-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsosgd_trainer.py
172 lines (122 loc) · 5.89 KB
/
psosgd_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import importlib
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from psosgd_optimizer import PSOSGD
import matplotlib.pyplot as plt
from tqdm import tqdm
class PSOSGD_Trainer_Config:
"""训练配置参数"""
def __init__(self,
model_config,
optimizer_config,
device = "cuda" if torch.cuda.is_available() else "cpu",
n_particle = 5,
output_path = 'output',
use_sgd = True, **kwargs):
# 预留模型参数
self.model_config = model_config
# 优化器参数
self.optimizer_config = optimizer_config
if device == "cuda":
self.device = torch.device('cuda')
cudnn.benchmark = True
else:
self.device = torch.device('cpu')
self.n_particle = n_particle
self.output_path = output_path
self.use_sgd = use_sgd
class PSOSGD_Trainer:
def __init__(self, config: PSOSGD_Trainer_Config):
self.config = config
model_lib = importlib.import_module(config.model_config.model_lib)
self.models= [model_lib.Model(**config.model_config.__dict__).double().to(self.config.device) for _ in range(self.config.n_particle)]
self.optimizers = [PSOSGD(model.parameters(), **config.optimizer_config.__dict__) for model in self.models]
def train(self, data_loader, loss_fn, epochs):
loss_fn = loss_fn.double().to(self.config.device)
losses = []
eval_losses = []
eval_accs = []
local_best_param_groups = [(float('inf'), None) for _ in range(self.config.n_particle)]
global_best_param_group = (float('inf'), None)
for t in range(epochs):
# 切换训练状态
print('Epoch ' + str(t))
for model in self.models:
model.train()
for (X, y) in tqdm(data_loader):
X, y = X.double().to(self.config.device), y.to(self.config.device)
batch_losses = []
for model, optimizer in zip(self.models, self.optimizers):
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
batch_losses.append(loss.item())
if self.config.n_particle != 1:
for i in range(self.config.n_particle):
if local_best_param_groups[i][0] > batch_losses[i]:
local_best_param_groups[i] = (batch_losses[i], [torch.clone(param).detach() for param in self.models[i].parameters()])
if global_best_param_group[0] > batch_losses[i]:
global_best_param_group = (batch_losses[i], [torch.clone(param).detach() for param in self.models[i].parameters()])
for i in range(self.config.n_particle):
self.optimizers[i].step(local_best_param_groups[i][1], global_best_param_group[1], self.config.n_particle != 1, self.config.use_sgd)
losses.append(batch_losses)
print('Eval ' + str(t))
eval_loss, eval_acc = self.test(data_loader, loss_fn)
eval_losses.append(eval_loss)
eval_accs.append(eval_acc)
best_model_index = np.argmax(eval_acc)
print('Best Loss model: {} {}'.format(np.argmax(eval_loss), max(eval_loss)))
print('Best ACC model: {} {}'.format(np.argmax(eval_acc), max(eval_acc)))
model_save_path = os.path.join(self.config.output_path, 'epoch-{}-model-{}.pth'.format(t, best_model_index))
self.save_model(self.models[best_model_index], model_save_path)
self.performance_display(np.array(losses).T, 'Train_Loss')
self.performance_display(np.array(eval_losses).T, 'Eval_Loss')
self.performance_display(np.array(eval_accs).T, 'Eval_ACC')
return losses, eval_losses, eval_accs
def test(self, data_loader, loss_fn):
for model in self.models:
model.eval()
loss_fn = loss_fn.double().to(self.config.device)
losses = []
accs = []
with torch.no_grad():
for model in self.models:
test_loss = 0
test_acc = 0
total = 0
batch_num = 0
for (data, target) in tqdm(data_loader):
data, target = data.double().to(self.config.device), target.to(self.config.device)
output = model(data)
loss = loss_fn(output, target)
test_loss += loss.item()
prediction = torch.max(output, 1)
total += target.size(0)
test_acc += np.sum(prediction[1].cpu().numpy() == target.cpu().numpy())
batch_num += 1
losses.append(test_loss / batch_num)
accs.append(test_acc / total)
return losses, accs
def save_model(self, model, path):
torch.save(model, path)
print("Checkpoint saved to {}".format(path))
def performance_display(self, metric_value, metric_name):
color = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
for model_index in range(self.config.n_particle):
color_index = model_index % len(color)
plt.plot(list(range(1, len(metric_value[model_index])+1)),
metric_value[model_index],
color=color[color_index],
linewidth=1.5,
label='Model {}'.format(model_index))
plt.legend()
plt.xlabel('Iteration')
plt.ylabel(metric_name)
plt.grid(linestyle='--')
fig_path = os.path.join(self.config.output_path,metric_name+'.png')
plt.savefig(fig_path, dpi=500, bbox_inches = 'tight')
plt.cla()