《labuladong 的算法秘籍》、《labuladong 的刷题笔记》两本 PDF 和刷题插件 2.0 免费开放下载,详情见 labuladong 的刷题三件套正式发布~
读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:
-----------
接雨水这道题目挺有意思,在面试题中出现频率还挺高的,本文就来步步优化,讲解一下这道题。
先看一下题目:
就是用一个数组表示一个条形图,问你这个条形图最多能接多少水。
int trap(int[] height);
下面就来由浅入深介绍暴力解法 -> 备忘录解法 -> 双指针解法,在 O(N) 时间 O(1) 空间内解决这个问题。
所以对于这种问题,我们不要想整体,而应该去想局部;就像之前的文章写的动态规划问题处理字符串问题,不要考虑如何处理整个字符串,而是去思考应该如何处理每一个字符。
这么一想,可以发现这道题的思路其实很简单。具体来说,仅仅对于位置 i
,能装下多少水呢?
能装 2 格水,因为 height[i]
的高度为 0,而这里最多能盛 2 格水,2-0=2。
为什么位置 i
最多能盛 2 格水呢?因为,位置 i
能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为 l_max
和 r_max
;位置 i 最大的水柱高度就是 min(l_max, r_max)
。
更进一步,对于位置 i
,能够装的水为:
water[i] = min(
# 左边最高的柱子
max(height[0..i]),
# 右边最高的柱子
max(height[i..end])
) - height[i]
这就是本问题的核心思路,我们可以简单写一个暴力算法:
int trap(vector<int>& height) {
int n = height.size();
int res = 0;
for (int i = 1; i < n - 1; i++) {
int l_max = 0, r_max = 0;
// 找右边最高的柱子
for (int j = i; j < n; j++)
r_max = max(r_max, height[j]);
// 找左边最高的柱子
for (int j = i; j >= 0; j--)
l_max = max(l_max, height[j]);
// 如果自己就是最高的话,
// l_max == r_max == height[i]
res += min(l_max, r_max) - height[i];
}
return res;
}
有之前的思路,这个解法应该是很直接粗暴的,时间复杂度 O(N^2),空间复杂度 O(1)。但是很明显这种计算 r_max
和 l_max
的方式非常笨拙,一般的优化方法就是备忘录。
之前的暴力解法,不是在每个位置 i
都要计算 r_max
和 l_max
吗?我们直接把结果都提前计算出来,别傻不拉几的每次都遍历,这时间复杂度不就降下来了嘛。
我们开两个数组 r_max
和 l_max
充当备忘录,l_max[i]
表示位置 i
左边最高的柱子高度,r_max[i]
表示位置 i
右边最高的柱子高度。预先把这两个数组计算好,避免重复计算:
int trap(vector<int>& height) {
if (height.empty()) return 0;
int n = height.size();
int res = 0;
// 数组充当备忘录
vector<int> l_max(n), r_max(n);
// 初始化 base case
l_max[0] = height[0];
r_max[n - 1] = height[n - 1];
// 从左向右计算 l_max
for (int i = 1; i < n; i++)
l_max[i] = max(height[i], l_max[i - 1]);
// 从右向左计算 r_max
for (int i = n - 2; i >= 0; i--)
r_max[i] = max(height[i], r_max[i + 1]);
// 计算答案
for (int i = 1; i < n - 1; i++)
res += min(l_max[i], r_max[i]) - height[i];
return res;
}
这个优化其实和暴力解法思路差不多,就是避免了重复计算,把时间复杂度降低为 O(N),已经是最优了,但是空间复杂度是 O(N)。下面来看一个精妙一些的解法,能够把空间复杂度降低到 O(1)。
这种解法的思路是完全相同的,但在实现手法上非常巧妙,我们这次也不要用备忘录提前计算了,而是用双指针边走边算,节省下空间复杂度。
首先,看一部分代码:
int trap(vector<int>& height) {
int n = height.size();
int left = 0, right = n - 1;
int l_max = height[0];
int r_max = height[n - 1];
while (left <= right) {
l_max = max(l_max, height[left]);
r_max = max(r_max, height[right]);
left++; right--;
}
}
对于这部分代码,请问 l_max
和 r_max
分别表示什么意义呢?
很容易理解,l_max
是 height[0..left]
中最高柱子的高度,r_max
是 height[right..end]
的最高柱子的高度。
明白了这一点,直接看解法:
int trap(vector<int>& height) {
if (height.empty()) return 0;
int n = height.size();
int left = 0, right = n - 1;
int res = 0;
int l_max = height[0];
int r_max = height[n - 1];
while (left <= right) {
l_max = max(l_max, height[left]);
r_max = max(r_max, height[right]);
// res += min(l_max, r_max) - height[i]
if (l_max < r_max) {
res += l_max - height[left];
left++;
} else {
res += r_max - height[right];
right--;
}
}
return res;
}
你看,其中的核心思想和之前一模一样,换汤不换药。但是细心的读者可能会发现次解法还是有点细节差异:
之前的备忘录解法,l_max[i]
和 r_max[i]
分别代表 height[0..i]
和 height[i..end]
的最高柱子高度。
res += min(l_max[i], r_max[i]) - height[i];
但是双指针解法中,l_max
和 r_max
代表的是 height[0..left]
和 height[right..end]
的最高柱子高度。比如这段代码:
if (l_max < r_max) {
res += l_max - height[left];
left++;
}
此时的 l_max
是 left
指针左边的最高柱子,但是 r_max
并不一定是 left
指针右边最高的柱子,这真的可以得到正确答案吗?
其实这个问题要这么思考,我们只在乎 min(l_max, r_max)
。对于上图的情况,我们已经知道 l_max < r_max
了,至于这个 r_max
是不是右边最大的,不重要。重要的是 height[i]
能够装的水只和较低的 l_max
之差有关:
这样,接雨水问题就解决了。
_____________
刷算法,学套路,认准 labuladong,公众号和 在线电子书 持续更新最新文章。
本小抄即将出版,微信扫码关注公众号,后台回复「小抄」限时免费获取,回复「进群」可进刷题群一起刷题,带你搞定 LeetCode。
======其他语言代码======Yifan Zhang 提供 java 代码
双指针解法:时间复杂度 O(N),空间复杂度 O(1)
对cpp版本的解法有非常微小的优化。
因为我们每次循环只会选 left 或者 right 处的柱子来计算,因此我们并不需要在每次循环中同时更新maxLeft
和maxRight
。
我们可以先比较 maxLeft
和 maxRight
,决定这次选择计算的柱子是 height[left]
或者 height[right]
后再更新对应的 maxLeft
或 maxRight
。
当然这并不会在时间上带来什么优化,只是提供一种思路。
class Solution {
public int trap(int[] height) {
if (height == null || height.length == 0) return 0;
int left = 0, right = height.length - 1;
int maxLeft = height[left], maxRight = height[right];
int res = 0;
while (left < right) {
// 比较 maxLeft 和 maxRight,决定这次计算 left 还是 right 处的柱子
if (maxLeft < maxRight) {
left++;
maxLeft = Math.max(maxLeft, height[left]); // update maxLeft
res += maxLeft - height[left];
} else {
right--;
maxRight = Math.max(maxRight, height[right]); // update maxRight
res += maxRight - height[right];
}
}
return res;
}
}
附上暴力解法以及备忘录解法的 java 代码
暴力解法:时间复杂度 O(N^2),空间复杂度 O(1)
class Solution {
public int trap(int[] height) {
if (height == null || height.length == 0) return 0;
int n = height.length;
int res = 0;
// 跳过最左边和最右边的柱子,从第二个柱子开始
for (int i = 1; i < n - 1; i++) {
int maxLeft = 0, maxRight = 0;
// 找右边最高的柱子
for (int j = i; j < n; j++) {
maxRight = Math.max(maxRight, height[j]);
}
// 找左边最高的柱子
for (int j = i; j >= 0; j--) {
maxLeft = Math.max(maxLeft, height[j]);
}
// 如果自己就是最高的话,
// maxLeft == maxRight == height[i]
res += Math.min(maxLeft, maxRight) - height[i];
}
return res;
}
}
备忘录解法:时间复杂度 O(N),空间复杂度 O(N)
class Solution {
public int trap(int[] height) {
if (height == null || height.length == 0) return 0;
int n = height.length;
int res = 0;
// 数组充当备忘录
int[] maxLeft = new int[n];
int[] maxRight = new int[n];
// 初始化 base case
maxLeft[0] = height[0];
maxRight[n - 1] = height[n - 1];
// 从左向右计算 maxLeft
for (int i = 1; i < n; i++) {
maxLeft[i] = Math.max(maxLeft[i - 1], height[i]);
}
// 从右向左计算 maxRight
for (int i = n - 2; i >= 0; i--) {
maxRight[i] = Math.max(maxRight[i + 1], height[i]);
}
// 计算答案
for (int i = 1; i < n; i++) {
res += Math.min(maxLeft[i], maxRight[i]) - height[i];
}
return res;
}
}
暴力解法
/**
* @param {number[]} height
* @return {number}
*/
var trap = function (height) {
let n = height.length;
let res = 0;
for (let i = 1; i <= n - 2; i++) {
let l_max = 0, r_max = 0;
// 找右边高的柱子
for (let j = i; j < n; j++) {
r_max = Math.max(r_max, height[j])
}
// 找左边高的柱子
for (let j = i; j >= 0; j--) {
l_max = Math.max(l_max, height[j])
}
// 如果自己就是最高的话
// l_max == r_max == height[i]
res += Math.min(l_max, r_max) - height[i]
}
return res;
};
备忘录优化
/**
* @param {number[]} height
* @return {number}
*/
var trap = function (height) {
let n = height.length;
if (n <= 2) {
return 0;
}
let res = 0;
// 数组充当备忘录
let l_max = new Array(n);
let r_max = new Array(n);
// 初始化base case
l_max[0] = height[0];
r_max[n - 1] = height[n - 1];
// 从左往右算l_max
for (let i = 1; i < n; i++) {
l_max[i] = Math.max(height[i], l_max[i - 1])
}
// 从右往左计算r_max
for (let i = n - 2; i >= 0; i--) {
r_max[i] = Math.max(height[i], r_max[i + 1])
}
// 计算答案
for (let i = 1; i <= n - 2; i++) {
res += Math.min(l_max[i], r_max[i]) - height[i];
}
return res;
};
双指针解法
/**
* @param {number[]} height
* @return {number}
*/
var trap = function (height) {
let n = height.length;
if (n <= 2) {
return 0;
}
let res = 0;
let left = 0;
let right = n - 1;
let l_max = height[0];
let r_max = height[n - 1];
while (left <= right) {
l_max = Math.max(l_max, height[left]);
r_max = Math.max(r_max, height[right]);
// res += min(l_max, r_max) - height[i]
if (l_max < r_max) {
res += l_max - height[left];
left++;
} else {
res += r_max - height[right];
right--;
}
}
return res;
};