-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_kl16.py
222 lines (187 loc) · 12 KB
/
convert_kl16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
import io
import requests
import torch
import yaml
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def custom_convert_ldm_vae_checkpoint(checkpoint, config):
vae_state_dict = checkpoint
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
old_keys = ["encoder.down.4.attn.0.norm.weight","encoder.down.4.attn.0.norm.bias","encoder.down.4.attn.0.q.weight","encoder.down.4.attn.0.q.bias","encoder.down.4.attn.0.k.weight","encoder.down.4.attn.0.k.bias","encoder.down.4.attn.0.v.weight","encoder.down.4.attn.0.v.bias","encoder.down.4.attn.0.proj_out.weight","encoder.down.4.attn.0.proj_out.bias","encoder.down.4.attn.1.norm.weight","encoder.down.4.attn.1.norm.bias","encoder.down.4.attn.1.q.weight","encoder.down.4.attn.1.q.bias","encoder.down.4.attn.1.k.weight","encoder.down.4.attn.1.k.bias","encoder.down.4.attn.1.v.weight","encoder.down.4.attn.1.v.bias","encoder.down.4.attn.1.proj_out.weight","encoder.down.4.attn.1.proj_out.bias","decoder.up.4.attn.0.norm.weight","decoder.up.4.attn.0.norm.bias","decoder.up.4.attn.0.q.weight","decoder.up.4.attn.0.q.bias","decoder.up.4.attn.0.k.weight","decoder.up.4.attn.0.k.bias","decoder.up.4.attn.0.v.weight","decoder.up.4.attn.0.v.bias","decoder.up.4.attn.0.proj_out.weight","decoder.up.4.attn.0.proj_out.bias","decoder.up.4.attn.1.norm.weight","decoder.up.4.attn.1.norm.bias","decoder.up.4.attn.1.q.weight","decoder.up.4.attn.1.q.bias","decoder.up.4.attn.1.k.weight","decoder.up.4.attn.1.k.bias","decoder.up.4.attn.1.v.weight","decoder.up.4.attn.1.v.bias","decoder.up.4.attn.1.proj_out.weight","decoder.up.4.attn.1.proj_out.bias","decoder.up.4.attn.2.norm.weight","decoder.up.4.attn.2.norm.bias","decoder.up.4.attn.2.q.weight","decoder.up.4.attn.2.q.bias","decoder.up.4.attn.2.k.weight","decoder.up.4.attn.2.k.bias","decoder.up.4.attn.2.v.weight","decoder.up.4.attn.2.v.bias","decoder.up.4.attn.2.proj_out.weight","decoder.up.4.attn.2.proj_out.bias"]
for k in old_keys:
if vae_state_dict[k].shape == torch.Size([512, 512, 1,1 ]):
# [512, 512, 1, 1] -> [512, 512]
vae_state_dict[k] = vae_state_dict[k].squeeze(-1).squeeze(-1)
if 'up' not in k:
new_checkpoint[
k.replace('attn', 'attentions').replace('norm', 'group_norm').replace('.q.', '.to_q.').replace('.k.', '.to_k.').replace('.v.', '.to_v.').replace('proj_out', 'to_out').replace('.down.', '.down_blocks.')
] = vae_state_dict[k]
else:
_k = k.replace('attn', 'attentions').replace('norm', 'group_norm').replace('.q.', '.to_q.').replace('.k.', '.to_k.').replace('.v.', '.to_v.').replace('proj_out', 'to_out').replace('.up.', '.up_blocks.')
_ks = _k.split('.')
_k = '.'.join(_ks[0:2] + [str(4-int(_ks[2]))] + _ks[3:])
new_checkpoint[
_k
] = vae_state_dict[k]
for k in ["encoder.down_blocks.4.attentions.0.to_out.weight", "encoder.down_blocks.4.attentions.0.to_out.bias", "encoder.down_blocks.4.attentions.1.to_out.weight", "encoder.down_blocks.4.attentions.1.to_out.bias", "decoder.up_blocks.0.attentions.0.to_out.weight", "decoder.up_blocks.0.attentions.0.to_out.bias", "decoder.up_blocks.0.attentions.1.to_out.weight", "decoder.up_blocks.0.attentions.1.to_out.bias", "decoder.up_blocks.0.attentions.2.to_out.weight", "decoder.up_blocks.0.attentions.2.to_out.bias"]:
ks = k.split('.')
new_checkpoint['.'.join(ks[:-1] +['0'] + [ks[-1]])] = new_checkpoint[k]
del new_checkpoint[k]
# for i in range(num_down_blocks):
# for c in ['qkv']:
# new_checkpoint[f"encoder.down.{i}.attn.{}"] = vae_state_dict.pop(
# f"encoder.down.{i}.downsample.conv.bias"
# )
# meta_path = {"old": f"attn.{i}.{c}", "new": f"attentions.{i}.to_{c}"}
# assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
# meta_path = {"old": f"attn.{i}.proj_out", "new": f"attentions.{i}.to_out"}
# assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for k in old_keys:
if k in new_checkpoint:
del new_checkpoint[k]
return new_checkpoint
def vae_pt_to_vae_diffuser(
checkpoint_path: str,
output_path: str,
):
# Only support V1
# r = requests.get(
# " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
# )
# io_obj = io.BytesIO(r.content)
# original_config = yaml.safe_load(io_obj)
original_config = yaml.safe_load(open('kl-16.yaml','r'))
image_size = 256
device = "cuda" if torch.cuda.is_available() else "cpu"
if checkpoint_path.endswith("safetensors"):
from safetensors import safe_open
checkpoint = {}
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)["state_dict"]
# Convert the VAE model.
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
vae_config = {
'sample_size': 256,
'in_channels': 3,
'out_channels': 3,
'down_block_types':
('DownEncoderBlock2D',
'DownEncoderBlock2D',
'DownEncoderBlock2D',
'DownEncoderBlock2D',
'AttnDownEncoderBlock2D'),
'up_block_types':
('AttnUpDecoderBlock2D',
'UpDecoderBlock2D',
'UpDecoderBlock2D',
'UpDecoderBlock2D',
'UpDecoderBlock2D',),
'block_out_channels': (128, 128, 256, 256, 512),
'latent_channels': 16,
'layers_per_block': 2
}
converted_vae_checkpoint = custom_convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
vae.save_pretrained(output_path)
if __name__ == "__main__":
try:
parser = argparse.ArgumentParser()
parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
args = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
except:
import sys,pdb,bdb
type, value, tb = sys.exc_info()
if type == bdb.BdbQuit:
exit()
print(type,value)
pdb.post_mortem(tb)