Skip to content

Latest commit

 

History

History
69 lines (57 loc) · 2.85 KB

README.md

File metadata and controls

69 lines (57 loc) · 2.85 KB

Train CIFAR10,CIFAR100 with Pytorch-lightning

Measure CNN,VGG,Resnet,WideResnet models' accuracy on dataset CIFAR10,CIFAR100 using pytorch-lightning.

Requirements

  • setup/requirements.txt
torch 1.5.1
torchvision 0.6.1
pytorch-lightning 0.9.0rc5
tqdm
argparse
pytablewriter
seaborn
enum34
scipy
cffi
sklearn
  • install requirements using pip
pip3 install -r setup/requirements.txt

How to run

After you have cloned the repository, you can train each models with datasets cifar10, cifar100. Trainable models are VGG, Resnet, WideResnet, Densenet-BC, Densenet.

python train.py

Implementation Details

  • CIFAR10
epoch learning rate weight decay Optimizer Momentum Nesterov
0 ~ 20 0.1 0.0005 SGD 0.9 False
21 ~ 40 0.01 0.0005 SGD 0.9 False
41 ~ 60 0.001 0.0005 SGD 0.9 False
  • CIFAR100
epoch learning rate weight decay Optimizer Momentum Nesterov
0 ~ 60 0.1 0.0005 SGD 0.9 False
61 ~ 120 0.01 0.0005 SGD 0.9 False
121 ~ 180 0.001 0.0005 SGD 0.9 False

Accuracy

Below is the result of the test set accuracy for CIFAR-10, CIFAR-100 dataset training

Accuracy of models trained on CIFAR10

network dropout preprocess parameters accuracy(%)
VGG16 0 meanstd 14M 91.09
Resnet-50 0 meanstd 23M 92.11
WideResnet 28x10 0.3 meanstd 36M 93.61
Densenet-BC 0 meanstd 769K 92.85
Densenet 0 meanstd 769K 93.06

Accuracy of models trained on CIFAR100

network dropout preprocess parameters accuracy(%)
VGG16 0 meanstd 14M 72.79
Resnet-50 0 meanstd 23M 75.80
WideResnet 28x20 0.3 meanstd 145M 75.46
Densenet-BC 0 meanstd 800K 72.23
Densenet 0 meanstd 800K 75.58