-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain4tune.py
271 lines (225 loc) · 9.22 KB
/
train4tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import os.path as osp
import sys
import time
import glob
import pickle
import numpy as np
import torch
import utils
import logging
import argparse
import torch.nn as nn
import genotypes
import torch.utils
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from torch import cat
from sklearn.metrics import f1_score
from torch.autograd import Variable
from model import NetworkGNN as Network
from utils import gen_uniform_60_20_20_split, save_load_split
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from torch_geometric.datasets import Planetoid, Amazon, Coauthor, CoraFull, Reddit, PPI
from sklearn.model_selection import StratifiedKFold
from torch_geometric.utils import add_self_loops
from logging_util import init_logger
from torch_geometric.data import DataLoader
import torch_geometric.transforms as T
def main(exp_args):
global train_args
train_args = exp_args
tune_str = time.strftime('%Y%m%d-%H%M%S')
train_args.save = 'logs/tune-{}-{}'.format(train_args.data, tune_str)
if not os.path.exists(train_args.save):
os.mkdir(train_args.save)
global device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
#np.random.seed(train_args.seed)
torch.cuda.set_device(train_args.gpu)
cudnn.benchmark = True
torch.manual_seed(train_args.seed)
cudnn.enabled=True
torch.cuda.manual_seed(train_args.seed)
if train_args.data == 'Amazon_Computers':
dataset = Amazon('../data/Amazon_Computers', 'Computers')
elif train_args.data == 'Coauthor_Physics':
dataset = Coauthor('../data/Coauthor_Physics', 'Physics')
elif train_args.data == 'Coauthor_CS':
dataset = Coauthor('../data/Coauthor_CS', 'CS')
elif train_args.data == 'Cora_Full':
dataset = CoraFull('../data/Cora_Full')
elif train_args.data == 'PubMed':
dataset = Planetoid('../data/', 'PubMed')
elif train_args.data == 'Cora':
dataset = Planetoid('../data/', 'Cora')
elif train_args.data == 'CiteSeer':
dataset = Planetoid('../data/', 'CiteSeer')
elif train_args.data == 'PPI':
train_dataset = PPI('../data/PPI', split='train')
val_dataset = PPI('../data/PPI', split='val')
test_dataset = PPI('../data/PPI', split='test')
ppi_train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
ppi_val_loader = DataLoader(val_dataset, batch_size=2, shuffle=False)
ppi_test_loader = DataLoader(test_dataset, batch_size=2, shuffle=False)
# print('load PPI done!')
data = [ppi_train_loader, ppi_val_loader, ppi_test_loader]
if train_args.data == 'small_Reddit':
dataset = Reddit('../data/Reddit/')
with open('../data/small_Reddit/sampled_reddit.obj', 'rb') as f:
data = pickle.load(f)
raw_dir = '../data/small_Reddit/raw/'
elif train_args.data == 'small_arxiv':
dataset = PygNodePropPredDataset(name='ogbn-arxiv')
with open('../data/small_arxiv/sampled_arxiv.obj', 'rb') as f:
data = pickle.load(f)
raw_dir = '../data/small_arxiv/raw/'
genotype = train_args.arch
hidden_size = train_args.hidden_size
if train_args.data != 'PPI':
raw_dir = dataset.raw_dir
data = dataset[0]
data = save_load_split(data, raw_dir, 1, gen_uniform_60_20_20_split)
edge_index, _ = add_self_loops(data.edge_index, num_nodes=data.x.size(0))
data.edge_index = edge_index
num_features = dataset.num_features
num_classes = dataset.num_classes
criterion = nn.CrossEntropyLoss()
else:
criterion = nn.BCEWithLogitsLoss()
num_features = train_dataset.num_features
num_classes = train_dataset.num_classes
criterion = criterion.cuda()
model = Network(genotype, criterion, num_features, num_classes, hidden_size,
num_layers=train_args.num_layers, in_dropout=train_args.in_dropout,
out_dropout=train_args.out_dropout, act=train_args.activation,
is_mlp=False, args=train_args)
model = model.cuda()
logging.info("genotype=%s, param size = %fMB, args=%s", genotype, utils.count_parameters_in_MB(model), train_args.__dict__)
if train_args.optimizer == 'adam':
optimizer = torch.optim.Adam(
model.parameters(),
train_args.learning_rate,
#momentum=args.momentum,
weight_decay=train_args.weight_decay
)
elif train_args.optimizer == 'sgd':
optimizer = torch.optim.SGD(
model.parameters(),
train_args.learning_rate,
momentum=train_args.momentum,
weight_decay=train_args.weight_decay
)
elif train_args.optimizer == 'adagrad':
optimizer = torch.optim.Adagrad(
model.parameters(),
train_args.learning_rate,
weight_decay=train_args.weight_decay
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(train_args.epochs))
val_res = 0
best_val_acc = best_test_acc = 0
for epoch in range(train_args.epochs):
train_acc, train_obj = train(train_args.data, data, model, criterion, optimizer)
if train_args.cos_lr:
scheduler.step()
valid_acc, valid_obj = infer(train_args.data, data, model, criterion)
test_acc, test_obj = infer(train_args.data, data, model, criterion, test=True)
if valid_acc > best_val_acc:
best_val_acc = valid_acc
best_test_acc = test_acc
if epoch % 10 == 0:
logging.info('epoch=%s, lr=%s, train_obj=%s, train_acc=%f, valid_acc=%s, test_acc=%s', epoch, scheduler.get_lr()[0], train_obj, train_acc, best_val_acc, best_test_acc)
utils.save(model, os.path.join(train_args.save, 'weights.pt'))
return best_val_acc, best_test_acc, train_args
def train(dataset_name, data, model, criterion, optimizer):
if dataset_name == 'PPI':
return train_ppi(data, model, criterion, optimizer)
else:
return train_trans(data, model, criterion, optimizer)
def infer(dataset_name, data, model, criterion, test=False):
if dataset_name == 'PPI':
return infer_ppi(data, model, criterion, test=test)
else:
return infer_trans(data, model, criterion, test=test)
def train_trans(data, model, criterion, optimizer):
mask = data.train_mask
model.train()
target = data.y[mask].to(device)
optimizer.zero_grad()
logits = model(data.to(device))
input = logits[mask].to(device)
loss = criterion(input, target)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), train_args.grad_clip)
optimizer.step()
acc = logits[mask].max(1)[1].eq(data.y[mask]).sum().item() / mask.sum().item()
return acc, loss/mask.sum().item()
def infer_trans(data, model, criterion, test=False):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
with torch.no_grad():
logits = model(data.to(device))
if test:
mask = data.test_mask
else:
mask = data.val_mask
input = logits[mask].to(device)
target = data.y[mask].to(device)
loss = criterion(input, target)
acc = logits[mask].max(1)[1].eq(data.y[mask]).sum().item() / mask.sum().item()
return acc, loss/mask.sum().item()
# prec1, prec5 = utils.accuracy(input, target, topk=(1, 3))
# n = data.val_mask.sum().item()
# objs.update(loss.data.item(), n)
# top1.update(prec1.data.item(), n)
# top5.update(prec5.data.item(), n)
# return top1.avg, objs.avg
def train_ppi(data, model, criterion, optimizer):
model.train()
preds, ys = [], []
total_loss = 0
# input all data
for train_data in data[0]:
train_data = train_data.to(device)
target = Variable(train_data.y).to(device)
# train loss
optimizer.zero_grad()
input = model(train_data).to(device)
loss = criterion(input, target)
total_loss += loss.item()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), train_args.grad_clip)
optimizer.step()
preds.append((input > 0).float().cpu())
ys.append(train_data.y.cpu())
y, pred = torch.cat(ys, dim=0).numpy(), torch.cat(preds, dim=0).numpy()
prec1 = f1_score(y, pred, average='micro')
# print('train_loss:', total_loss / len(data[0].dataset))
return prec1, total_loss / len(data[0].dataset)
def infer_ppi(data, model, criterion, test=False):
model.eval()
total_loss = 0
preds, ys = [], []
if test:
infer_data = data[2]
else:
infer_data = data[1]
for val_data in infer_data:
val_data = val_data.to(device)
with torch.no_grad():
logits = model(val_data).to(device)
loss = criterion(logits, val_data.y.to(device))
total_loss += loss.item()
preds.append((logits > 0).float().cpu())
ys.append(val_data.y.cpu())
y, pred = torch.cat(ys, dim=0).numpy(), torch.cat(preds, dim=0).numpy()
prec1 = f1_score(y, pred, average='micro')
return prec1, total_loss / len(infer_data.dataset)
if __name__ == '__main__':
main()