forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsabl_faster_rcnn_r101_fpn_1x_coco.py
38 lines (38 loc) · 1.34 KB
/
sabl_faster_rcnn_r101_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
backbone=dict(
depth=101,
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')),
roi_head=dict(
bbox_head=dict(
_delete_=True,
type='SABLHead',
num_classes=80,
cls_in_channels=256,
reg_in_channels=256,
roi_feat_size=7,
reg_feat_up_ratio=2,
reg_pre_kernel=3,
reg_post_kernel=3,
reg_pre_num=2,
reg_post_num=1,
cls_out_channels=1024,
reg_offset_out_channels=256,
reg_cls_out_channels=256,
num_cls_fcs=1,
num_reg_fcs=0,
reg_class_agnostic=True,
norm_cfg=None,
bbox_coder=dict(
type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1,
loss_weight=1.0))))