-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
78 lines (65 loc) · 2.88 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModel
import uvicorn, json, datetime
import torch, os
from transformers import AutoConfig
DEVICE = "cuda"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
def torch_gc(): # clear tensor caching
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI()
@app.post("/")
async def create_item(request: Request): # Handle POST requests and create functions with asynchronous APIs
global model, tokenizer
json_post_raw = await request.json()
json_post = json.dumps(json_post_raw)
json_post_list = json.loads(json_post)
prompt = json_post_list.get('prompt')
history = json_post_list.get('history')
max_length = json_post_list.get('max_length')
top_p = json_post_list.get('top_p')
temperature = json_post_list.get('temperature')
response, history = model.chat(tokenizer,
prompt,
history=history,
max_length=max_length if max_length else 2048,
top_p=top_p if top_p else 0.7,
temperature=temperature if temperature else 0.95)
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
answer = {
"response": response,
"history": history,
"status": 200,
"time": time
}
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
print(log)
torch_gc()
return answer
'''
if __name__ == '__main__':
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
history = []
tokenizer = AutoTokenizer.from_pretrained("model", trust_remote_code=True)
model = AutoModel.from_pretrained("model", trust_remote_code=True).quantize(4).half().cuda()
model.eval()
'''
# 24.4.22 linghy Fine-tuning deployment successful
if __name__ == '__main__':
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
history = []
tokenizer = AutoTokenizer.from_pretrained("model", trust_remote_code=True)
config = AutoConfig.from_pretrained("model", trust_remote_code=True, pre_seq_len = 128)
# pre_seq_len needs to be consistent with the actual value of train
model = AutoModel.from_pretrained("model", config=config, trust_remote_code=True).quantize(4).half().cuda()
prefix_state_dict = torch.load(os.path.join("output\lr-le-2\checkpoint-3000", "pytorch_model.bin")) # Fine-tuning the model's intervention
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
model = model.eval()