-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtextureAnalysis.m
245 lines (205 loc) · 7.09 KB
/
textureAnalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function [params] = textureAnalysis(im0, Nsc, Nor, Na)
% Analyze texture for application of Portilla-Simoncelli model/algorithm.
%
% [params] = textureAnalysis(im0, Nsc, Nor, Na);
% im0: original image
% Nsc: number of scales
% Nor: number of orientations
% Na: spatial neighborhood considered (Na x Na)
%
% Example: Nsc=4; Nor=4; Na=7;
%
% See also textureSynthesis.
% Javier Portilla and Eero Simoncelli.
% Work described in:
% "A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficients".
% J Portilla and E P Simoncelli. Int'l Journal of Computer Vision,
% vol.40(1), pp. 49-71, Dec 2000.
%
% Please refer to this publication if you use the program for research or
% for technical applications. Thank you.
%
% Copyright, Center for Neural Science, New York University, January 2001.
% All rights reserved.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Warn = 0; % Set to 1 if you want to see warning messages
%% Check required args are passed
if (nargin < 4)
error('Function called with too few input arguments');
end
%% 1D interpolation filter, for scale cross-correlations:
interp = [-1/16 0 9/16 1 9/16 0 -1/16]/sqrt(2);
if ( mod(Na,2) == 0 )
error('Na is not an odd integer');
end
%% If the spatial neighborhood Na is too big for the lower scales,
%% "modacor22.m" will make it as big as the spatial support at
%% each scale:
[Ny,Nx] = size(im0);
nth = log2(min(Ny,Nx)/Na);
if nth<Nsc & Warn,
fprintf(1,'Warning: Na will be cut off for levels above #%d !\n', floor(nth+1));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
la = floor((Na-1)/2);
%% Pixel statistics
[mn0 mx0] = range2(im0);
mean0 = mean2(im0);
var0 = var2(im0, mean0);
skew0 = skew2(im0, mean0, var0);
kurt0 = kurt2(im0, mean0, var0);
statg0 = [mean0 var0 skew0 kurt0 mn0 mx0];
% Add a little bit of noise to the original, in case it has been
% artificially generated, to avoid instability crated by symmetric
% conditions at the synthesis stage.
im0 = im0 + (mx0-mn0)/1000*randn(size(im0));
%% Build the steerable pyramid
[pyr0,pind0] = buildSCFpyr(im0,Nsc,Nor-1);
if ( any(vectify(mod(pind0,2))) )
error('Algorithm will fail: Some bands have odd dimensions!');
end
%% Subtract mean of lowBand:
nband = size(pind0,1);
pyr0(pyrBandIndices(pind0,nband)) = ...
real(pyrBand(pyr0,pind0,nband)) - mean2(real(pyrBand(pyr0,pind0,nband)));
rpyr0 = real(pyr0);
apyr0 = abs(pyr0);
figure(gcf)
clf
showIm(im0,'auto',1); title('Original'); drawnow
%% Subtract mean of magnitude:
magMeans0 = zeros(size(pind0,1), 1);
for nband = 1:size(pind0,1)
indices = pyrBandIndices(pind0,nband);
magMeans0(nband) = mean2(apyr0(indices));
apyr0(indices) = apyr0(indices) - magMeans0(nband);
end
%% Compute central autoCorr of lowband
acr = NaN * ones(Na,Na,Nsc+1);
nband = size(pind0,1);
ch = pyrBand(pyr0,pind0,nband);
[mpyr,mpind] = buildSFpyr(real(ch),0,0);
im = pyrBand(mpyr,mpind,2);
[Nly Nlx] = size(ch);
Sch = min(Nly,Nlx); %size of low band
le = min(Sch/2-1,la);
cy = Nly/2+1;
cx = Nlx/2+1;
ac = fftshift(real(ifft2(abs(fft2(im)).^2)))/prod(size(ch));
ac = ac(cy-le:cy+le,cx-le:cx+le);
acr(la-le+1:la+le+1,la-le+1:la+le+1,Nsc+1) = ac;
skew0p = zeros(Nsc+1,1);
kurt0p = zeros(Nsc+1,1);
vari = ac(le+1,le+1);
if vari/var0 > 1e-6,
skew0p(Nsc+1) = mean2(im.^3)/vari^1.5;
kurt0p(Nsc+1) = mean2(im.^4)/vari^2;
else
skew0p(Nsc+1) = 0;
kurt0p(Nsc+1) = 3;
end
%% Compute central autoCorr of each Mag band, and the autoCorr of the
%% combined (non-oriented) band.
ace = NaN * ones(Na,Na,Nsc,Nor);
for nsc = Nsc:-1:1,
for nor = 1:Nor,
nband = (nsc-1)*Nor+nor+1;
ch = pyrBand(apyr0,pind0,nband);
[Nly, Nlx] = size(ch);
Sch = min(Nlx, Nly);
le = min(Sch/2-1,la);
cx = Nlx/2+1; %Assumes Nlx even
cy = Nly/2+1;
ac = fftshift(real(ifft2(abs(fft2(ch)).^2)))/prod(size(ch));
ac = ac(cy-le:cy+le,cx-le:cx+le);
ace(la-le+1:la+le+1,la-le+1:la+le+1,nsc,nor) = ac;
end
%% Combine ori bands
bandNums = [1:Nor] + (nsc-1)*Nor+1; %ori bands only
ind1 = pyrBandIndices(pind0, bandNums(1));
indN = pyrBandIndices(pind0, bandNums(Nor));
bandInds = [ind1(1):indN(length(indN))];
%% Make fake pyramid, containing dummy hi, ori, lo
fakePind = [pind0(bandNums(1),:);pind0(bandNums(1):bandNums(Nor)+1,:)];
fakePyr = [zeros(prod(fakePind(1,:)),1);...
rpyr0(bandInds); zeros(prod(fakePind(size(fakePind,1),:)),1);];
ch = reconSFpyr(fakePyr, fakePind, [1]); % recon ori bands only
im = real(expand(im,2))/4;
im = im + ch;
ac = fftshift(real(ifft2(abs(fft2(im)).^2)))/prod(size(ch));
ac = ac(cy-le:cy+le,cx-le:cx+le);
acr(la-le+1:la+le+1,la-le+1:la+le+1,nsc) = ac;
vari = ac(le+1,le+1);
if vari/var0 > 1e-6,
skew0p(nsc) = mean2(im.^3)/vari^1.5;
kurt0p(nsc) = mean2(im.^4)/vari^2;
else
skew0p(nsc) = 0;
kurt0p(nsc) = 3;
end
end
%% Compute the cross-correlation matrices of the coefficient magnitudes
%% pyramid at the different levels and orientations
C0 = zeros(Nor,Nor,Nsc+1);
Cx0 = zeros(Nor,Nor,Nsc);
Cr0 = zeros(2*Nor,2*Nor,Nsc+1);
Crx0 = zeros(2*Nor,2*Nor,Nsc);
for nsc = 1:Nsc,
firstBnum = (nsc-1)*Nor+2;
cousinSz = prod(pind0(firstBnum,:));
ind = pyrBandIndices(pind0,firstBnum);
cousinInd = ind(1) + [0:Nor*cousinSz-1];
if (nsc<Nsc)
parents = zeros(cousinSz,Nor);
rparents = zeros(cousinSz,Nor*2);
for nor=1:Nor,
nband = (nsc-1+1)*Nor+nor+1;
tmp = expand(pyrBand(pyr0, pind0, nband),2)/4;
rtmp = real(tmp); itmp = imag(tmp);
%% Double phase:
tmp = sqrt(rtmp.^2 + itmp.^2) .* exp(2 * sqrt(-1) * atan2(rtmp,itmp));
rparents(:,nor) = vectify(real(tmp));
rparents(:,Nor+nor) = vectify(imag(tmp));
tmp = abs(tmp);
parents(:,nor) = vectify(tmp - mean2(tmp));
end
else
tmp = real(expand(pyrLow(rpyr0,pind0),2))/4;
rparents = [vectify(tmp),...
vectify(shift(tmp,[0 1])), vectify(shift(tmp,[0 -1])), ...
vectify(shift(tmp,[1 0])), vectify(shift(tmp,[-1 0]))];
parents = [];
end
cousins = reshape(apyr0(cousinInd), [cousinSz Nor]);
nc = size(cousins,2); np = size(parents,2);
C0(1:nc,1:nc,nsc) = innerProd(cousins)/cousinSz;
if (np > 0)
Cx0(1:nc,1:np,nsc) = (cousins'*parents)/cousinSz;
if (nsc==Nsc)
C0(1:np,1:np,Nsc+1) = innerProd(parents)/(cousinSz/4);
end
end
cousins = reshape(real(pyr0(cousinInd)), [cousinSz Nor]);
nrc = size(cousins,2); nrp = size(rparents,2);
Cr0(1:nrc,1:nrc,nsc) = innerProd(cousins)/cousinSz;
if (nrp > 0)
Crx0(1:nrc,1:nrp,nsc) = (cousins'*rparents)/cousinSz;
if (nsc==Nsc)
Cr0(1:nrp,1:nrp,Nsc+1) = innerProd(rparents)/(cousinSz/4);
end
end
end
%% Calculate the mean, range and variance of the LF and HF residuals' energy.
channel = pyr0(pyrBandIndices(pind0,1));
vHPR0 = mean2(channel.^2);
statsLPim = [skew0p kurt0p];
params = struct('pixelStats', statg0, ...
'pixelLPStats', statsLPim, ...
'autoCorrReal', acr, ...
'autoCorrMag', ace, ...
'magMeans', magMeans0, ...
'cousinMagCorr', C0, ...
'parentMagCorr', Cx0, ...
'cousinRealCorr', Cr0, ...
'parentRealCorr', Crx0, ...
'varianceHPR', vHPR0);