From 42596c005372525c34a8ea0881cb0eb341b986da Mon Sep 17 00:00:00 2001 From: Alex Chichigin Date: Tue, 3 Oct 2023 16:21:34 +0400 Subject: [PATCH] Julia implementation of the OLS --- .../OLS/simple_linear_regression.md | 31 +++++++++++++++++-- 1 file changed, 28 insertions(+), 3 deletions(-) diff --git a/Model_Estimation/OLS/simple_linear_regression.md b/Model_Estimation/OLS/simple_linear_regression.md index 53a34128..88a50afa 100644 --- a/Model_Estimation/OLS/simple_linear_regression.md +++ b/Model_Estimation/OLS/simple_linear_regression.md @@ -17,7 +17,7 @@ For more information about OLS, see [Wikipedia: Ordinary Least Squares](https:// - OLS assumes that you have specified a true linear relationship. - OLS results are not guaranteed to have a causal interpretation. Just because OLS estimates a positive relationship between $$X_1$$ and $$Y$$ does not necessarily mean that an increase in $$X_1$$ will cause $$Y$$ to increase. -- OLS does *not* require that your variables follow a normal distribution. +- OLS does *not* require that your variables follow a normal distribution. ## Also Consider @@ -40,6 +40,31 @@ open https://github.com/LOST-STATS/lost-stats.github.io/blob/master/Data/auto.gd ols mpg const headroom trunk weight ``` +## Julia + +```julia +# Uncomment the next line to install all the necessary packages +# import Pkg; Pkg.add(["CSV", "DataFrames", "GLM", "StatsModels"]) + +# We tap into JuliaStats ecosystem to solve our data and regression problems :) +# In particular, DataFrames package provides dataset handling functions, +# StatsModels gives us the `@formula` macro to specify our model in a concise and readable form, +# while GLM implements (Generalized) Linear Models fitting and analysis. +# And all these packages work together seamlessly. +using StatsModels, GLM, DataFrames, CSV + +# Here we download the data set, parse the file with CSV and load into a DataFrame +mtcars = CSV.read(download("https://github.com/LOST-STATS/lost-stats.github.io/raw/source/Data/mtcars.csv"), DataFrame) + +# The following line closely follows the R and Python syntax, thanks to GLM and StatModels packages +# Here we specify a linear model and fit it to our data set in one go +ols = lm(@formula(mpg ~ cyl + hp + wt), mtcars) + +# This will print out the summary of the fitted model including +# coefficients' estimates, standard errors, confidence intervals and p-values +print(ols) +``` + ## Matlab ```matlab @@ -93,13 +118,13 @@ summary(olsmodel) ```sas /* Load Data */ -proc import datafile="C:mtcars.dbf" +proc import datafile="C:mtcars.dbf" out=fromr dbms=dbf; run; /* OLS regression */ proc reg; model mpg = cyl hp wt; -run; +run; ``` ## Stata