-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_utils.py
executable file
·134 lines (112 loc) · 6.33 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import os
import logging
import numpy as np
import random
import sys
import torch
from datetime import datetime
from torch.serialization import default_restore_location
def add_logging_arguments(parser):
parser.add_argument("--seed", default=0, type=int, help="random number generator seed")
parser.add_argument("--output-dir", default="experiments", help="path to experiment directories")
parser.add_argument("--experiment", default=None, help="experiment name to be used with Tensorboard")
parser.add_argument("--resume-training", action="store_true", help="whether to resume training")
parser.add_argument("--restore-file", default=None, help="filename to load checkpoint")
parser.add_argument("--no-save", action="store_true", help="don't save models or checkpoints")
parser.add_argument("--step-checkpoints", action="store_true", help="store all step checkpoints")
parser.add_argument("--no-log", action="store_true", help="don't save logs to file or Tensorboard directory")
parser.add_argument("--log-interval", type=int, default=100, help="log every N steps")
parser.add_argument("--no-visual", action="store_true", help="don't use Tensorboard")
parser.add_argument("--visual-interval", type=int, default=100, help="log every N steps")
parser.add_argument("--no-progress", action="store_true", help="don't use progress bar")
parser.add_argument("--draft", action="store_true", help="save experiment results to draft directory")
parser.add_argument("--dry-run", action="store_true", help="no log, no save, no visualization")
return parser
def setup_experiment(args):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
if args.dry_run:
args.no_save = args.no_log = args.no_visual = True
return
args.experiment = args.experiment or f"{args.model.replace('_', '-')}"
args.experiment = "-".join([args.experiment, 'BF' if (not args.bias) else 'B', str(args.min_noise), str(args.max_noise)])
if not args.resume_training:
args.experiment = "-".join([args.experiment, datetime.now().strftime("%b-%d-%H:%M:%S")])
args.experiment_dir = os.path.join(args.output_dir, args.model, (f"drafts/" if args.draft else "") + args.experiment)
os.makedirs(args.experiment_dir, exist_ok=True)
if not args.no_save:
args.checkpoint_dir = os.path.join(args.experiment_dir, "checkpoints")
os.makedirs(args.checkpoint_dir, exist_ok=True)
if not args.no_log:
args.log_dir = os.path.join(args.experiment_dir, "logs")
os.makedirs(args.log_dir, exist_ok=True)
args.log_file = os.path.join(args.log_dir, "train.log")
def init_logging(args):
handlers = [logging.StreamHandler()]
if not args.no_log and args.log_file is not None:
mode = "a" if os.path.isfile(args.resume_training) else "w"
handlers.append(logging.FileHandler(args.log_file, mode=mode))
logging.basicConfig(handlers=handlers, format="[%(asctime)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
logging.info("COMMAND: %s" % " ".join(sys.argv))
logging.info("Arguments: {}".format(vars(args)))
def save_checkpoint(args, step, model, optimizer=None, scheduler=None, score=None, mode="min"):
assert mode == "min" or mode == "max"
last_step = getattr(save_checkpoint, "last_step", -1)
save_checkpoint.last_step = max(last_step, step)
default_score = float("inf") if mode == "min" else float("-inf")
best_score = getattr(save_checkpoint, "best_score", default_score)
if (score < best_score and mode == "min") or (score > best_score and mode == "max"):
save_checkpoint.best_step = step
save_checkpoint.best_score = score
if not args.no_save and step % args.save_interval == 0:
os.makedirs(args.checkpoint_dir, exist_ok=True)
model = [model] if model is not None and not isinstance(model, list) else model
optimizer = [optimizer] if optimizer is not None and not isinstance(optimizer, list) else optimizer
scheduler = [scheduler] if scheduler is not None and not isinstance(scheduler, list) else scheduler
state_dict = {
"step": step,
"score": score,
"last_step": save_checkpoint.last_step,
"best_step": save_checkpoint.best_step,
"best_score": getattr(save_checkpoint, "best_score", None),
"model": [m.state_dict() for m in model] if model is not None else None,
"optimizer": [o.state_dict() for o in optimizer] if optimizer is not None else None,
"scheduler": [s.state_dict() for s in scheduler] if scheduler is not None else None,
"args": argparse.Namespace(**{k: v for k, v in vars(args).items() if not callable(v)}),
}
if args.step_checkpoints:
torch.save(state_dict, os.path.join(args.checkpoint_dir, "checkpoint{}.pt".format(step)))
if (score < best_score and mode == "min") or (score > best_score and mode == "max"):
torch.save(state_dict, os.path.join(args.checkpoint_dir, "checkpoint_best.pt"))
if step > last_step:
torch.save(state_dict, os.path.join(args.checkpoint_dir, "checkpoint_last.pt"))
def load_checkpoint(args, model=None, optimizer=None, scheduler=None):
if args.restore_file is not None and os.path.isfile(args.restore_file):
print('restoring model..')
state_dict = torch.load(args.restore_file, map_location=lambda s, l: default_restore_location(s, "cpu"))
model = [model] if model is not None and not isinstance(model, list) else model
optimizer = [optimizer] if optimizer is not None and not isinstance(optimizer, list) else optimizer
scheduler = [scheduler] if scheduler is not None and not isinstance(scheduler, list) else scheduler
if "best_score" in state_dict:
save_checkpoint.best_score = state_dict["best_score"]
save_checkpoint.best_step = state_dict["best_step"]
if "last_step" in state_dict:
save_checkpoint.last_step = state_dict["last_step"]
if model is not None and state_dict.get("model", None) is not None:
for m, state in zip(model, state_dict["model"]):
m.load_state_dict(state)
if optimizer is not None and state_dict.get("optimizer", None) is not None:
for o, state in zip(optimizer, state_dict["optimizer"]):
o.load_state_dict(state)
if scheduler is not None and state_dict.get("scheduler", None) is not None:
for s, state in zip(scheduler, state_dict["scheduler"]):
milestones = s.milestones
state['milestones'] = milestones
s.load_state_dict(state)
s.milestones = milestones
logging.info("Loaded checkpoint {}".format(args.restore_file))
return state_dict