-
Notifications
You must be signed in to change notification settings - Fork 18
/
RAdam.py
295 lines (251 loc) · 14.3 KB
/
RAdam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.training import optimizer
__all__ = ['RAdamOptimizer']
class RAdamOptimizer(optimizer.Optimizer):
"""RAdam optimizer.
According to the paper
[On The Variance Of The Adaptive Learning Rate And Beyond](https://arxiv.org/pdf/1908.03265v1.pdf).
"""
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-7,
L2_decay=0.,
amsgrad=False,
total_steps=0,
warmup_proportion=0.1,
min_lr=0.,
use_locking=False,
name="RAdam",
decay_vars=None,
L1_decay=0.0,
clip_gradients=False, clip_multiplier=3.0, clip_epsilon=1e-2):
r"""Construct a new Adam optimizer.
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
beta1: A float value or a constant float tensor. The exponential decay
rate for the 1st moment estimates.
beta2: A float value or a constant float tensor. The exponential decay
rate for the 2nd moment estimates.
epsilon: A small constant for numerical stability. This epsilon is
"epsilon hat" in the Kingma and Ba paper (in the formula just before
Section 2.1), not the epsilon in Algorithm 1 of the paper.
L2_decay: A floating point value. Weight decay for each param.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
total_steps: An integer. Total number of training steps.
Enable warmup by setting a positive value.
warmup_proportion: A floating point value. The proportion of increasing steps.
min_lr: A floating point value. Minimum learning rate after warmup.
name: Optional name for the operations created when applying gradients.
Defaults to "Adam". @compatibility(eager) When eager execution is
enabled, `learning_rate`, `beta_1`, `beta_2`, and `epsilon` can each be
a callable that takes no arguments and returns the actual value to use.
This can be useful for changing these values across different
invocations of optimizer functions. @end_compatibility
**kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,
`decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip
gradients by value, `decay` is included for backward compatibility to
allow time inverse decay of learning rate. `lr` is included for backward
compatibility, recommended to use `learning_rate` instead.
"""
super(RAdamOptimizer, self).__init__(use_locking, name)
self._lr = learning_rate
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
self._weight_decay = L2_decay
self._L1_decay = L1_decay
self._amsgrad = amsgrad
self._total_steps = float(total_steps)
self._warmup_proportion = warmup_proportion
self._min_lr = min_lr
self._initial_weight_decay = L2_decay
self._initial_total_steps = total_steps
self.clip_multiplier = clip_multiplier
self.clip_epsilon = clip_epsilon
self.clip_gradients = clip_gradients
self.clip_multiplier_t = ops.convert_to_tensor(self.clip_multiplier, name="clip_multiplier")
self.clip_epsilon_t = ops.convert_to_tensor(self.clip_epsilon, name="clip_epsilon")
self._lr_t = None
self._step_t = None
self._beta1_t = None
self._beta2_t = None
self._epsilon_t = None
self._weight_decay_t = None
self._total_steps_t = None
self._warmup_proportion_t = None
self._min_lr_t = None
self.reg_vars = set(decay_vars) if decay_vars is not None else set()
def _get_beta_accumulators(self):
with ops.init_scope():
if context.executing_eagerly():
graph = None
else:
graph = ops.get_default_graph()
return (self._get_non_slot_variable("step", graph=graph),
self._get_non_slot_variable("beta1_power", graph=graph),
self._get_non_slot_variable("beta2_power", graph=graph))
def _create_slots_internal(self, var_list):
first_var = min(var_list, key=lambda x: x.name)
self._create_non_slot_variable(initial_value=1.0, name="step", colocate_with=first_var)
self._create_non_slot_variable(initial_value=self._beta1, name="beta1_power", colocate_with=first_var)
self._create_non_slot_variable(initial_value=self._beta2, name="beta2_power", colocate_with=first_var)
for v in var_list:
self._zeros_slot(v, "m", self._name)
self._zeros_slot(v, "v", self._name)
if self._amsgrad:
self._zeros_slot(v, "vhat", self._name)
def _prepare(self):
lr = self._call_if_callable(self._lr)
beta1 = self._call_if_callable(self._beta1)
beta2 = self._call_if_callable(self._beta2)
epsilon = self._call_if_callable(self._epsilon)
weight_decay = self._call_if_callable(self._weight_decay)
total_steps = self._call_if_callable(self._total_steps)
warmup_proportion = self._call_if_callable(self._warmup_proportion)
min_lr = self._call_if_callable(self._min_lr)
self._lr_t = ops.convert_to_tensor(lr, name="learning_rate")
self._beta1_t = ops.convert_to_tensor(beta1, name="beta1")
self._beta2_t = ops.convert_to_tensor(beta2, name="beta2")
self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon")
self._weight_decay_t = ops.convert_to_tensor(weight_decay, name="weight_decay")
self._total_steps_t = ops.convert_to_tensor(total_steps, name="total_steps")
self._warmup_proportion_t = ops.convert_to_tensor(warmup_proportion, name="warmup_proportion")
self._min_lr_t = ops.convert_to_tensor(min_lr, name="min_lr")
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
tvars = list(zip(*grads_and_vars))[1]
self._create_slots_internal(tvars)
return super().apply_gradients(grads_and_vars, global_step, name)
def _apply_dense(self, grad, var):
return self._resource_apply_dense(grad, var)
def _resource_apply_dense(self, grad, var):
step, beta1_power, beta2_power = self._get_beta_accumulators()
beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
if self._initial_total_steps > 0:
total_steps = math_ops.cast(self._total_steps_t, var.dtype.base_dtype)
warmup_proportion = math_ops.cast(self._warmup_proportion_t, var.dtype.base_dtype)
min_lr = math_ops.cast(self._min_lr_t, var.dtype.base_dtype)
warmup_steps = total_steps * warmup_proportion
decay_steps = math_ops.maximum(total_steps - warmup_steps, 1)
decay_rate = (min_lr - lr_t) / decay_steps
lr_t = tf.where(
step <= warmup_steps,
lr_t * (step / warmup_steps),
lr_t + decay_rate * math_ops.minimum(step - warmup_steps, decay_steps),
)
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
v = self.get_slot(var, "v")
if self.clip_gradients:
clipVal = math_ops.sqrt(
tf.reduce_sum(v) / (1.0 - beta2_power)) * self.clip_multiplier_t + self.clip_epsilon_t
grad = clip_ops.clip_by_norm(grad, clipVal)
sma_inf = 2.0 / (1.0 - beta2_t) - 1.0
sma_t = sma_inf - 2.0 * step * beta2_power / (1.0 - beta2_power)
m = self.get_slot(var, "m")
v_t = state_ops.assign(v, beta2_t * v + (1.0 - beta2_t) * math_ops.square(grad), use_locking=self._use_locking)
v_corr_t = math_ops.sqrt(v_t / (1.0 - beta2_power)) + epsilon_t
grad_corr = grad / v_corr_t
m_t = state_ops.assign(m, beta1_t * m + (1.0 - beta1_t) * grad_corr, use_locking=self._use_locking)
m_corr_t = m_t / (1.0 - beta1_power)
r_t = math_ops.sqrt((sma_t - 4.0) / (sma_inf - 4.0) *
(sma_t - 2.0) / (sma_inf - 2.0) *
sma_inf / sma_t)
var_t = tf.where(sma_t >= 5.0, r_t * m_corr_t, m_corr_t)
if var in self.reg_vars:
if self._initial_weight_decay > 0.0:
var_t += math_ops.cast(self._weight_decay_t, var.dtype.base_dtype) * var
if self._L1_decay > 0.0:
var_t += math_ops.cast(self._L1_decay, var.dtype.base_dtype) * math_ops.sign(var)
with tf.control_dependencies([var_t]):
var_update = state_ops.assign_sub(var, lr_t * var_t, use_locking=self._use_locking)
updates = [var_update, m_t, v_t]
return control_flow_ops.group(*updates)
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
step, beta1_power, beta2_power = self._get_beta_accumulators()
beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
if self._initial_total_steps > 0:
total_steps = math_ops.cast(self._total_steps_t, var.dtype.base_dtype)
warmup_proportion = math_ops.cast(self._warmup_proportion_t, var.dtype.base_dtype)
min_lr = math_ops.cast(self._min_lr_t, var.dtype.base_dtype)
warmup_steps = total_steps * warmup_proportion
decay_steps = math_ops.maximum(total_steps - warmup_steps, 1)
decay_rate = (min_lr - lr_t) / decay_steps
lr_t = tf.where(
step <= warmup_steps,
lr_t * (step / warmup_steps),
lr_t + decay_rate * math_ops.minimum(step - warmup_steps, decay_steps),
)
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
v = self.get_slot(var, "v")
if self.clip_gradients:
clipVal = math_ops.sqrt(
tf.reduce_sum(v) / (1.0 - beta2_power)) * self.clip_multiplier_t + self.clip_epsilon_t
grad = clip_ops.clip_by_norm(grad, clipVal)
sma_inf = 2.0 / (1.0 - beta2_t) - 1.0
sma_t = sma_inf - 2.0 * step * beta2_power / (1.0 - beta2_power)
m = self.get_slot(var, "m")
m_scaled_g_values = grad * (1 - beta1_t)
m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking)
with ops.control_dependencies([m_t]):
m_t = scatter_add(m, indices, m_scaled_g_values)
m_corr_t = m_t / (1.0 - beta1_power)
v_scaled_g_values = (grad * grad) * (1 - beta2_t)
v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking)
with ops.control_dependencies([v_t]):
v_t = scatter_add(v, indices, v_scaled_g_values)
if self._amsgrad:
vhat = self.get_slot(var, 'vhat')
vhat_t = state_ops.assign(vhat, math_ops.maximum(vhat, v_t), use_locking=self._use_locking)
v_corr_t = math_ops.sqrt(vhat_t / (1.0 - beta2_power)) + epsilon_t
else:
v_corr_t = math_ops.sqrt(v_t / (1.0 - beta2_power)) + epsilon_t
r_t = math_ops.sqrt((sma_t - 4.0) / (sma_inf - 4.0) *
(sma_t - 2.0) / (sma_inf - 2.0) *
sma_inf / sma_t)
var_t = tf.where(sma_t >= 5.0, r_t * m_corr_t / v_corr_t, m_corr_t)
if var in self.reg_vars:
if self._initial_weight_decay > 0.0:
var_t += math_ops.cast(self._weight_decay_t, var.dtype.base_dtype) * var
if self._L1_decay > 0.0:
var_t += math_ops.cast(self._L1_decay, var.dtype.base_dtype) * math_ops.sign(var)
var_update = state_ops.assign_sub(var, lr_t * var_t, use_locking=self._use_locking)
updates = [var_update, m_t, v_t]
if self._amsgrad:
updates.append(vhat_t)
return control_flow_ops.group(*updates)
def _apply_sparse(self, grad, var):
return self._apply_sparse_shared(
grad.values,
var,
grad.indices,
lambda x, i, v: state_ops.scatter_add(x, i, v, use_locking=self._use_locking))
def _resource_scatter_add(self, x, i, v):
with ops.control_dependencies([resource_variable_ops.resource_scatter_add(x.handle, i, v)]):
return x.value()
def _resource_apply_sparse(self, grad, var, indices):
return self._apply_sparse_shared(grad, var, indices, self._resource_scatter_add)
def _finish(self, update_ops, name_scope):
with ops.control_dependencies(update_ops):
step, beta1_power, beta2_power = self._get_beta_accumulators()
with ops.colocate_with(beta1_power):
update_step = step.assign(step + 1.0, use_locking=self._use_locking)
update_beta1 = beta1_power.assign(beta1_power * self._beta1_t, use_locking=self._use_locking)
update_beta2 = beta2_power.assign(beta2_power * self._beta2_t, use_locking=self._use_locking)
return control_flow_ops.group(*update_ops + [update_step, update_beta1, update_beta2], name=name_scope)