-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai_server.py
753 lines (674 loc) · 29.1 KB
/
openai_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import argparse
import asyncio
import json
import time
from http import HTTPStatus
from typing import AsyncGenerator, Dict, List, Optional, Tuple, Union
import fastapi
import uvicorn
from fastapi import Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse, Response
from packaging import version
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
CompletionRequest, CompletionResponse, CompletionResponseChoice, CompletionResponseStreamChoice,
CompletionStreamResponse, ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice, ChatCompletionStreamResponse,
ChatMessage, DeltaMessage, ErrorResponse, LogProbs, ModelCard, ModelList, ModelPermission,
UsageInfo
)
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils import random_uuid
import torch
from logging_config import configure_logging
from conversation import Conversation
import logging
import utils
import os
LOG = logging.getLogger(os.path.basename(__file__))
model_register = utils.from_json('server/model_register.json')
TIMEOUT_KEEP_ALIVE = 5 # seconds
logger = LOG
served_model = None
app = fastapi.FastAPI()
engine = None
max_model_len = 32768
def create_error_response(status_code: HTTPStatus, message: str) -> JSONResponse:
return JSONResponse(
ErrorResponse(message=message, type="invalid_request_error").dict(),
status_code=status_code.value
)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
return create_error_response(HTTPStatus.BAD_REQUEST, str(exc))
async def check_model(request) -> Optional[JSONResponse]:
if request.model == served_model:
return
ret = create_error_response(
HTTPStatus.NOT_FOUND,
f"The model `{request.model}` does not exist.",
)
return ret
async def get_gen_prompt(request, conv_conf) -> str:
# bug: conv_conf is inplace change!
conv = Conversation(**conv_conf)
conv.from_openai(request)
prompt = conv.get_prompt()
return prompt
async def check_length(
request: Union[ChatCompletionRequest, CompletionRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None
) -> Tuple[List[int], Optional[JSONResponse]]:
assert (
not (prompt is None and prompt_ids is None)
and not (prompt is not None and prompt_ids is not None)
), "Either prompt or prompt_ids should be provided."
input_ids = prompt_ids if prompt_ids is not None else tokenizer(prompt).input_ids
token_num = len(input_ids)
if request.max_tokens is None:
request.max_tokens = max_model_len - token_num
if token_num + request.max_tokens > max_model_len:
return input_ids, create_error_response(
HTTPStatus.BAD_REQUEST,
f"This model's maximum context length is {max_model_len} tokens. "
f"However, you requested {request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.",
)
else:
return input_ids, None
@app.get("/health")
async def health() -> Response:
"""Health check."""
return Response(status_code=200)
@app.get("/v1/models")
async def show_available_models():
"""Show available models. Right now we only have one model."""
model_cards = [ModelCard(id=served_model, root=served_model, permission=[ModelPermission()])]
return ModelList(data=model_cards)
def create_logprobs(
token_ids: List[int],
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
if num_output_top_logprobs:
logprobs.top_logprobs = []
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is not None:
token_logprob = step_top_logprobs[token_id]
else:
token_logprob = None
token = tokenizer.convert_ids_to_tokens(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] + last_token_len)
last_token_len = len(token)
if num_output_top_logprobs:
logprobs.top_logprobs.append(
{tokenizer.convert_ids_to_tokens(i): p
for i, p in step_top_logprobs.items()} if step_top_logprobs else None
)
return logprobs
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following features:
- function_call (Users should implement this by themselves)
- logit_bias (to be supported by vLLM engine)
"""
try:
if 'v1219' in request.model:
model_key="lu-vae/qwen-sharegpt-vicuna"
elif 'v1221' in request.model:
model_key="lu-vae/qwen-sharegpt-chatml"
else:
model_key="lu-vae/qwen-sharegpt-chatml"
conf = model_register.get(model_key)
# ret = create_error_response(
# HTTPStatus.NOT_FOUND,
# f"The model `{request.model}` does not exist.",
# )
# return ret
# error_check_ret = None
# if error_check_ret is not None:
# return error_check_ret
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
LOG.error("logit_bias is not currently supported")
return create_error_response(HTTPStatus.BAD_REQUEST, "logit_bias is not currently supported")
prompt = await get_gen_prompt(request, conf['conv_conf'])
LOG.debug({'request':request})
token_ids, error_check_ret = await check_length(request, prompt=prompt)
if error_check_ret is not None:
LOG.error("length is too long")
return error_check_ret
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
created_time = int(time.monotonic())
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_conf = conf['sampling_conf']
sampling_params = SamplingParams(
n=request.n,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
temperature=request.temperature,
top_p=request.top_p,
stop=sampling_conf['stop'] if len(request.stop)==0 else request.stop,
stop_token_ids=request.stop_token_ids,
max_tokens=request.max_tokens,
best_of=request.best_of,
top_k=request.top_k,
ignore_eos=request.ignore_eos,
use_beam_search=request.use_beam_search,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
# except ValueError as e:
# return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
result_generator = engine.generate(prompt, sampling_params, request_id, token_ids)
except:
import sys,pdb,bdb
type, value, tb = sys.exc_info()
if type == bdb.BdbQuit:
exit()
print(type,value)
pdb.post_mortem(tb)
def create_stream_response_json(
index: int,
text: str,
finish_reason: Optional[str] = None,
usage: Optional[UsageInfo] = None,
) -> str:
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(content=text),
finish_reason=finish_reason,
)
response = ChatCompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[choice_data],
)
if usage is not None:
response.usage = usage
# exclude unset to leave details out of each sse
response_json = response.json(exclude_unset=True, ensure_ascii=False)
return response_json
async def completion_stream_generator() -> AsyncGenerator[str, None]:
# First chunk with role
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionStreamResponse(
id=request_id, choices=[choice_data], model=model_name
)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
completion_tokens = len(output.token_ids)
previous_num_tokens[i] = completion_tokens
response_json = create_stream_response_json(
index=i,
text=delta_text,
)
yield f"data: {response_json}\n\n"
if output.finish_reason is not None:
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = create_stream_response_json(
index=i,
text="",
finish_reason=output.finish_reason,
usage=final_usage,
)
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
# Streaming response
if request.stream:
response = StreamingResponse(completion_stream_generator(), media_type="text/event-stream")
return response
# Non-streaming response
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return create_error_response(HTTPStatus.BAD_REQUEST, "Client disconnected")
final_res = res
assert final_res is not None
choices = []
for output in final_res.outputs:
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role="assistant", content=output.text),
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
LOG.info({'prompt':prompt, 'response': response})
if request.stream:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json = response.json(ensure_ascii=False)
async def fake_stream_generator() -> AsyncGenerator[str, None]:
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(fake_stream_generator(), media_type="text/event-stream")
return response
@app.post("/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/completions/create
for the API specification. This API mimics the OpenAI Completion API.
NOTE: Currently we do not support the following features:
- suffix (the language models we currently support do not support
suffix)
- logit_bias (to be supported by vLLM engine)
"""
LOG.info({'request': request, 'raw_request': raw_request})
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
# OpenAI API supports echoing the prompt when max_tokens is 0.
echo_without_generation = request.echo and request.max_tokens == 0
if request.suffix is not None:
# The language models we currently support do not support suffix.
return create_error_response(HTTPStatus.BAD_REQUEST, "suffix is not currently supported")
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
LOG.error("logit_bias is not currently supported")
return create_error_response(HTTPStatus.BAD_REQUEST, "logit_bias is not currently supported")
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
use_token_ids = False
if isinstance(request.prompt, list):
if len(request.prompt) == 0:
return create_error_response(HTTPStatus.BAD_REQUEST, "please provide at least one prompt")
first_element = request.prompt[0]
if isinstance(first_element, int):
use_token_ids = True
prompt = request.prompt
elif isinstance(first_element, (str, list)):
# TODO: handles multiple prompt case in list[list[int]]
if len(request.prompt) > 1:
return create_error_response(
HTTPStatus.BAD_REQUEST, "multiple prompts in a batch is not currently supported"
)
use_token_ids = not isinstance(first_element, str)
prompt = request.prompt[0]
else:
prompt = request.prompt
if use_token_ids:
_, error_check_ret = await check_length(request, prompt_ids=prompt)
else:
token_ids, error_check_ret = await check_length(request, prompt=prompt)
if error_check_ret is not None:
return error_check_ret
created_time = int(time.monotonic())
try:
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_params = SamplingParams(
n=request.n,
best_of=request.best_of,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
stop=request.stop,
stop_token_ids=request.stop_token_ids,
ignore_eos=request.ignore_eos,
max_tokens=request.max_tokens if not echo_without_generation else 1,
logprobs=request.logprobs,
use_beam_search=request.use_beam_search,
prompt_logprobs=request.logprobs if request.echo else None,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
except ValueError as e:
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
if use_token_ids:
result_generator = engine.generate(None, sampling_params, request_id, prompt_token_ids=prompt)
else:
result_generator = engine.generate(prompt, sampling_params, request_id, token_ids)
# Similar to the OpenAI API, when n != best_of, we do not stream the
# results. In addition, we do not stream the results when use beam search.
stream = (
request.stream and (request.best_of is None or request.n == request.best_of)
and not request.use_beam_search
)
def create_stream_response_json(
index: int,
text: str,
logprobs: Optional[LogProbs] = None,
finish_reason: Optional[str] = None,
usage: Optional[UsageInfo] = None,
) -> str:
choice_data = CompletionResponseStreamChoice(
index=index,
text=text,
logprobs=logprobs,
finish_reason=finish_reason,
)
response = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[choice_data],
)
if usage is not None:
response.usage = usage
response_json = response.json(exclude_unset=True, ensure_ascii=False)
return response_json
async def completion_stream_generator() -> AsyncGenerator[str, None]:
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
has_echoed = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
delta_text = output.text[len(previous_texts[i]):]
token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[previous_num_tokens[i]:]
offsets = len(previous_texts[i])
if request.echo and not has_echoed[i]:
if not echo_without_generation:
delta_text = res.prompt + delta_text
token_ids = res.prompt_token_ids + token_ids
top_logprobs = res.prompt_logprobs + top_logprobs
else:
delta_text = res.prompt
token_ids = res.prompt_token_ids
top_logprobs = res.prompt_logprobs
has_echoed[i] = True
if request.logprobs is not None:
logprobs = create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=offsets,
)
else:
logprobs = None
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
response_json = create_stream_response_json(
index=i,
text=delta_text,
logprobs=logprobs,
finish_reason=finish_reason,
)
yield f"data: {response_json}\n\n"
if output.finish_reason is not None:
logprobs = (LogProbs() if request.logprobs is not None else None)
prompt_tokens = len(res.prompt_token_ids)
completion_tokens = len(output.token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = create_stream_response_json(
index=i,
text="",
logprobs=logprobs,
finish_reason=output.finish_reason,
usage=final_usage,
)
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
# Streaming response
if stream:
return StreamingResponse(completion_stream_generator(), media_type="text/event-stream")
# Non-streaming response
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return create_error_response(HTTPStatus.BAD_REQUEST, "Client disconnected")
final_res = res
assert final_res is not None
choices = []
prompt_token_ids = final_res.prompt_token_ids
prompt_logprobs = final_res.prompt_logprobs
prompt_text = final_res.prompt
for output in final_res.outputs:
if request.logprobs is not None:
if not echo_without_generation:
token_ids = output.token_ids
top_logprobs = output.logprobs
if request.echo:
token_ids = prompt_token_ids + token_ids
top_logprobs = prompt_logprobs + top_logprobs
else:
token_ids = prompt_token_ids
top_logprobs = prompt_logprobs
logprobs = create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
if not echo_without_generation:
output_text = output.text
if request.echo:
output_text = prompt_text + output_text
else:
output_text = prompt_text
choice_data = CompletionResponseChoice(
index=output.index,
text=output_text,
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
if request.stream:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json = response.json(ensure_ascii=False)
async def fake_stream_generator() -> AsyncGenerator[str, None]:
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(fake_stream_generator(), media_type="text/event-stream")
return response
def _convert_id_to_token_qwen(self, index):
# avoid invalid id (qwen embedding size > tokenizer size)
if index in self.decoder:
return self.decoder[index]
return '<|endoftext|>'
def is_adapter_model(model_name_or_path: str, revision: str = "main") -> bool:
from huggingface_hub import list_repo_files
from huggingface_hub.utils._validators import HFValidationError
try:
# Try first if model on a Hub repo
repo_files = list_repo_files(model_name_or_path, revision=revision)
except HFValidationError:
# If not, check local repo
repo_files = os.listdir(model_name_or_path)
return "adapter_model.safetensors" in repo_files or "adapter_model.bin" in repo_files
def create_engine_configs_with_fix_values(
self,
):
model_config,cache_config,parallel_config,scheduler_config = self.create_engine_configs_old()
# for long
# model_config.max_model_len=32768
# cache_config.sliding_window=2048
# scheduler_config.max_model_len=32768
# scheduler_config.max_num_batched_tokens=32768
scheduler_config.max_num_batched_tokens=8192
scheduler_config.max_model_len=8192
model_config.max_model_len=8192
return model_config, cache_config, parallel_config, scheduler_config
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="vLLM OpenAI-Compatible RESTful API server.")
parser.add_argument("--host", type=str, default=None, help="host name")
parser.add_argument("--port", type=int, default=8000, help="port number")
parser.add_argument("--allow-credentials", action="store_true", help="allow credentials")
parser.add_argument("--allowed-origins", type=json.loads, default=["*"], help="allowed origins")
parser.add_argument("--allowed-methods", type=json.loads, default=["*"], help="allowed methods")
parser.add_argument("--allowed-headers", type=json.loads, default=["*"], help="allowed headers")
parser.add_argument(
"--served-model-name",
type=str,
default=None,
help="The model name used in the API. If not "
"specified, the model name will be the same as "
"the huggingface name."
)
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
# if lora, merge it first.
# TODO: waiting for it to be merge https://github.com/vllm-project/vllm/pull/1804
if is_adapter_model(args.model):
# load the model, merge the adapter weights and unload the adapter
# Note: to run QLora, you will need to merge the based model separately as the merged model in 16bit
LOG.info(f"Merging peft adapters for {args.model}")
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_config = PeftConfig.from_pretrained(args.model)
base_model = AutoModelForCausalLM.from_pretrained(
peft_config.base_model_name_or_path,
device_map='auto',
use_flash_attention_2=False,
torch_dtype=torch.bfloat16,
use_cache=True,
trust_remote_code=True
)
model = PeftModel.from_pretrained(
base_model,
args.model,
)
model.eval()
model = model.merge_and_unload(progressbar=True)
model_kwargs = None
name=args.model.split('/')[-2]
model.save_pretrained(f'/data/outs/{name}-merged')
AutoTokenizer.from_pretrained(
peft_config.base_model_name_or_path,
trust_remote_code=True
).save_pretrained(f'/data/outs/{name}-merged')
args.model=f'/data/outs/{name}-merged'
del model
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
logger.info(f"args: {args}")
if args.served_model_name is not None:
served_model = args.served_model_name
else:
served_model = args.model
# monkey patch cannot work for multi-process
# if args.lora:
# from transformers import AutoModelForCausalLM
# from peft import PeftModel
# def _direct_load_model_iterator(
# model_name_or_path: str,
# cache_dir: Optional[str] = None,
# load_format: str = "auto",
# revision: Optional[str] = None,
# ):
# print('>>> use hack version loader')
# # need to merge
# model = AutoModelForCausalLM.from_pretrained(
# model_name_or_path,
# trust_remote_code=True,
# device_map='auto',
# torch_dtype=torch.bfloat16,
# )
# model = PeftModel.from_pretrained(
# model,
# args.lora,
# )
# model = model.merge_and_unload(progressbar=True,safe_merge=True)
# for name, param in model.state_dict().items():
# yield name, param
# torch.cuda.empty_cache()
# # to support lora / merge dynamic loading
# # import vllm.model_executor.models.qwen as qwen
# import vllm.model_executor.models.qwen
# vllm.model_executor.models.qwen.hf_model_weights_iterator = _direct_load_model_iterator
setattr(EngineArgs, 'create_engine_configs_old', EngineArgs.create_engine_configs)
setattr(EngineArgs, 'create_engine_configs', create_engine_configs_with_fix_values)
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
engine_model_config = asyncio.run(engine.get_model_config())
# A separate tokenizer to map token IDs to strings.
tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
trust_remote_code=engine_model_config.trust_remote_code
)
setattr(tokenizer.__class__, '_convert_id_to_token', _convert_id_to_token_qwen)
uvicorn.run(
app, host=args.host, port=args.port, log_level="info", timeout_keep_alive=TIMEOUT_KEEP_ALIVE
)