 'ogbg-molhiv', 'ogbg-molpcba']
node_classification_dataset = ['Cora', 'CiteSeer', 'PubMed', 'Amazon_Computers', 'Coauthor_CS', 'Coauthor_Physics', 'Amazon_Photo']
def get_args():
parser = argparse.ArgumentParser("sane")
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--num_workers', type=int, default=8,
help='number of workers (default: 0)')
parser.add_argument('--pretrained', action='store_true', default=False)
parser.add_argument('--dataset', type=str, default="ogbg-molhiv",
help='dataset name (default: ogbg-molhiv)')
parser.add_argument('--gamma', type=float, default=500)
parser.add_argument('--margin', type=float, default=1.0)
parser.add_argument('--loss', type=str, default='auroc', help='')
parser.add_argument('--data', type=str, default='ogbg-molhiv', help='location of the data corpus')
parser.add_argument('--model_save_path', type=str, default='model_0206_gamma_500',
help='the directory used to save models')
parser.add_argument('--add_virtual_node', action='store_true')
parser.add_argument('--arch_filename', type=str, default='', help='given the location of searched res')
parser.add_argument('--arch', type=str, default='', help='given the specific of searched res')
parser.add_argument('--num_layers', type=int, default=14, help='num of GNN layers in SANE')
parser.add_argument('--tune_topK', action='store_true', default=False, help='whether to tune topK archs')
parser.add_argument('--use_hyperopt', action='store_true', default=False, help='whether to tune topK archs')
parser.add_argument('--record_time', action='store_true', default=False, help='whether to tune topK archs')
parser.add_argument('--with_linear', action='store_true', default=False, help='whether to use linear in NaOp')
parser.add_argument('--with_layernorm', action='store_true', default=False, help='whether to use layer norm')
parser.add_argument('--with_layernorm_learnable', action='store_true', default=False, help='use the learnable layer norm')
parser.add_argument('--BN', action='store_true', default=True, help='use BN.')
parser.add_argument('--flag', action='store_true', default=False, help='use flag.')
parser.add_argument('--feature', type=str, default='full',
help='two options: full or simple')
parser.add_argument('--activation', type=str, default='relu')
parser.add_argument('--optimizer', type=str, default='pesg', help='')
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate set for optimizer.')
parser.add_argument('--hidden_size', type=int, default=256,
help='the dimension of embeddings of nodes and edges')
parser.add_argument('--batch_size', type=int, default=512, help='batch size of data.')
parser.add_argument('--model', type=str, default='SANE')
parser.add_argument('--dropout', type=float, default=0.3)
parser.add_argument('--is_mlp', action='store_true', default=False, help='is_mlp')
parser.add_argument('--ft_weight_decay', action='store_true', default=False, help='with weight decay in finetune stage.')
parser.add_argument('--ft_dropout', action='store_true', default=False, help='with dropout in finetune stage')
parser.add_argument('--ft_mode', type=str, default='811', choices=['811', '622', '10fold'], help='data split function.')
parser.add_argument('--hyper_epoch', type=int, default=1, help='hyper epoch in hyperopt.')
parser.add_argument('--epochs', type=int, default=300, help='training epochs for each model')
parser.add_argument('--cos_lr', action='store_true', default=True, help='use cos lr.')
parser.add_argument('--lr_min', type=float, default=0.005, help='use cos lr.')
parser.add_argument('--show_info', action='store_true', default=True, help='print training info in each epoch')
parser.add_argument('--withoutjk', action='store_true', default=False, help='remove la aggregtor')
parser.add_argument('--search_act', action='store_true', default=False, help='search act in supernet.')
parser.add_argument('--one_pooling', action='store_true', default=False, help='only one pooling layers after 2th layer.')
parser.add_argument('--seed', type=int, default=0, help='seed for finetune')
parser.add_argument('--remove_pooling', action='store_true', default=True,
help='remove pooling block.')
parser.add_argument('--remove_readout', action='store_true', default=True,
help='remove readout block. Only search the last readout block.')
parser.add_argument('--remove_jk', action='store_true', default=False,
help='remove ensemble block. In the last readout block,use global sum. Graph representation = Z3')
parser.add_argument('--fixpooling', type=str, default='null',
help='use fixed pooling functions')
parser.add_argument('--fixjk',action='store_true', default=False,
help='use concat,rather than search from 3 ops.')
# flag
parser.add_argument('--step_size', type=float, default=1e-3)
parser.add_argument('-m', type=int, default=3)
parser.add_argument('--test_freq', type=int, default=1)
parser.add_argument('--attack', type=str, default='none')
parser.add_argument('--save', type=str, default='EXP', help='experiment nam ')
global args
args = parser.parse_args()
random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
os.environ.setdefault("HYPEROPT_FMIN_SEED", str(args.seed))
def set_all_seeds(SEED):
# REPRODUCIBILITY
torch.manual_seed(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def train(model, device, loader, optimizer, task_type, scheduler, grad_clip=0.):
loss_list = []
model.train()
iters = len(loader)
for step, batch in enumerate(loader):
batch = batch.to(device)
if batch.x.shape[0] == 1 or batch.batch[-1] == 0:
pass
else:
optimizer.zero_grad()
pred = model(batch)
pred = torch.sigmoid(pred)
is_labeled = batch.y == batch.y
loss = aucm_criterion(pred.to(torch.float32)[is_labeled].reshape(-1, 1),
batch.y.to(torch.float32)[is_labeled].reshape(-1, 1))
loss.backward()
if grad_clip > 0:
torch.nn.utils.clip_grad_value_(
model.parameters(),
grad_clip)
optimizer.step()
if args.cos_lr:
pass
#cos_lr_warmrestarts
# scheduler.step(args.epochs + step / iters)
loss_list.append(loss.item())
return statistics.mean(loss_list)
@torch.no_grad()
def eval(model, device, loader, evaluator):
model.eval()
y_true = []
y_pred = []
for step, batch in enumerate(loader):
batch = batch.to(device)
if batch.x.shape[0] == 1:
pass
else:
pred = model(batch)
pred = torch.sigmoid(pred)
y_true.append(batch.y[:,0:1].view(pred.shape).detach().cpu()) # remove random forest pred
y_pred.append(pred.detach().cpu())
y_true = torch.cat(y_true, dim=0).numpy()
y_pred = torch.cat(y_pred, dim=0).numpy()
input_dict = {"y_true": y_true,
"y_pred": y_pred}
return evaluator.eval(input_dict)
def main():
sub_dir = 'BS_{}-NF_{}'.format(args.batch_size, args.feature)
set_all_seeds(args.seed)
dataset = PygGraphPropPredDataset(name=args.dataset)
args.num_tasks = dataset.num_tasks
# logging.info('%s' % args)
if args.feature == 'full':
pass
elif args.feature == 'simple':
print('using simple feature')
# only retain the top two node/edge features
dataset.data.x = dataset.data.x[:, :2]
dataset.data.edge_attr = dataset.data.edge_attr[:, :2]
evaluator = Evaluator(args.dataset)
split_idx = dataset.get_idx_split()
set_all_seeds(args.seed)
train_loader = DataLoader(dataset[split_idx["train"]], batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers)
valid_loader = DataLoader(dataset[split_idx["valid"]], batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers)
test_loader = DataLoader(dataset[split_idx["test"]], batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers)
set_all_seeds(args.seed)
aucm_criterion.to(device)
lines = open(args.arch_filename, 'r').readlines()
suffix = args.arch_filename.split('_')[-1][:-4]
arch_set = set()
for ind, l in enumerate(lines):
# with open('tuned_res/%s_res_%s_%s.pkl' % (args1.data, tune_str, suffix), 'wb+') as fw:
# test={'a':[1, 2, 3], 'b':('string','abc'),'c':'hello'}
# pickle.dump(test, fw)
try:
print('**********process {}-th/{}'.format(ind+1, len(lines)))
logging.info('**********process {}-th/{}**************8'.format(ind+1, len(lines)))
res = {}
#iterate each searched architecture
parts = l.strip().split(',')
arch = parts[1].split('=')[1]
args.arch = arch
if arch in arch_set:
logging.info('the %s-th arch %s already searched....info=%s', ind+1, arch, l.strip())
continue
else:
arch_set.add(arch)
except Exception as e:
logging.info('errror occured for %s-th, arch_info=%s, error=%s', ind + 1, l.strip(), e)
import traceback
traceback.print_exc()
genotype = args.arch
# print(genotype)
model = Network(genotype, aucm_criterion, args.hidden_size, 1, args.hidden_size,
num_layers=args.num_layers, in_dropout=args.dropout,
out_dropout=args.dropout,
act=args.activation, args=args, is_mlp=args.is_mlp)
model = model.to(device)
optimizer = PESG(model,
a=aucm_criterion.a,
b=aucm_criterion.b,
alpha=aucm_criterion.alpha,
lr=args.lr,
gamma=args.gamma,
margin=args.margin,
weight_decay=args.weight_decay)
# get imbalance ratio from train set
args.imratio = float((train_loader.dataset.data.y[:, 0].sum() / train_loader.dataset.data.y[:, 0].shape[0]).numpy())
aucm_criterion.p = args.imratio
print(aucm_criterion.p)
# cos_lrscheduler
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs),
# eta_min=args.lr_min)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
# cos_lr_warmrestarts
# scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=50, T_mult=20)
# save
datetime_now = '2022-01-17'
pretrained_prefix = 'pre_' if args.pretrained else ''
virtual_node_prefilx = '-vt' if args.add_virtual_node else ''
args.configs = '[%s]Train_%s_im_%.4f_rd_%s_%s%s-FP_%s_%s_wd_%s_lr_%s_B_%s_E_%s_%s_%s_g_%s_m_%s' % (
datetime_now, args.dataset, args.imratio, args.seed, pretrained_prefix, args.arch,
virtual_node_prefilx, args.activation, args.weight_decay, args.lr, args.batch_size, args.epochs, args.loss,
args.optimizer, args.gamma, args.margin)
logging.info(args.save)
logging.info(args.configs)
results = {'highest_valid': 0,
'final_train': 0,
'final_test': 0,
'highest_train': 0}
start_time = time.time()
start_time_local = time.time()
for epoch in range(1, args.epochs + 1):
if epoch in [int(args.epochs * 0.33), int(args.epochs * 0.66)]:
if not args.cos_lr:
optimizer.update_regularizer(decay_factor=2)
epoch_loss = train(model, device, train_loader, optimizer, dataset.task_type, scheduler, grad_clip=0.)
if args.cos_lr:
scheduler.step()
# logging.info('Evaluating...')
train_result = eval(model, device, train_loader, evaluator)[dataset.eval_metric]
valid_result = eval(model, device, valid_loader, evaluator)[dataset.eval_metric]
test_result = eval(model, device, test_loader, evaluator)[dataset.eval_metric]
print("Epoch:%s, train_auc:%.4f, valid_auc:%.4f, test_auc:%.4f, lr:%.4f, time:%.4f" % (
epoch, train_result, valid_result, test_result, optimizer.lr, time.time() - start_time_local))
start_time_local = time.time()
# model.print_params(epoch=epoch)
if train_result > results['highest_train']:
results['highest_train'] = train_result
if valid_result > results['highest_valid'] and epoch > 200:
results['highest_valid'] = valid_result
results['final_train'] = train_result
results['final_test'] = test_result
save_ckpt(model, optimizer,
round(epoch_loss, 4), epoch,
args.model_save_path,
sub_dir, name_post='valid_best_AUC-FP_E_%s_R%s' % (epoch, args.seed))
logging.info("%s" % results)
end_time = time.time()
total_time = end_time - start_time
logging.info('Total time: {}'.format(time.strftime('%H:%M:%S', time.gmtime(total_time))))
if __name__ == "__main__":
get_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(args.gpu)
cls_criterion = torch.nn.BCEWithLogitsLoss()
reg_criterion = torch.nn.MSELoss()
aucm_criterion = AUCMLoss().to(device)
main()