Skip to content

Latest commit

 

History

History
64 lines (58 loc) · 2.42 KB

DETECTION.md

File metadata and controls

64 lines (58 loc) · 2.42 KB

Detection

This file provides instructions on how to perform detections upon BOP19 Dataset

Setup

  1. Set up mmdetection baseline according to here.

  2. Download all testsets in detection/bop19 from here(or you could download somewhere else and set up a soft link).
    Take lm as an example

    export SRC=http://ptak.felk.cvut.cz/6DB/public/bop_datasets
    wget $SRC/lm_base.zip        # Base archive with dataset info, camera parameters, etc.
    wget $SRC/lm_models.zip      # 3D object models.
    wget $SRC/lm_test_all.zip    # All test images ("_bop19" for a subset used in the BOP Challenge 2019).
    wget $SRC/lm_train.zip       # Training images.
    
    unzip lm_base.zip            # Contains folder "lm".
    unzip lm_models.zip -d lm    # Unpacks to "lm".
    unzip lm_test_all.zip -d lm  # Unpacks to "lm".
    unzip lm_train.zip -d lm     # Unpacks to "lm".
    

    Note: All datasets should be in detection/bop19 whose file system should be as following:

    ├── lmo
    │   ├── test
    │   │   ├── <scene_id>
    │   │   │   ├── rgb
    │   │   │   │   ├── <img_id>.png
    │   │   │   │   └── ...
    │   │   │   ├── mask_visib
    │   │   │   ├── depth
    │   │   │   └── ...
    ├── ycbv
    │   ├── test
    │   │   └── ...
    └── ...
    
  3. Find the root directory of your mmdetction path

    # Please specify the path below
    export MMDETECTION_PATH=<your mmdetection path>
    export DETECTION_PATH=<detection>
    
    # Set up soft link here to self-define the bop19-dataset
    cd ${MMDETECTION_PATH}/mmdet/
    ln -s ${DETECTION_PATH}/datasets
    
    # return to your work place
    cd ${DETECTION_PATH}
    
  4. Download models from here (Password: 7yjb) and store them in ${DETECTION_PATH}/models

  5. Generate the detection results by

    pip install tqdm -y
    python inference.py <dataset name>
    
  6. Then you have your detection results in ${DETECTION_PATH}/out, and the file system is as below:

    ├── hb
    │   ├── hb_<scene_id>_detection_result.json
    │   └── ...
    └── ...
    

    You can go on test on the Pose Part using these files.