-
Notifications
You must be signed in to change notification settings - Fork 1
/
ensemble_by_prob_multi_file_multiepoch_speed.py
342 lines (285 loc) · 12.3 KB
/
ensemble_by_prob_multi_file_multiepoch_speed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import json
import sys
import collections
from transformers.tokenization_bert import BasicTokenizer
import logging
import numpy as np
import os
from tqdm import tqdm
import math
import glob
#logging = logging.getLogger(__name__)
from functools import partial
from multiprocessing import Pool, cpu_count
from numba import jit
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the SQuAD eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heuristic between
# `pred_text` and `orig_text` to get a character-to-character alignment. This
# can fail in certain cases in which case we just return `orig_text`.
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = BasicTokenizer(do_lower_case=True)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose_logging:
print ("=="*10)
print (tok_text)
print("Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
#return orig_text,0,len(orig_text)
return pred_text.replace(" ",""),0,len(orig_text)
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
print("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text)
#return orig_text,0,len(orig_text)
return pred_text.replace(" ",""),0,len(orig_text)
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
print("Couldn't map start position")
#return orig_text,0,len(orig_text)
return pred_text.replace(" ",""),0,len(orig_text)
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
print("Couldn't map end position")
#return orig_text,0,len(orig_text)
return pred_text.replace(" ",""),0,len(orig_text)
output_text = orig_text[orig_start_position : (orig_end_position + 1)]
return output_text,orig_start_position,orig_end_position + 1
def _get_best_start_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(logits.items(), key=lambda x: x[1][2], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _get_best_end_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(logits.items(), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
def extract_answer(info,topk=20,max_answer_length=30):
start_logits = info["start_logits"]
end_logits = info["end_logits"]
tokens = [start_logits[str(i)][1] for i in range(len(start_logits))]
start_indexes = _get_best_start_indexes(start_logits,topk)
end_indexes = _get_best_end_indexes(end_logits, topk)
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction", ["start_index", "end_index", "start_logit", "end_logit"]
)
prelim_predictions = []
for start_index in start_indexes:
for end_index in end_indexes:
if int(end_index) < int(start_index):
continue
length = int(end_index) - int(start_index) + 1
if length >max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
start_index=start_index,
end_index=end_index,
start_logit=start_logits[start_index][2],
end_logit=end_logits[end_index],
)
)
prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_logit", "end_logit","start_index", "end_index"]
)
nbest = []
seen_predictions = {}
final_text = ""
for pred in prelim_predictions:
if len(nbest) >= topk:
break
tok_tokens = tokens[int(pred.start_index):int(pred.end_index)+1]
orig_tokens = info["ori_tokens"][start_logits[pred.start_index][0]:start_logits[pred.end_index][0] + 1]
tok_text = " ".join(tok_tokens)
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text,start_index,end_index = get_final_text(tok_text, orig_text, do_lower_case=False, verbose_logging=False)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit,start_index = start_index,end_index = end_index))
if not nbest:
nbest.append(_NbestPrediction(text="", start_logit=-1e6, end_logit=-1e6,start_index = 0, end_index = 0))
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
output["start_index"] = entry.start_index
output["end_index"] = entry.end_index
nbest_json.append(output)
assert len(nbest_json) >= 1
assert best_non_null_entry is not None
return best_non_null_entry.text, nbest_json
@jit
def softmax(x):
x_row_max = np.max(x,axis=-1)
x_row_max = x_row_max.reshape(list(x.shape)[:-1]+[1])
x = x - x_row_max
x_exp = np.exp(x)
x_exp_row_sum = x_exp.sum(axis=-1).reshape(list(x.shape)[:-1]+[1])
softmax = x_exp / x_exp_row_sum
return softmax
@jit("f8(f8[:])", cache=False, nopython=True, nogil=True, parallel=True)
def esum(z):
return np.sum(np.exp(z))
@jit("f8[:](f8[:])", cache=False, nopython=True, nogil=True, parallel=True)
def softmax_bak(z):
num = np.exp(z)
s = num / esum(z)
return s
def ensemble_logits(file_list,filename):
data_list = [json.load(open(os.path.join(f,filename))) for f in file_list]
data_new = data_list[0]
data_new = data_list[0]
data_new["start_logits"] = softmax(np.array(data_new["start_logits"]))
data_new["end_logits"] = softmax(np.array(data_new["end_logits"]))
for i in range(1,len(file_list)):
assert data_list[i]["ori_tokens"] == data_new["ori_tokens"]
data_new["start_logits"] += softmax(np.array(data_list[i]["start_logits"]))
data_new["end_logits"][str(index)] += softmax(np.array(data_list[i]["end_logits"][str(index)]))
return data_new
def deal_one_file(filename,ensemble_data_files):
data = ensemble_logits(file_list = ensemble_data_files, filename = filename)
answer,nbest = extract_answer(data)
return filename,answer,nbest
def multiprocess(ensemble_data_files,filenames,threads=5):
with Pool(threads) as p:
annotate_ = partial(
deal_one_file,
ensemble_data_files=ensemble_data_files,
)
features = list(
tqdm(
p.imap(annotate_, filenames, chunksize=4),
total=len(filenames),
desc="generate answer and nbest",
)
)
result = collections.OrderedDict()
nbest_result = collections.OrderedDict()
for filename, answer, nbest in tqdm(features):
result[filename] = answer
nbest_result[filename] = nbest
return result, nbest_result
if __name__ == "__main__":
ensemble_data_files = []
versions = ["14","17","21","22","23","25","26","27","28","29","33","34","35","36","37","38","39"]
#versions = ["14","17","21","22","23","25","26","27","28","29","33","34","35","36","37","38"]
#versions = ["14"]
_type = "test1"
logit_path = "results/test1_logit/"
results_path = "results/ensemble_test1/"
EP = "EP4-5"
for version in versions:
for epoch in range(4,6):
v = "{}_{}*{}*".format(version,epoch,_type)
try:
filepath = glob.glob(os.path.join(logit_path,v))[0]
ensemble_data_files.append(filepath)
except:
print ("cant find:", v)
pass
#exit()
print ( ensemble_data_files)
result = collections.OrderedDict()
nbest_result = collections.OrderedDict()
for filename in tqdm(os.listdir(ensemble_data_files[0])):
data = ensemble_logits(ensemble_data_files,filename)
result[filename],nbest_result[filename] = extract_answer(data,topk=20,max_answer_length=30)
#result, nbest_result = multiprocess(ensemble_data_files,os.listdir(ensemble_data_files[0]))
name = "_".join(versions)+"_"+EP+"_nbest20_len30.json"
json.dump(result,open(os.path.join(results_path,name),"w"),ensure_ascii=False,indent=4)
json.dump(nbest_result,open(os.path.join(results_path,name) + '.nbest',"w"),ensure_ascii=False,indent=4)