diff --git a/docs/Abstract.html b/docs/Abstract.html new file mode 100644 index 0000000..46c3204 --- /dev/null +++ b/docs/Abstract.html @@ -0,0 +1,122 @@ + + + + + + +Abstract contexts structures + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Abstract contexts structures

+ +

Our whole development utilizes well-scoped and well-typed terms. In this style, the most +common binder representation is by using lists as contexts and well-typed DeBruijn indices +as variables. This is nice and good, but sometimes we would rather have had another, +isomorphic, representation. Indeed in an intensional type theory like Coq, sometimes +crossing an isomorphism is pretty painful.

+

As such, we here define what it means for an alternate definition of contexts to +"behave like lists and DeBruijn indices".

+

This is a very natural extension to the theory of substitution by Marcelo Fiore and +Dimitri Szamozvancev, and in fact a variant of the "Nameless, Painless" approach by +Nicolas Pouillard.

+
+

Theory

+

Categorically, it very simple. Contexts are represented by a set C, a distinguished +element and a binary operation - +▶ -. Additionally it has a map representing +variable 𝐯 : C → 𝐀 where 𝐀 is a sufficiently well-behaved category, typically a +presheaf category. We then ask that

+
    +
  • 𝐯 ∅ ≈ ⊥, where is the initial object in 𝐀 and
  • +
  • 𝐯 (Γ +▶ Δ) ≈ 𝐯 Γ + 𝐯 Δ where + is the coproduct in 𝐀.
  • +
+

Our category of contexts is then the full image of 𝐯, which has the structure of a +commutative monoid. Then, given a family X : C → 𝐀, it is easy to define +assignments as:

+
+Γ =[X]> Δ ≔ 𝐀[ 𝐯 Γ , X Δ ]
+
+

And renamings as:

+
+Γ ⊆ Δ ≔ Γ =[ 𝐯 ]> Δ
+      ≔ 𝐀[ 𝐯 Γ , 𝐯 Δ ]
+
+

Assuming 𝐀 is (co-)powered over Set, the substitution tensor product and substitution +internal hom in C → 𝐀 are given by:

+
+( X ⊗ Y ) Γ ≔ ∫^Δ  X Δ × (Δ =[ Y ]> Γ)
+⟦ X , Y ⟧ Γ ≔ ∫_Δ  (Γ =[ X ]> Δ) → Y Δ
+
+

More generally, given a category 𝐁 (co-)powered over Set we can define the the +following functors, generalizing the substitution tensor and hom to heretogeneous +settings:

+
+( - ⊗ - ) : (C → 𝐁) → (C → 𝐀) → (C → 𝐁)
+( X ⊗ Y ) Γ ≔ ∫^Δ  X Δ × (Δ =[ Y ]> Γ)
+
+⟦ - , - ⟧ : (C → 𝐀) → (C → 𝐁) → (C → 𝐁)
+⟦ X , Y ⟧ Γ ≔ ∫_Δ  (Γ =[ X ]> Δ) → Y Δ
+
+
+
+

Concretely

+

We here apply the above theory to the case where 𝐀 is the family category T → Set +for some set T. Taking T to the set of types of some object language, families +C → 𝐀, ie C → T → Set, model nicely well-scoped and well-typed families. To +capture non-typed syntactic categories, indexed only by a scope, we develop the special +case where 𝐁 is just Set.

+

We then instanciate this abstract structure with the usual lists and DeBruijn indices, +but also with two useful instances: the direct sum, where the notion of variables 𝐯 +is the pointwise coproduct and the subset, where the notion of variables is preserved.

+

In further work we wish to tacle this in more generality, notable treating the case for +the idiomatic presentation of well-scoped untyped syntax where 𝐀 is Set, C +is and 𝐯 is Fin. Currently, we do treat untyped syntax, but using the +non-idiomatic "unityped" presentation.

+

The first part of the context structure: the distinguished empty context, the binary +concatenation and the family of variables.

+
Class context (T C : Type) := {
+  c_emp : C ;
+  c_cat : C -> C -> C ;
+  c_var : C -> T -> Type ;
+}.
+#[global] Notation "∅" := c_emp : ctx_scope.
+#[global] Notation "Γ +▶ Δ" := (c_cat Γ Δ) : ctx_scope.
+#[global] Notation "Γ ∋ t" := (c_var Γ%ctx t).

Next we need to formalize the isomorphisms stating that variables map the empty context +to the initial family and the concatenation to the coproduct family. To do this we will +not write the usual forward map and backward map that compose to the identity, but we +will rather formalize injections with inhabited fibers. The reason for this equivalent +presentation is that it will ease dependent pattern matching by providing the isomorphisms +as "views" (see "The view from the left" by Conor McBride).

+

First lets define the two injection maps.

+
Class context_cat_wkn (T C : Type) {CC : context T C} := {
+  r_cat_l {Γ Δ} [t] : Γ ∋ t -> Γ +▶ Δ ∋ t ;
+  r_cat_r {Γ Δ} [t] : Δ ∋ t -> Γ +▶ Δ ∋ t ;
+}.

Then, assuming such a structure, we define two inductive families characterizing the +fibers.

+
Section with_param.
+  Context `{C : context_cat_wkn X T}.
+
+  Variant c_emp_view t : ∅ ∋ t -> Type := .
  Variant c_cat_view Γ Δ t : Γ +▶ Δ ∋ t -> Type :=
+  | Vcat_l (i : Γ ∋ t) : c_cat_view Γ Δ t (r_cat_l i)
+  | Vcat_r (j : Δ ∋ t) : c_cat_view Γ Δ t (r_cat_r j)
+  .
End with_param.

Finally we give the rest of the laws: functions witnessing the inhabitedness of the fibers +and the injectivity of the two injection maps. This last statement is split into 3 as we +have separated the embedding for coproducts into two separate maps.

+
Class context_laws T C {CC : context T C} := {
+  c_var_cat :: context_cat_wkn T C ;
+  c_view_emp {t} i : c_emp_view t i ;
+  c_view_cat {Γ Δ t} i : c_cat_view Γ Δ t i ;
+  r_cat_l_inj {Γ Δ t} : injective (@r_cat_l _ _ _ _ Γ Δ t) ;
+  r_cat_r_inj {Γ Δ t} : injective (@r_cat_r _ _ _ _ Γ Δ t) ;
+  r_cat_disj {Γ Δ t} (i : Γ ∋ t) (j : Δ ∋ t) : ¬ (r_cat_l i = r_cat_r j) ;
+} .
+
+
+ diff --git a/docs/Adequacy.html b/docs/Adequacy.html new file mode 100644 index 0000000..43987af --- /dev/null +++ b/docs/Adequacy.html @@ -0,0 +1,144 @@ + + + + + + +Adequacy (Prop. 7) + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Adequacy (Prop. 7)

+ +

We prove in this module that the composition of strategy is adequate. +The proof essentially proceeds by showing that "evaluating and observing", +i.e., reduce, is a solution of the same equations as is the composition +of strategies.

+

This argument assumes we can rely on the unicity of such a solution (Prop. 6): +we prove this fact by proving that these equations are eventually guarded in +OGS/CompGuarded.v.

+

We consider a language abstractly captured as a machine satisfying an +appropriate axiomatization.

+
  Context {T C} {CC : context T C} {CL : context_laws T C}.
+  Context {val} {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {conf} {CM : subst_module val conf} {CML : subst_module_laws val conf}.
+  Context {obs : obs_struct T C} {M : machine val conf obs} {ML : machine_laws val conf obs}.
+  Context {VV : var_assumptions val}.

We define reduce, called "zip-then-eval-then-observe" (z-e-obs) in the paper.

+
  Definition reduce {Δ} (x : reduce_t Δ)
+    : delay (obs∙ Δ)
+    := evalₒ (x.(red_act).(ms_conf)
+              ₜ⊛ [ a_id , bicollapse x.(red_act).(ms_env) x.(red_pas) ]) .
+
+  Definition reduce' {Δ} : forall i, reduce_t Δ -> itree ∅ₑ (fun _ : T1 => obs∙ Δ) i
+    := fun 'T1_0 => reduce .

Equipped with eventually guarded equations, we are ready to prove the adequacy.

+

First a technical lemma, which unfolds one step of composition, then reduce to a simpler +more explicit form.

+
  Lemma compo_reduce_simpl {Δ} (x : reduce_t Δ) :
+    (compo_body x >>= fun _ r =>
+         match r with
+         | inl y => reduce' _ y
+         | inr o => Ret' (o : (fun _ => obs∙ _) _)
+         end)
+      ≊
+      (eval x.(red_act).(ms_conf) >>= fun _ n =>
+           match c_view_cat (nf_var n) with
+           | Vcat_l i => Ret' (i ⋅ nf_obs n)
+           | Vcat_r j => reduce' _ (RedT (m_strat_resp x.(red_pas) (j ⋅ nf_obs n))
+                                        (x.(red_act).(ms_env) ;⁻ nf_args n))
+           end).
+  Proof.
+    do 2 (etransitivity; [ now apply fmap_bind_com | ]).
+    apply (subst_eq (RX := fun _ => eq)); eauto.
+    intros ? [ ? i [ ? ? ] ] ? <-.
+    unfold m_strat_wrap; cbn.
+    now destruct (c_view_cat i).
+  Qed.

Next we derive a variant of "evaluation respects substitution", working with +partial assignments [ a_id , e ] instead of full assignments.

+
  Definition eval_split_sub {Γ Δ} (c : conf (Δ +▶ Γ)) (e : Γ =[val]> Δ)
+    : delay (nf obs val Δ)
+    := eval c >>= fun 'T1_0 n =>
+         match c_view_cat (nf_var n) with
+         | Vcat_l i => Ret' (i ⋅ nf_obs n ⦇ nf_args n ⊛ [ v_var,  e ] ⦈)
+         | Vcat_r j => eval (e _ j ⊙ nf_obs n ⦗ nf_args n ⊛ [ v_var,  e ] ⦘)
+         end .
+
+  Lemma eval_split {Γ Δ} (c : conf (Δ +▶ Γ)) (e : Γ =[val]> Δ) :
+    eval (c ₜ⊛ [ a_id , e ]) ≋ eval_split_sub c e .
+  Proof.
+    unfold eval_split_sub.
+    rewrite (eval_sub c ([ v_var , e ])).
+    apply (subst_eq (RX := fun _ => eq)); eauto.
+    intros [] [ ? i [ o a ] ] ? <-; unfold emb; cbn.
+    destruct (c_view_cat i).
+    + unfold nf_args, fill_args, cut_r.
+      rewrite app_sub, v_sub_var.
+      cbn; rewrite c_view_cat_simpl_l.
+      now apply (eval_nf_ret (i ⋅ o ⦇ a ⊛ [a_id, e] ⦈)).
+    + rewrite app_sub, v_sub_var.
+      cbn; now rewrite c_view_cat_simpl_r.
+  Qed.

Note the use of iter_evg_uniq: the proof of adequacy is proved by unicity +of the fixed point, which is made possible by equivalently viewing the fixpoint +combinator used to define the composition of strategy as a fixpoint of eventually +guarded equations. We here prove the generalization of adequacy, namely that +reduce is a fixed point of the composition equation.

+
  Lemma adequacy_gen {Δ a} (c : m_strat_act Δ a) (e : m_strat_pas Δ a) :
+    reduce (RedT c e) ≊ (c ∥g e).
+  Proof.
+    refine (iter_evg_uniq (fun 'T1_0 u => compo_body u) (fun 'T1_0 u => reduce u) _ _ T1_0 _).
+    clear a c e; intros [] [ ? [ u v ] ].
+    etransitivity; [ | symmetry; apply compo_reduce_simpl ].
+    unfold reduce at 1, evalₒ at 1; rewrite eval_split.
+    etransitivity; [ apply bind_fmap_com | ].
+    apply (subst_eq (RX := fun _ => eq)); eauto.
+    intros [] [ ? i [ o a ] ] ? <-; unfold emb; cbn.
+    destruct (c_view_cat i).
+    - rewrite c_view_cat_simpl_l.
+      apply it_eq_unstep; cbn; do 2 econstructor.
+    - rewrite c_view_cat_simpl_r.
+      unfold reduce; cbn; unfold nf_args, cut_r, fill_args; cbn.
+      assert (H : (bicollapse v red_pas cut_ty j ⊙ o ⦗ a ⊛ [a_id, bicollapse v red_pas] ⦘)
+                  = ((ₐ↓ red_pas cut_ty j ᵥ⊛ r_emb r_cat3_1) ⊙ o ⦗ r_cat_rr ᵣ⊛ a_id ⦘
+       ₜ⊛ [a_id, [bicollapse v red_pas, a ⊛ [a_id, bicollapse v red_pas]]])).             
+        rewrite app_sub, <- v_sub_sub.
+
+        (* AAAAA setoid rewriting!!!! *)
+        etransitivity; cycle 1.
+        unshelve erewrite v_sub_proper.
+        5: { rewrite (a_ren_r_simpl _ r_cat3_1 _).
+             now rewrite r_cat3_1_simpl; eauto.
+           }
+        3,4: reflexivity.
+
+        change (?r ᵣ⊛ a_id)%asgn with (r_emb r); rewrite a_ren_r_simpl.
+        unfold r_cat_rr; rewrite a_ren_l_comp.
+        rewrite 2 a_cat_proj_r.
+
+        pose proof (H := collapse_fix_pas v red_pas _ j).
+        cbn in H; now rewrite H.
+        exact _.
+
+      pose (xx := bicollapse v red_pas cut_ty j ⊙ o ⦗ a ⊛ [a_id, bicollapse v red_pas] ⦘).
+      change (bicollapse v _ _ _ ⊙ o ⦗ _ ⦘) with xx in H |- *.
+      now rewrite H.
+  Qed.

Adequacy (Prop. 7) holds.

+
  Lemma adequacy {Γ Δ} (c : conf Γ) (e : Γ =[val]> Δ) :
+    evalₒ (c ₜ⊛ e) ≈ (inj_init_act Δ c ∥ inj_init_pas e).
+  Proof.
+    transitivity (inj_init_act Δ c ∥g inj_init_pas e).
+    rewrite <- adequacy_gen; unfold reduce; cbn.
+    now rewrite <- c_sub_sub, a_ren_r_simpl,
+          a_ren_l_comp, 2 a_cat_proj_r,
+          a_ren_comp, a_cat_proj_l, a_comp_id.
+    apply iter_evg_iter.
+  Qed.
+End with_param.
+
+
+ diff --git a/docs/All.html b/docs/All.html new file mode 100644 index 0000000..9d35f6b --- /dev/null +++ b/docs/All.html @@ -0,0 +1,23 @@ + + + + + + +All.v + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+ + +
From OGS.Ctx Require Export Abstract Family Assignment Renaming.
+
+
+ diff --git a/docs/Assignment.html b/docs/Assignment.html new file mode 100644 index 0000000..acd9a8e --- /dev/null +++ b/docs/Assignment.html @@ -0,0 +1,119 @@ + + + + + + +Assignments + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Assignments

+ +

In this file we define assignments for a given abstract context structure. We also define +several combinators based on them: the internal substitution hom, filled operations, +copairing, etc.

+
+

Definition of assignments (Def. 5)

+

We distinguish assignments, mapping variables in a context to terms, from +substitutions, applying an assignment to a term. Assignments are intrinsically +typed, mapping variables of a context Γ to open terms with variables in Δ.

+
  Definition assignment (F : Fam₁ T C) (Γ Δ : C) := forall x, Γ ∋ x -> F Δ x.
+
+  Notation "Γ =[ F ]> Δ" := (assignment F Γ%ctx Δ%ctx).

Pointwise equality of assignments.

+
  Definition asgn_eq {F : Fam₁ T C} Γ Δ : relation (Γ =[F]> Δ) :=  _,  _, eq.
+  Notation "u ≡ₐ v" := (asgn_eq _ _ u%asgn v%asgn).
+
+  
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C

Equivalence (asgn_eq Γ Δ)
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C

Equivalence (asgn_eq Γ Δ)
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C

Reflexive (asgn_eq Γ Δ)
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C
Symmetric (asgn_eq Γ Δ)
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C
Transitive (asgn_eq Γ Δ)
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C

Reflexive (asgn_eq Γ Δ)
now intros u ? i. +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C

Symmetric (asgn_eq Γ Δ)
intros u h ? ? i; symmetry; now apply (H _ i). +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ, Δ: C

Transitive (asgn_eq Γ Δ)
intros u v w h1 h2 ? i; transitivity (v _ i); [ now apply h1 | now apply h2 ]. + Qed.

Internal hom functors. The monoidal product for substitution is a bit cumbersome as +it is expressed as a coend, that is, a quotient. Following the formalization by +Dima Szamozvancev, we instead prefer to express everything in terms of its adjoint, +the internal hom.

+

For example the monoidal multiplication map will not be typed X ⊗ X ⇒ X but +X ⇒ ⟦ X , X ⟧.

+

It is an end, that is, a subset, which are far more easy to work with as they can +simply be encoded as a record pairing an element and a proof. The proof part is not +written here but encoded later on.

+

The real one is ⟦-,-⟧₁, but in fact we can define an analogue to this bifunctor +for any functor category ctx → C, which we do here for Fam₀ and Fam₂ (unsorted and +bisorted, scoped families). This will be helpful to define what it means to +substitute other kinds of syntactic objects.

+

See Ctx/Abstract.v for more details on the theory. This is called +the _power object_ (Def. 6) in the paper.

+
  Definition internal_hom₀ : Fam₁ T C -> Fam₀ T C -> Fam₀ T C
+    := fun F G Γ => forall Δ, Γ =[F]> Δ -> G Δ.
+  Definition internal_hom₁ : Fam₁ T C -> Fam₁ T C -> Fam₁ T C
+    := fun F G Γ x => forall Δ, Γ =[F]> Δ -> G Δ x.
+  Definition internal_hom₂ : Fam₁ T C -> Fam₂ T C -> Fam₂ T C
+    := fun F G Γ x y => forall Δ, Γ =[F]> Δ -> G Δ x y.
+
+  Notation "⟦ F , G ⟧₀" := (internal_hom₀ F G).
+  Notation "⟦ F , G ⟧₁" := (internal_hom₁ F G).
+  Notation "⟦ F , G ⟧₂" := (internal_hom₂ F G).

Constructing a sorted family of operations from O with arguments taken from the family F.

+
  Record filled_op (O : Oper T C) (F : Fam₁ T C) (Γ : C) (t : T) :=
+    OFill { fill_op : O t ; fill_args : o_dom fill_op =[F]> Γ }.
+  Notation "S # F" := (filled_op S F).

We can forget the arguments and get back a bare operation.

+
  Definition forget_args {O : Oper T C} {F} : (O # F) ⇒ ⦉ O ⦊
+    := fun _ _ => fill_op.

The empty assignment.

+
  Definition a_empty {F Γ} : ∅ =[F]> Γ
+    := fun _ i => match c_view_emp i with end.

The copairing of assignments.

+
  Definition a_cat {F Γ1 Γ2 Δ} (u : Γ1 =[F]> Δ) (v : Γ2 =[F]> Δ) : (Γ1 +▶ Γ2) =[F]> Δ
+    := fun t i => match c_view_cat i with
+               | Vcat_l i => u _ i
+               | Vcat_r j => v _ j
+               end.

A kind relaxed of pointwise mapping.

+
  Definition a_map {F G : Fam₁ T C} {Γ Δ1 Δ2} (u : Γ =[F]> Δ1) (f : forall x, F Δ1 x -> G Δ2 x)
+    : Γ =[G]> Δ2
+    := fun _ i => f _ (u _ i) .

Copairing respects pointwise equality.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C

Proper + (asgn_eq Γ1 Δ ==> + asgn_eq Γ2 Δ ==> asgn_eq (Γ1 +▶ Γ2)%ctx Δ) a_cat
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C

Proper + (asgn_eq Γ1 Δ ==> + asgn_eq Γ2 Δ ==> asgn_eq (Γ1 +▶ Γ2)%ctx Δ) a_cat
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
x, y: Γ1 =[ F ]> Δ
Hu: x ≡ₐ y
x0, y0: Γ2 =[ F ]> Δ
Hv: x0 ≡ₐ y0
a: T
a0: Γ1 +▶ Γ2 ∋ a

match c_view_cat a0 with +| Vcat_l i => x a i +| Vcat_r j => x0 a j +end = +match c_view_cat a0 with +| Vcat_l i => y a i +| Vcat_r j => y0 a j +end
+
destruct (c_view_cat a0); [ now apply Hu | now apply Hv ]. + Qed. +End with_param.

Registering all the notations...

+
#[global] Notation "Γ =[ F ]> Δ" := (assignment F Γ%ctx Δ%ctx).
+#[global] Bind Scope asgn_scope with assignment.
+
+#[global] Notation "u ≡ₐ v" := (asgn_eq _ _ u%asgn v%asgn).
+#[global] Notation "⟦ F , G ⟧₀" := (internal_hom₀ F G).
+#[global] Notation "⟦ F , G ⟧₁" := (internal_hom₁ F G).
+#[global] Notation "⟦ F , G ⟧₂" := (internal_hom₂ F G).
+
+#[global] Notation "S # F" := (filled_op S F).
+#[global] Notation "o ⦇ u ⦈" := (OFill o u%asgn).
+
+#[global] Notation "!" := (a_empty) : asgn_scope.
+#[global] Notation "[ u , v ]" := (a_cat u v) : asgn_scope.
+
+

Docutils System Messages

+
+

System Message: ERROR/3 (theories/Ctx/Assignment.v, line 80); backlink

+Unknown target name: "object".
+
+
+
+ diff --git a/docs/Checks.html b/docs/Checks.html new file mode 100644 index 0000000..20aa378 --- /dev/null +++ b/docs/Checks.html @@ -0,0 +1,117 @@ + + + + + + +Checks.v + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+ + +
From OGS Require Import Prelude.
+From OGS.Ctx Require Import All Subst.
+From OGS.OGS Require Import Game Strategy.
+From OGS.OGS Require Soundness.
+From OGS.Examples Require STLC_CBV ULC_CBV SystemL_CBV SystemD.
+
+Module generic.
+  Import Soundness.
+Goal True.
+  idtac "=============================".
+  idtac "Generic OGS soundness theorem".
+  idtac "=============================".
+  idtac "1. Arguments and type".
+  idtac "-----------------------------".
+Abort.
+About Soundness.ogs_correction.
+Goal True.
+  idtac "--------------".
+  idtac "2. Assumptions".
+  idtac "--------------".
+Abort.
+Print Assumptions Soundness.ogs_correction.
+End generic.
+
+Module stlc.
+Import STLC_CBV.
+Goal True.
+  idtac "===================================================".
+  idtac " Simply-typed lambda-calculus OGS soundness theorem".
+  idtac "===================================================".
+  idtac "1. Arguments and type".
+  idtac "---------------------------------------------------".
+Abort.
+About STLC_CBV.stlc_ciu_correct.
+Goal True.
+  idtac "--------------".
+  idtac "2. Assumptions".
+  idtac "--------------".
+Abort.
+Print Assumptions STLC_CBV.stlc_ciu_correct.
+End stlc.
+
+Module ulc.
+Import ULC_CBV.
+Goal True.
+  idtac "==============================================".
+  idtac " Untyped lambda-calculus OGS soundness theorem".
+  idtac "==============================================".
+  idtac "1. Arguments and type".
+  idtac "----------------------------------------------".
+Abort.
+About ULC_CBV.ulc_ciu_correct.
+Goal True.
+  idtac "--------------".
+  idtac "2. Assumptions".
+  idtac "--------------".
+Abort.
+Print Assumptions ULC_CBV.ulc_ciu_correct.
+End ulc.
+
+Module systeml.
+Import SystemL_CBV.
+Goal True.
+  idtac "===================================".
+  idtac " CBV System L OGS soundness theorem".
+  idtac "===================================".
+  idtac "1. Arguments and type".
+  idtac "-----------------------------------".
+Abort.
+About SystemL_CBV.ciu_correct.
+Goal True.
+  idtac "--------------".
+  idtac "2. Assumptions".
+  idtac "--------------".
+Abort.
+Print Assumptions SystemL_CBV.ciu_correct.
+End systeml.
+
+Module systemd.
+Import SystemD.
+Goal True.
+  idtac "=========================================".
+  idtac " Polarized System D OGS soundness theorem".
+  idtac "=========================================".
+  idtac "1. Arguments and type".
+  idtac "-----------------------------------------".
+Abort.
+About SystemD.ciu_correct.
+Goal True.
+  idtac "--------------".
+  idtac "2. Assumptions".
+  idtac "--------------".
+Abort.
+Print Assumptions SystemD.ciu_correct.
+End systemd.
+
+
+ diff --git a/docs/CompGuarded.html b/docs/CompGuarded.html new file mode 100644 index 0000000..634bf8a --- /dev/null +++ b/docs/CompGuarded.html @@ -0,0 +1,205 @@ + + + + + + +Eventual guardedness of the composition (Prop. 6) + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Eventual guardedness of the composition (Prop. 6)

+ +

We want to prove adequacy by unicity of solutions to the set of equations defining the +composition. To do so, we rely on the notion of guarded iteration introduced in +ITree/Guarded.v. Through this file, we prove that the composition is +indeed eventually guarded. The proof relies crucially on the "focused redex" assumption +(Def. 28, here denoted by the law eval_app_not_var).

+

We consider a language abstractly captured as a machine satisfying an +appropriate axiomatization.

+
  Context `{CC : context T C} {CL : context_laws T C}.
+  Context {val} {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {conf} {CM : subst_module val conf} {CML : subst_module_laws val conf}.
+  Context {obs : obs_struct T C} {M : machine val conf obs}.
+  Context {ML : machine_laws val conf obs} {VV : var_assumptions val}.
+
+  Notation ogs_ctx := (ogs_ctx (C:=C)).

A central elements in the proof lies in ensuring that there exists a unique solution +to compo_body. Since the composition of strategies is defined as such a solution, +adequacy can be established by proving that evaluating and observing the substituted +term is also a solution of compo_body.

+

By iter_evg_uniq, we know that eventually guarded equations admit a unique fixed point: +we hence start by proving this eventual guardedness, captured in lemma +compo_body_guarded.

+

This proof will among other be using an induction on the age of a variable, ie it's +height in the OGS position Φ. We provide this definition and utilities.

+
  Equations var_height Φ p {x} : ↓[p]Φ ∋ x -> nat :=
+    var_height ∅ₓ       Pas i with c_view_emp i := { | ! } ;
+    var_height ∅ₓ       Act i with c_view_emp i := { | ! } ;
+    var_height (Φ ▶ₓ Γ) Pas i := var_height Φ Act i ;
+    var_height (Φ ▶ₓ Γ) Act i with c_view_cat i := {
+      | Vcat_l j := var_height Φ Pas j ;
+      | Vcat_r j := 1 + c_length Φ } .
+  #[global] Arguments var_height {Φ p x} i.
+
+  Lemma var_height_pos {Φ p x} (i : ↓[p]Φ ∋ x) : 0 < var_height i .
+  Proof.
+    funelim (var_height i).
+    - apply H.
+    - rewrite <- Heqcall; apply H.
+    - rewrite <- Heqcall; apply Nat.lt_0_succ.
+  Qed.
+
+  Equations lt_bound : polarity -> relation nat :=
+    lt_bound Act := lt ;
+    lt_bound Pas := le .
+
+  Lemma var_height_bound {Φ p x} (i : ↓[p]Φ ∋ x)
+    : lt_bound p (var_height i) (1 + c_length Φ).
+  Proof.
+    funelim (var_height i); cbn.
+    - now apply Nat.lt_succ_r, Nat.le_le_succ_r, Nat.le_le_succ_r.
+    - rewrite Heq; now apply Nat.lt_succ_r.
+    - rewrite Heq; apply Nat.lt_succ_diag_r.
+  Qed.
+
+  Equations var_height' {Δ Φ p x} : Δ +▶ ↓[p]Φ ∋ x -> nat :=
+    var_height' i with c_view_cat i := {
+      | Vcat_l j := O ;
+      | Vcat_r j := var_height j } .

This is the main theorem about height: if we lookup a variable in an OGS environment and +obtain another variable, then this new variable is strictly lower than the first one.

+
  Lemma height_decrease {Δ Φ p} (v : ogs_env Δ p Φ) {x}
+        (j : ↓[p^] Φ ∋ x)
+        (H :  is_var (ₐ↓v _ j))
+        : var_height' (is_var_get H) < var_height j.
+  Proof.
+    revert H; rewrite lookup_collapse; intro H.
+    destruct (view_is_var_ren _ _ H).
+    rewrite ren_is_var_get; cbn.
+    remember (lookup v j).
+    destruct H; cbn; destruct (c_view_cat i).
+    - unfold var_height'; rewrite c_view_cat_simpl_l; apply var_height_pos.
+    - unfold var_height'; rewrite c_view_cat_simpl_r; cbn.
+      remember (r_ctx_dom j).
+      funelim (r_ctx_dom j); try clear Heqcall.
+      + cbn; rewrite c_view_cat_simpl_l; cbn.
+        dependent destruction v; now apply (H _ v).
+      + dependent destruction v.
+        revert j1 Heqv0; cbn; rewrite Heq; cbn; intros j1 Heqv.
+        now apply (H _ v).
+      + dependent destruction v; clear Heqv0.
+        revert j1; cbn; rewrite Heq; exact var_height_bound.
+  Qed.

We are now ready to prove eventual guardedness. In fact the main lemma will have a slightly +different statement, considering a particular kind of pair of OGS states: the ones we +obtain when restarting after an interaction. As the statement is quite long we factor +it in a definition first.

+
  Definition compo_body_guarded_aux_stmt {Δ Φ} (u : ogs_env Δ Act Φ) (v : ogs_env Δ Pas Φ)
+    {x} (o : obs x) (γ : dom o =[val]> (Δ +▶ ↓⁺ Φ)) (j : ↓⁺ Φ ∋ x) : Prop
+    := ev_guarded
+         (fun 'T1_0 => compo_body)
+         (compo_body (RedT (MS ((ₐ↓v _ j ᵥ⊛ᵣ r_cat3_1) ⊙ o⦗r_cat_rr ᵣ⊛ a_id⦘)
+                               (v ;⁺))
+                           (u ;⁻ γ))) .

Now the main proof.

+
  
The reference ogs_env was not found in the current +environment.
+
Proof.

First we setup an induction on the accessibility of the current observation in the relation +given by the "no-infinite redex" property.

+
    revert Φ u v γ j.
+    pose (o' := (x ,' o)); change x with (projT1 o'); change o with (projT2 o').
+    generalize o'; clear x o o'; intro o.
+    pose (wf := eval_app_not_var o); induction wf.
+    destruct x as [ x o ]; cbn [ projT1 projT2 ] in *.
+    clear H; rename H0 into IHred; intros Φ u v γ j.

Next we setup an induction on the height of the current variable we have restarted on.

+
    pose (h := lt_wf (var_height j)); remember (var_height j) as n.
+    revert Φ u v γ j Heqn; induction h.
+    clear H; rename x0 into n, H0 into IHvar; intros Φ u v γ j Heqn.

Then we case split on whether ₐ↓ v x j is a variable or not.

+
    unfold compo_body_guarded_aux_stmt.
+    pose (vv := ₐ↓ v x j); fold vv.
+    destruct (is_var_dec vv).

Case 1: it is a variable.

+

First, some shenenigans to extract the variable.

+
    - rewrite (is_var_get_eq i); unfold vv in *; clear vv.
+      unfold v_ren; rewrite v_sub_var; unfold r_emb.
+      unfold ev_guarded; cbn.

Next, we are evaluating a normal form, so we know by hypothesis eval_nf_ret that it +will reduce to the same normal form. We need some trickery to rewrite by this bisimilarity.

+
      pose proof (Heval :=
+                    eval_nf_ret ((r_cat3_1 x (is_var_get i)) ⋅ o ⦇ r_cat_rr ᵣ⊛ a_id  ⦈)).
+      unfold comp_eq in Heval; apply it_eq_step in Heval.
+      change (eval _) with
+        (eval (a_id (r_cat3_1 x (is_var_get i)) ⊙ o ⦗ r_cat_rr ᵣ⊛ a_id ⦘))
+        in Heval.
+      remember (eval (a_id (r_cat3_1 x (is_var_get i)) ⊙ o ⦗ r_cat_rr ᵣ⊛ a_id ⦘))
+        as tt; clear Heqtt.
+      remember (r_cat3_1 x (is_var_get i) ⋅ o ⦇ r_cat_rr ᵣ⊛ a_id ⦈) as ttn.
+      cbn in Heval; dependent destruction Heval.
+      rewrite Heqttn in r_rel; clear Heqttn.
+      dependent elimination r_rel.
+      unfold observe in x; rewrite <- x; clear x; cbn.
+      unfold m_strat_wrap, r_cat3_1; cbn.
+      remember (ₐ↓v _ j) as vv.

Now, we case split to see whether this variable was a final variable or one given by +the opponent.

+
      destruct i; cbn; destruct (c_view_cat i).

In case of a final variable the composition is ended, hence guarded, hence eventually +guarded.

+
      + rewrite c_view_cat_simpl_l; now do 2 econstructor.

In the other case, there is an interaction. Since we have looked-up a variable and +obtained another variable, we know it is strictly older and use our induction hypothesis +on the height of the current variable.

+
      + rewrite c_view_cat_simpl_r; cbn.
+        refine (GNext _).
+        unshelve refine (IHvar _ _ _ _ _ _ _ eq_refl).
+        rewrite Heqn; clear Heqn; unfold cut_l.

There is some trickery to apply height_decrease.

+
        clear tt ttn a1 a.
+        assert (i : is_var (ₐ↓v _ j)).
+          rewrite <- Heqvv.
+          now econstructor.
+        eapply Nat.lt_le_trans; [ | exact (height_decrease (p:=Pas) _ j i) ].
+        destruct i; cbn.
+        apply v_var_inj in Heqvv.
+        rewrite <- Heqvv; unfold var_height'.
+        rewrite c_view_cat_simpl_l, c_view_cat_simpl_r; cbn.
+        now apply Nat.lt_succ_diag_r.

Case 2: the looked-up value is not a variable. In this case we look at one step of the +evaluation. If there is a redex we are happy. Else, our resumed configuration was +still a normal form and we can exhibit a proof of the bad instanciation relation, which +enables us to call our other induction hypothesis.

+
    - unfold ev_guarded; cbn.
+      remember (eval ((vv ᵥ⊛ r_emb r_cat3_1) ⊙ o ⦗ r_cat_rr ᵣ⊛ a_id ⦘)) as tt.
+      remember (_observe tt) as ot.
+      destruct ot; try now do 2 econstructor.
+      destruct r as [ nx ni [ no narg ] ]; unfold m_strat_wrap; cbn.
+      destruct (c_view_cat ni); try now do 2 econstructor.
+      refine (GNext (IHred (_ ,' _) _ _ _ _ _ _)).
+
+      refine (HeadInst (_ ,' _) (vv ᵥ⊛ r_emb r_cat3_1) o
+                (r_cat_rr ᵣ⊛ a_id) (r_cat_r j0) (t ∘ (is_var_ren _ _)) _).
+      apply it_eq_unstep; cbn.
+      rewrite Heqtt in Heqot; rewrite <- Heqot.
+      now econstructor.
+  Qed.

Now the actual proof of eventual guardedness is just about unfolding a bit of the beginning +of the interactions until we attain a resume and can apply our main lemma.

+
  Lemma compo_body_guarded {Δ} : eqn_ev_guarded (fun 'T1_0 => compo_body (Δ := Δ)).
+  Proof.
+    intros [] [ Γ [ c u ] v ]; unfold m_strat_pas in v.
+    unfold ev_guarded; cbn.
+    pose (ot := _observe (eval c)); change (_observe (eval c)) with ot.
+    destruct ot; try now do 2 econstructor.
+    destruct r as [ x i [ o a ] ]; unfold m_strat_wrap; cbn.
+    destruct (c_view_cat i); try now do 2 econstructor.
+    refine (GNext _); apply compo_body_guarded_aux.
+  Qed.

From the previous proof we can directly apply the strong fixed point construction on +eventually guarded equations and obtain a composition operator without any Tau node +at interaction points (Prop. 6).

+
  Definition compo_ev_guarded {Δ a} (u : m_strat_act Δ a) (v : m_strat_pas Δ a)
+    : delay (obs∙ Δ)
+    := iter_ev_guarded _ compo_body_guarded T1_0 (RedT u v).
+
+End with_param.
+#[global] Notation "u ∥g v" := (compo_ev_guarded u v) (at level 40).
+
+
+ diff --git a/docs/Congruence.html b/docs/Congruence.html new file mode 100644 index 0000000..6ad1e4b --- /dev/null +++ b/docs/Congruence.html @@ -0,0 +1,179 @@ + + + + + + +Congruence (Prop. 4) + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Congruence (Prop. 4)

+ +

We prove in this module that weak bisimilarity is a congruence for composition. The proof +makes a slight technical side step: we prove the composition to be equivalent to an +alternate definition, dully named compo_alt.

+

Indeed, congruence is a very easy result, demanding basically no assumption. What is +actually hard, is to manage weak bisimilarity proofs, which in contrast to strong +bisimilarity can be hard to tame: instead of synchronizing, at every step they can eat +any number of Tau node on either side, forcing us to do complex inductions in the +middle of our bisimilarity proofs.

+

Because of this, since our main definition compo is the specific case of composition +of two instances of the machine strategy in the OGS game, we know much more than what we +actually care about. Hence we define the much more general compo_alt composing +any two abstract strategy for the OGS game and prove that one congruent w.r.t. weak +bisimilarity. We then connect these two alternative definitions with a strong bisimilarity, +much more structured, hence easy to prove.

+

We consider a language abstractly captured as a machine satisfying an +appropriate axiomatization.

+
  Context {T C} {CC : context T C} {CL : context_laws T C}.
+  Context {val} {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {conf} {CM : subst_module val conf} {CML : subst_module_laws val conf}.
+  Context {obs : obs_struct T C} {M : machine val conf obs}.
+  Context {ML : machine_laws val conf obs} {VV : var_assumptions val}.

We start off by defining this new, opaque composition.

+
  
The reference C was not found in the current +environment.
+
#[global] Arguments AltT {Δ Φ} u v : rename. + #[global] Arguments alt_ctx {Δ}. + #[global] Arguments alt_act {Δ}. + #[global] Arguments alt_pas {Δ}. + + Definition compo_alt_body {Δ} + : compo_alt_t Δ -> delay (compo_alt_t Δ + obs∙ Δ) + := cofix _compo_body x := + go match x.(alt_act).(_observe) with + | RetF r => RetD (inr r) + | TauF t => TauD (_compo_body (AltT t x.(alt_pas))) + | VisF e k => RetD (inl (AltT (x.(alt_pas) e) k)) + end . + + Definition compo_alt {Δ a} (u : ogs_act Δ a) (v : ogs_pas Δ a) : delay (obs∙ Δ) + := iter_delay compo_alt_body (AltT u v).

Now we define our bisimulation candidates, for weak and strong bisimilarity.

+
  Variant alt_t_weq Δ : relation (compo_alt_t Δ) :=
+  | AltWEq {Φ u1 u2 v1 v2}
+    : u1 ≈ u2
+      -> h_pasvR ogs_hg (it_wbisim (eqᵢ _)) _ v1 v2
+      -> alt_t_weq Δ (AltT (Φ:=Φ) u1 v1) (AltT (Φ:=Φ) u2 v2).
+
+  Variant alt_t_seq Δ : relation (compo_alt_t Δ) :=
+  | AltSEq {Φ u1 u2 v1 v2}
+    : u1 ≊ u2
+      -> h_pasvR ogs_hg (it_eq (eqᵢ _)) _ v1 v2
+      -> alt_t_seq Δ (AltT (Φ:=Φ) u1 v1) (AltT (Φ:=Φ) u2 v2).

And prove the tedious but direct weak congruence.

+
  #[global] Instance compo_alt_proper {Δ a}
+    : Proper (it_wbisim (eqᵢ _) a
+                ==> h_pasvR ogs_hg (it_wbisim (eqᵢ _)) a
+                ==> it_wbisim (eqᵢ _) T1_0)
+        (@compo_alt Δ a).
+    intros x y H1 u v H2.
+    unshelve eapply (iter_weq (RX := fun _ => alt_t_weq Δ)); [ | now econstructor ].
+    clear a x y H1 u v H2; intros [] ?? [ ????? Hu Hv ].
+    revert u1 u2 Hu; unfold it_wbisim; coinduction R CIH; intros u1 u2 Hu.
+    apply it_wbisim_step in Hu; cbn in *; unfold observe in Hu.
+    destruct Hu as [ ? ? r1 r2 rr ].
+    dependent destruction rr.
+    - dependent destruction r_rel; unshelve econstructor.
+      * exact (RetF (inr r3)).
+      * exact (RetF (inr r3)).
+      * remember (_observe u1) eqn:H; clear H.
+        remember (RetF (E:=ogs_e) r3) eqn:H.
+        induction r1; [ now rewrite H | eauto ].
+      * remember (_observe u2) eqn:H; clear H.
+        remember (RetF (E:=ogs_e) r3) eqn:H.
+        induction r2; [ now rewrite H | eauto ].
+      * now repeat econstructor.
+    - unshelve econstructor.
+      * exact (TauD (compo_alt_body (AltT t1 v1))).
+      * exact (TauD (compo_alt_body (AltT t2 v2))).
+      * remember (_observe u1) eqn:H; clear H.
+        remember (TauF t1) eqn:H.
+        induction r1; [ now rewrite H | auto ].
+      * remember (_observe u2) eqn:H; clear H.
+        remember (TauF t2) eqn:H.
+        induction r2; [ now rewrite H | auto ].
+      * auto.
+    - unshelve econstructor.
+      * exact (RetF (inl (AltT (v1 q) k1))).
+      * exact (RetF (inl (AltT (v2 q) k2))).
+      * remember (_observe u1) eqn:H; clear H.
+        remember (VisF q k1) eqn:H.
+        induction r1; [ now rewrite H | auto ].
+      * remember (_observe u2) eqn:H; clear H.
+        remember (VisF q k2) eqn:H.
+        induction r2; [ now rewrite H | auto ].
+      * unshelve (do 3 econstructor); eauto.
+   Qed.

We can inject pairs of machine-strategy states into pairs of opaque states, this will help +us define our next bisimulation candidate.

+
  Definition reduce_t_inj {Δ} (x : reduce_t Δ) : compo_alt_t Δ
+     := AltT (m_strat _ x.(red_act)) (m_stratp _ x.(red_pas)) .

Now we relate the normal composition and the opaque composition of opacified states.

+
  Lemma compo_compo_alt {Δ} {x : reduce_t Δ}
+        : iter_delay compo_alt_body (reduce_t_inj x) ≊ iter_delay compo_body x .
+  Proof.
+    apply (iter_cong_strong (RX := fun _ a b => alt_t_seq _ a (reduce_t_inj b))); cycle 1.
+
+    cbn; destruct (reduce_t_inj x) as [ Φ u v ]; econstructor; [ | intro ]; eauto.
+    clear x.
+
+    intros [] ?? H; dependent destruction H.
+    destruct b as [ Φ [ c u ] v ]; cbn in *.
+    rewrite unfold_mstrat in H; apply it_eq_step in H; cbn in H; unfold observe in H.
+    apply it_eq_unstep; cbn.
+    remember (_observe u1) as ou1; clear u1 Heqou1.
+    remember (_observe (eval c)) as ou2; clear c Heqou2.
+
+    destruct ou2.
+    - destruct (m_strat_wrap u r).
+      + cbn in H; dependent elimination H; cbn.
+        do 2 econstructor; exact r_rel.
+      + destruct h; cbn in H; dependent elimination H.
+        do 3 econstructor.
+        * apply H0.
+        * exact k_rel.
+    - destruct ou1; dependent elimination H.
+      econstructor.
+      remember (fmap_delay (m_strat_wrap u) t) as t2; clear u t Heqt2.
+      revert t1 t2 t_rel; unfold it_eq at 2; coinduction R CIH; intros t1 t2 t_rel.
+      apply it_eq_step in t_rel; cbn in t_rel; unfold observe in t_rel; cbn.
+      remember (_observe t1) as ot1; clear t1 Heqot1.
+      remember (_observe t2) as ot2; clear t2 Heqot2.
+      destruct ot2.
+      + destruct r.
+        * cbn in t_rel; dependent elimination t_rel; cbn.
+          do 2 econstructor; exact r_rel.
+        * destruct h; dependent elimination t_rel; cbn.
+          do 3 econstructor.
+          now apply H0.
+          exact k_rel.
+      + dependent elimination t_rel; econstructor.
+        now apply CIH.
+      + destruct q.
+    - destruct q.
+  Qed.
+
+  #[global] Instance compo_proper {Δ a}
+    : Proper (m_strat_act_eqv a
+                ==> m_strat_pas_eqv a
+                ==> it_wbisim (eqᵢ _) T1_0)
+        (compo (Δ:=Δ) (a:=a)).
+  Proof.
+    intros ?? Ha ?? Hp.
+    unfold compo; rewrite <- 2 compo_compo_alt.
+    apply compo_alt_proper.
+    exact Ha.
+    exact Hp.
+  Qed.
+End with_param.
+
+
+ diff --git a/docs/Covering.html b/docs/Covering.html new file mode 100644 index 0000000..452db26 --- /dev/null +++ b/docs/Covering.html @@ -0,0 +1,181 @@ + + + + + + +Covering for free contexts + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Covering for free contexts

+ +

In Ctx/Ctx.v we have instanciated the relevant part of the abstract interface +for concrete contexts. Here we tackle the rest of the structure. Basically, we need to +provide case-splitting for deciding if a variable i : (Γ +▶ Δ) ∋ x is in Γ or in +Δ. We could do this directly but we prove a slight generalization, going through the +definition of coverings, a ternary relationship on concrete contexts witnessing that a +context is covered by the two others (respecting order).

+
+

A covering

+

This inductive family provides proofs that some context zs is obtained by "zipping" +together two other contexts xs and ys.

+
  Inductive cover : ctx X -> ctx X -> ctx X -> Type :=
+  | CNil : ∅ₓ ⊎ ∅ₓ  ≡ ∅ₓ
+  | CLeft  {x xs ys zs} : xs ⊎ ys ≡ zs -> (xs ▶ₓ x) ⊎ ys ≡ (zs ▶ₓ x)
+  | CRight {x xs ys zs} : xs ⊎ ys ≡ zs -> xs ⊎ (ys ▶ₓ x) ≡ (zs ▶ₓ x)
+  where "a ⊎ b ≡ c" := (cover a b c).

Basic useful coverings.

+
  Equations cover_nil_r xs : xs ⊎ ∅ₓ ≡ xs :=
+    cover_nil_r ∅ₓ        := CNil ;
+    cover_nil_r (xs ▶ₓ _) := CLeft (cover_nil_r xs) .
+  #[global] Arguments cover_nil_r {xs}.
+
+  Equations cover_nil_l xs : ∅ₓ ⊎ xs ≡ xs :=
+    cover_nil_l ∅ₓ        := CNil ;
+    cover_nil_l (xs ▶ₓ _) := CRight (cover_nil_l xs) .
+  #[global] Arguments cover_nil_l {xs}.

This is the crucial one: the concatenation is covered by its two components.

+
  Equations cover_cat {xs} ys : xs ⊎ ys ≡ (xs +▶ ys) :=
+    cover_cat ∅ₓ        := cover_nil_r ;
+    cover_cat (ys ▶ₓ _) := CRight (cover_cat ys) .
+  #[global] Arguments cover_cat {xs ys}.

A covering gives us two injective renamings, left embedding and right embedding.

+
  Equations r_cover_l {xs ys zs} : xs ⊎ ys ≡ zs -> xs ⊆ zs :=
+    r_cover_l (CLeft c)  _ top     := top ;
+    r_cover_l (CLeft c)  _ (pop i) := pop (r_cover_l c _ i) ;
+    r_cover_l (CRight c) _ i       := pop (r_cover_l c _ i) .
+
+  Equations r_cover_r {xs ys zs} : xs ⊎ ys ≡ zs -> ys ⊆ zs :=
+    r_cover_r (CLeft c)  _ i       := pop (r_cover_r c _ i) ;
+    r_cover_r (CRight c) _ top     := top ;
+    r_cover_r (CRight c) _ (pop i) := pop (r_cover_r c _ i) .

Injectivity.

+
  
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
x: X
i, j: xs ∋ x
H: r_cover_l p x i = r_cover_l p x j

i = j
+
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
x: X
i, j: xs ∋ x
H: r_cover_l p x i = r_cover_l p x j

i = j
+
X: Type
F: Fam₁ X (ctx X)
x: X
i, j: ∅ₓ ∋ x
H: r_cover_l CNil x i = r_cover_l CNil x j

i = j
X: Type
F: Fam₁ X (ctx X)
x0: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
x: X
i, j: xs ▶ₓ x0 ∋ x
H: r_cover_l (CLeft p) x i = r_cover_l (CLeft p) x j
IHp: forall i j : xs ∋ x, r_cover_l p x i = r_cover_l p x j -> i = j
i = j
X: Type
F: Fam₁ X (ctx X)
x0: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
x: X
i, j: xs ∋ x
H: r_cover_l (CRight p) x i = +r_cover_l (CRight p) x j
IHp: forall i j : xs ∋ x, r_cover_l p x i = r_cover_l p x j -> i = j
i = j
+
X: Type
F: Fam₁ X (ctx X)
x: X
i, j: ∅ₓ ∋ x
H: r_cover_l CNil x i = r_cover_l CNil x j

i = j
dependent elimination i. +
X: Type
F: Fam₁ X (ctx X)
x0: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
x: X
i, j: xs ▶ₓ x0 ∋ x
H: r_cover_l (CLeft p) x i = r_cover_l (CLeft p) x j
IHp: forall i j : xs ∋ x, r_cover_l p x i = r_cover_l p x j -> i = j

i = j
X: Type
F: Fam₁ X (ctx X)
y0: X
Γ1, ys, zs: ctx X
p: Γ1 ⊎ ys ≡ zs
x: X
v, v0: var x Γ1
H: r_cover_l (CLeft p) x (pop v) = +r_cover_l (CLeft p) x (pop v0)
IHp: forall i j : Γ1 ∋ x, r_cover_l p x i = r_cover_l p x j -> i = j

pop v = pop v0
+
X: Type
F: Fam₁ X (ctx X)
y0: X
Γ1, ys, zs: ctx X
p: Γ1 ⊎ ys ≡ zs
x: X
v, v0: var x Γ1
H: NoConfusion (r_cover_l (CLeft p) x (pop v)) + (r_cover_l (CLeft p) x (pop v0))
IHp: forall i j : Γ1 ∋ x, r_cover_l p x i = r_cover_l p x j -> i = j

pop v = pop v0
+
f_equal; now apply IHp. +
X: Type
F: Fam₁ X (ctx X)
x0: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
x: X
i, j: xs ∋ x
H: r_cover_l (CRight p) x i = +r_cover_l (CRight p) x j
IHp: forall i j : xs ∋ x, r_cover_l p x i = r_cover_l p x j -> i = j

i = j
X: Type
F: Fam₁ X (ctx X)
x0: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
x: X
i, j: xs ∋ x
H: NoConfusion (r_cover_l (CRight p) x i) + (r_cover_l (CRight p) x j)
IHp: forall i j : xs ∋ x, r_cover_l p x i = r_cover_l p x j -> i = j

i = j
+
now apply IHp. + Qed. + +
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
y: X
i, j: ys ∋ y
H: r_cover_r p y i = r_cover_r p y j

i = j
+
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
y: X
i, j: ys ∋ y
H: r_cover_r p y i = r_cover_r p y j

i = j
+
X: Type
F: Fam₁ X (ctx X)
y: X
i, j: ∅ₓ ∋ y
H: r_cover_r CNil y i = r_cover_r CNil y j

i = j
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
y: X
i, j: ys ∋ y
H: r_cover_r (CLeft p) y i = r_cover_r (CLeft p) y j
IHp: forall i j : ys ∋ y, r_cover_r p y i = r_cover_r p y j -> i = j
i = j
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
y: X
i, j: ys ▶ₓ x ∋ y
H: r_cover_r (CRight p) y i = +r_cover_r (CRight p) y j
IHp: forall i j : ys ∋ y, r_cover_r p y i = r_cover_r p y j -> i = j
i = j
+
X: Type
F: Fam₁ X (ctx X)
y: X
i, j: ∅ₓ ∋ y
H: r_cover_r CNil y i = r_cover_r CNil y j

i = j
dependent elimination i. +
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
y: X
i, j: ys ∋ y
H: r_cover_r (CLeft p) y i = r_cover_r (CLeft p) y j
IHp: forall i j : ys ∋ y, r_cover_r p y i = r_cover_r p y j -> i = j

i = j
apply noConfusion_inv in H; now apply IHp. +
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
y: X
i, j: ys ▶ₓ x ∋ y
H: r_cover_r (CRight p) y i = +r_cover_r (CRight p) y j
IHp: forall i j : ys ∋ y, r_cover_r p y i = r_cover_r p y j -> i = j

i = j
X: Type
F: Fam₁ X (ctx X)
y1: X
xs, Γ1, zs: ctx X
p: xs ⊎ Γ1 ≡ zs
y: X
v, v0: var y Γ1
H: r_cover_r (CRight p) y (pop v) = +r_cover_r (CRight p) y (pop v0)
IHp: forall i j : Γ1 ∋ y, r_cover_r p y i = r_cover_r p y j -> i = j

pop v = pop v0
+
X: Type
F: Fam₁ X (ctx X)
y1: X
xs, Γ1, zs: ctx X
p: xs ⊎ Γ1 ≡ zs
y: X
v, v0: var y Γ1
H: NoConfusion (r_cover_r (CRight p) y (pop v)) + (r_cover_r (CRight p) y (pop v0))
IHp: forall i j : Γ1 ∋ y, r_cover_r p y i = r_cover_r p y j -> i = j

pop v = pop v0
+
f_equal; now apply IHp. + Qed.

The two embeddings have disjoint images.

+
  
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
a: X
i: xs ∋ a
j: ys ∋ a
H: r_cover_l p a i = r_cover_r p a j

T0
+
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
a: X
i: xs ∋ a
j: ys ∋ a
H: r_cover_l p a i = r_cover_r p a j

T0
+
X: Type
F: Fam₁ X (ctx X)
a: X
i, j: ∅ₓ ∋ a
H: r_cover_l CNil a i = r_cover_r CNil a j

T0
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
a: X
i: xs ▶ₓ x ∋ a
j: ys ∋ a
H: r_cover_l (CLeft p) a i = r_cover_r (CLeft p) a j
IHp: forall (i : xs ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)
T0
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
a: X
i: xs ∋ a
j: ys ▶ₓ x ∋ a
H: r_cover_l (CRight p) a i = +r_cover_r (CRight p) a j
IHp: forall (i : xs ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)
T0
+
X: Type
F: Fam₁ X (ctx X)
a: X
i, j: ∅ₓ ∋ a
H: r_cover_l CNil a i = r_cover_r CNil a j

T0
inversion i. +
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
a: X
i: xs ▶ₓ x ∋ a
j: ys ∋ a
H: r_cover_l (CLeft p) a i = r_cover_r (CLeft p) a j
IHp: forall (i : xs ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
X: Type
F: Fam₁ X (ctx X)
a: X
Γ, ys, zs: ctx X
p: Γ ⊎ ys ≡ zs
j: ys ∋ a
H: r_cover_l (CLeft p) a top = +r_cover_r (CLeft p) a j
IHp: forall (i : Γ ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
X: Type
F: Fam₁ X (ctx X)
y: X
Γ0, ys, zs: ctx X
p: Γ0 ⊎ ys ≡ zs
a: X
v: var a Γ0
j: ys ∋ a
H: r_cover_l (CLeft p) a (pop v) = +r_cover_r (CLeft p) a j
IHp: forall (i : Γ0 ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)
T0
+
X: Type
F: Fam₁ X (ctx X)
a: X
Γ, ys, zs: ctx X
p: Γ ⊎ ys ≡ zs
j: ys ∋ a
H: r_cover_l (CLeft p) a top = +r_cover_r (CLeft p) a j
IHp: forall (i : Γ ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
inversion H. +
X: Type
F: Fam₁ X (ctx X)
y: X
Γ0, ys, zs: ctx X
p: Γ0 ⊎ ys ≡ zs
a: X
v: var a Γ0
j: ys ∋ a
H: r_cover_l (CLeft p) a (pop v) = +r_cover_r (CLeft p) a j
IHp: forall (i : Γ0 ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
X: Type
F: Fam₁ X (ctx X)
y: X
Γ0, ys, zs: ctx X
p: Γ0 ⊎ ys ≡ zs
a: X
v: var a Γ0
j: ys ∋ a
H: r_cover_l p a v = r_cover_r p a j
IHp: forall (i : Γ0 ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
+
exact (IHp v j H). +
X: Type
F: Fam₁ X (ctx X)
x: X
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
a: X
i: xs ∋ a
j: ys ▶ₓ x ∋ a
H: r_cover_l (CRight p) a i = +r_cover_r (CRight p) a j
IHp: forall (i : xs ∋ a) (j : ys ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
X: Type
F: Fam₁ X (ctx X)
a: X
xs, Γ, zs: ctx X
p: xs ⊎ Γ ≡ zs
i: xs ∋ a
H: r_cover_l (CRight p) a i = +r_cover_r (CRight p) a top
IHp: forall (i : xs ∋ a) (j : Γ ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
X: Type
F: Fam₁ X (ctx X)
y: X
xs, Γ0, zs: ctx X
p: xs ⊎ Γ0 ≡ zs
a: X
i: xs ∋ a
v: var a Γ0
H: r_cover_l (CRight p) a i = +r_cover_r (CRight p) a (pop v)
IHp: forall (i : xs ∋ a) (j : Γ0 ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)
T0
+
X: Type
F: Fam₁ X (ctx X)
a: X
xs, Γ, zs: ctx X
p: xs ⊎ Γ ≡ zs
i: xs ∋ a
H: r_cover_l (CRight p) a i = +r_cover_r (CRight p) a top
IHp: forall (i : xs ∋ a) (j : Γ ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
inversion H. +
X: Type
F: Fam₁ X (ctx X)
y: X
xs, Γ0, zs: ctx X
p: xs ⊎ Γ0 ≡ zs
a: X
i: xs ∋ a
v: var a Γ0
H: r_cover_l (CRight p) a i = +r_cover_r (CRight p) a (pop v)
IHp: forall (i : xs ∋ a) (j : Γ0 ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
X: Type
F: Fam₁ X (ctx X)
y: X
xs, Γ0, zs: ctx X
p: xs ⊎ Γ0 ≡ zs
a: X
i: xs ∋ a
v: var a Γ0
H: r_cover_l p a i = r_cover_r p a v
IHp: forall (i : xs ∋ a) (j : Γ0 ∋ a), ¬ (r_cover_l p a i = r_cover_r p a j)

T0
+
exact (IHp i v H). + Qed.

Now we can start proving that the copairing of the two embeddings has non-empty fibers, +ie, we can case split.

+
  Variant cover_view {xs ys zs} (p : xs ⊎ ys ≡ zs) [z] : zs ∋ z -> Type :=
+  | Vcov_l  (i : xs ∋ z) : cover_view p (r_cover_l p _ i)
+  | Vcov_r (j : ys ∋ z) : cover_view p (r_cover_r p _ j)
+  .
+  #[global] Arguments Vcov_l {xs ys zs p z}.
+  #[global] Arguments Vcov_r {xs ys zs p z}.

Indeed!

+
  
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
z: X
i: zs ∋ z

cover_view p i
+
X: Type
F: Fam₁ X (ctx X)
xs, ys, zs: ctx X
p: xs ⊎ ys ≡ zs
z: X
i: zs ∋ z

cover_view p i
+
X: Type
F: Fam₁ X (ctx X)
Γ: ctx X
z: X
IHzs: forall (i : Γ ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ Γ), cover_view p i
xs, ys: ctx X
p: xs ⊎ ys ≡ (Γ ▶ₓ z)

cover_view p top
X: Type
F: Fam₁ X (ctx X)
Γ0: ctx X
y, z: X
v: var z Γ0
IHzs: forall (i : Γ0 ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ Γ0), cover_view p i
xs, ys: ctx X
p: xs ⊎ ys ≡ (Γ0 ▶ₓ y)
cover_view p (pop v)
+
X: Type
F: Fam₁ X (ctx X)
Γ: ctx X
z: X
IHzs: forall (i : Γ ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ Γ), cover_view p i
xs, ys: ctx X
p: xs ⊎ ys ≡ (Γ ▶ₓ z)

cover_view p top
dependent elimination p; [ exact (Vcov_l top) | exact (Vcov_r top) ]. +
X: Type
F: Fam₁ X (ctx X)
Γ0: ctx X
y, z: X
v: var z Γ0
IHzs: forall (i : Γ0 ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ Γ0), cover_view p i
xs, ys: ctx X
p: xs ⊎ ys ≡ (Γ0 ▶ₓ y)

cover_view p (pop v)
X: Type
F: Fam₁ X (ctx X)
zs: ctx X
x, z: X
v: var z zs
IHzs: forall (i : zs ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ zs), cover_view p i
xs0, ys0: ctx X
c: xs0 ⊎ ys0 ≡ zs

cover_view (CLeft c) (pop v)
X: Type
F: Fam₁ X (ctx X)
zs0: ctx X
x0, z: X
v: var z zs0
IHzs: forall (i : zs0 ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ zs0), cover_view p i
xs1, ys1: ctx X
c0: xs1 ⊎ ys1 ≡ zs0
cover_view (CRight c0) (pop v)
+
X: Type
F: Fam₁ X (ctx X)
zs: ctx X
x, z: X
v: var z zs
IHzs: forall (i : zs ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ zs), cover_view p i
xs0, ys0: ctx X
c: xs0 ⊎ ys0 ≡ zs

cover_view (CLeft c) (pop v)
destruct (IHzs v _ _ c); [ exact (Vcov_l (pop i)) | exact (Vcov_r j) ]. +
X: Type
F: Fam₁ X (ctx X)
zs0: ctx X
x0, z: X
v: var z zs0
IHzs: forall (i : zs0 ∋ z) (xs ys : ctx X) + (p : xs ⊎ ys ≡ zs0), cover_view p i
xs1, ys1: ctx X
c0: xs1 ⊎ ys1 ≡ zs0

cover_view (CRight c0) (pop v)
destruct (IHzs v _ _ c0); [ exact (Vcov_l i) | exact (Vcov_r (pop j)) ]. + Qed.

Finishing the instanciation of the abstract interface for ctx X.

+
  #[global] Instance free_context_cat_wkn : context_cat_wkn X (ctx X) :=
+    {| r_cat_l _ _ := r_cover_l cover_cat ;
+       r_cat_r _ _ := r_cover_r cover_cat |}.
+
+  #[global] Program Instance free_context_laws : context_laws X (ctx X).
+  
X: Type
F: Fam₁ X (ctx X)
t: X
i: cvar ∅ₓ t

c_emp_view t i
dependent elimination i. Qed. +
X: Type
F: Fam₁ X (ctx X)
Γ, Δ: ctx X
t: X
i: cvar (ccat Γ Δ) t

c_cat_view Γ Δ t i
+
X: Type
F: Fam₁ X (ctx X)
Γ, Δ: ctx X
t: X
i: Γ ∋ t

c_cat_view Γ Δ t (r_cover_l cover_cat t i)
X: Type
F: Fam₁ X (ctx X)
Γ, Δ: ctx X
t: X
j: Δ ∋ t
c_cat_view Γ Δ t (r_cover_r cover_cat t j)
+
X: Type
F: Fam₁ X (ctx X)
Γ, Δ: ctx X
t: X
j: Δ ∋ t

c_cat_view Γ Δ t (r_cover_r cover_cat t j)
+
now refine (Vcat_r _). + Qed. +
X: Type
F: Fam₁ X (ctx X)
Γ, Δ: ctx X
t: X

injective (r_cover_l cover_cat t)
intros ?? H; now apply r_cover_l_inj in H. Qed. +
X: Type
F: Fam₁ X (ctx X)
Γ, Δ: ctx X
t: X

injective (r_cover_r cover_cat t)
intros ?? H; now apply r_cover_r_inj in H. Qed. +
X: Type
F: Fam₁ X (ctx X)
Γ, Δ: ctx X
t: X
i: cvar Γ t
j: cvar Δ t
H: r_cover_l cover_cat t i = r_cover_r cover_cat t j

T0
now apply r_cover_disj in H. Qed.

Additional utilities.

+
  Definition a_cover {Γ1 Γ2 Γ3 Δ} (p : Γ1 ⊎ Γ2 ≡ Γ3) (u : Γ1 =[F]> Δ) (v : Γ2 =[F]> Δ)
+    : Γ3 =[F]> Δ
+    := fun _ i => match view_cover p i with
+               | Vcov_l i  => u _ i
+               | Vcov_r j => v _ j
+               end .
+  #[global] Arguments a_cover _ _ _ _ _ _ _ _ /.
+
+  
X: Type
F: Fam₁ X (ctx X)
Γ1, Γ2, Γ3, Δ: ctx X
H: Γ1 ⊎ Γ2 ≡ Γ3

Proper + (asgn_eq Γ1 Δ ==> asgn_eq Γ2 Δ ==> asgn_eq Γ3 Δ) + (a_cover H)
+
X: Type
F: Fam₁ X (ctx X)
Γ1, Γ2, Γ3, Δ: ctx X
H: Γ1 ⊎ Γ2 ≡ Γ3

Proper + (asgn_eq Γ1 Δ ==> asgn_eq Γ2 Δ ==> asgn_eq Γ3 Δ) + (a_cover H)
+
X: Type
F: Fam₁ X (ctx X)
Γ1, Γ2, Γ3, Δ: ctx X
H: Γ1 ⊎ Γ2 ≡ Γ3
x, y: Γ1 =[ F ]> Δ
H1: x ≡ₐ y
x0, y0: Γ2 =[ F ]> Δ
H2: x0 ≡ₐ y0
a: X
i: Γ3 ∋ a

match view_cover H i with +| Vcov_l i => x a i +| Vcov_r j => x0 a j +end = +match view_cover H i with +| Vcov_l i => y a i +| Vcov_r j => y0 a j +end
+
destruct (view_cover H i); [ now apply H1 | now apply H2 ]. + Qed. +End with_param. + +#[global] Notation "a ⊎ b ≡ c" := (cover a b c). +#[global] Notation "a ▶ₐ v" := (a_append a v) : asgn_scope. +#[global] Notation "[ u , H , v ]" := (a_cover H u v) : asgn_scope.
+
+
+ diff --git a/docs/Ctx.html b/docs/Ctx.html new file mode 100644 index 0000000..3029310 --- /dev/null +++ b/docs/Ctx.html @@ -0,0 +1,166 @@ + + + + + + +Free context structure + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Free context structure

+ +

Here we instanciate our abstract notion of context structure with the most common example: +lists and DeBruijn indices. More pedantically, this is the free context structure over +a given set X.

+
+

Contexts

+

Contexts are simply lists, with the purely aesthetic choice of representing cons as +coming from the right. Note on paper: we write here "Γ ▶ x" instead of "Γ , x".

+
Inductive ctx (X : Type) : Type :=
+| cnil : ctx X
+| ccon : ctx X -> X -> ctx X.
#[global] Notation "∅ₓ" := (cnil) : ctx_scope.
+#[global] Notation "Γ ▶ₓ x" := (ccon Γ%ctx x) (at level 40, left associativity) : ctx_scope.

We wish to manipulate intrinsically typed terms. We hence need a tightly typed notion of +position in the context: rather than a loose index, var x Γ is a proof of membership +of x to Γ: a well-scoped and well-typed DeBruijn index. See Ex. 5.

+
Inductive var {X} (x : X) : ctx X -> Type :=
+| top {Γ} : var x (Γ ▶ₓ x)
+| pop {Γ y} : var x Γ -> var x (Γ ▶ₓ y).
+Definition cvar {X} Γ x := @var X x Γ.

A couple basic functions: length, concatenation and pointwise function application.

+
Equations c_length {X} (Γ : ctx X) : nat :=
+  c_length ∅ₓ       := Datatypes.O ;
+  c_length (Γ ▶ₓ _) := Datatypes.S (c_length Γ) .
+
+Equations ccat {X} : ctx X -> ctx X -> ctx X :=
+  ccat Γ ∅ₓ       := Γ ;
+  ccat Γ (Δ ▶ₓ x) := ccat Γ Δ ▶ₓ x .
+
+Equations c_map {X Y} : (X -> Y) -> ctx X -> ctx Y :=
+  c_map f ∅ₓ       := cnil ;
+  c_map f (Γ ▶ₓ x) := c_map f Γ ▶ₓ f x .

Implementation of the revelant part of the abstract context interface.

+
#[global] Instance free_context {X} : context X (ctx X) :=
+  {| c_emp := cnil ; c_cat := ccat ; c_var := cvar |}.

Basic theory.

+
X: Type
Γ: ctx X

∅ +▶ Γ = Γ
+
X: Type
Γ: ctx X

∅ +▶ Γ = Γ
induction Γ; eauto; cbn; f_equal; apply IHΓ. Qed. + +
X: Type
Γ: ctx X

Γ +▶ ∅ = Γ
+
X: Type
Γ: ctx X

Γ +▶ ∅ = Γ
reflexivity. Qed. + +
X, Y: Type
f: X -> Y
Γ, Δ: ctx X

c_map f (Γ +▶ Δ) = c_map f Γ +▶ c_map f Δ
+
X, Y: Type
f: X -> Y
Γ, Δ: ctx X

c_map f (Γ +▶ Δ) = c_map f Γ +▶ c_map f Δ
induction Δ; eauto; cbn; f_equal; apply IHΔ. Qed.

A view-based inversion package for variables in mapped contexts.

+
Equations map_has {X Y} {f : X -> Y} (Γ : ctx X) {x} (i : Γ ∋ x) : c_map f Γ ∋ f x :=
+  map_has (Γ ▶ₓ _) top     := top ;
+  map_has (Γ ▶ₓ _) (pop i) := pop (map_has Γ i) .
+#[global] Arguments map_has {X Y f Γ x}.
+
+Variant has_map_view {X Y} {f : X -> Y} {Γ} : forall {y}, c_map f Γ ∋ y -> Type :=
+| HasMapV {x} (i : Γ ∋ x) : has_map_view (map_has i).
+
+
X, Y: Type
f: X -> Y
Γ: ctx X
y: Y
i: c_map f Γ ∋ y

has_map_view i
+
X, Y: Type
f: X -> Y
Γ: ctx X
y: Y
i: c_map f Γ ∋ y

has_map_view i
+
X, Y: Type
f: X -> Y
Γ: ctx X
x: X
IHΓ: forall i : c_map f Γ ∋ f x, has_map_view i

has_map_view top
X, Y: Type
f: X -> Y
Γ: ctx X
x: X
y: Y
v: var y (c_map f Γ)
IHΓ: forall i : c_map f Γ ∋ y, has_map_view i
has_map_view (pop v)
+
X, Y: Type
f: X -> Y
Γ: ctx X
x: X
IHΓ: forall i : c_map f Γ ∋ f x, has_map_view i

has_map_view top
exact (HasMapV top). +
X, Y: Type
f: X -> Y
Γ: ctx X
x: X
y: Y
v: var y (c_map f Γ)
IHΓ: forall i : c_map f Γ ∋ y, has_map_view i

has_map_view (pop v)
destruct (IHΓ v); exact (HasMapV (pop i)). +Qed.

Additional goodies.

+
Definition r_pop {X} {Γ : ctx X} {x} : Γ ⊆ (Γ ▶ₓ x) :=
+  fun _ i => pop i.
+#[global] Arguments r_pop _ _ _ _/.
+
+Equations a_append {X} {Γ Δ : ctx X} {F : Fam₁ X (ctx X)} {a}
+  : Γ =[F]> Δ -> F Δ a -> (Γ ▶ₓ a) =[F]> Δ :=
+  a_append s z _ top     := z ;
+  a_append s z _ (pop i) := s _ i .
+#[global] Notation "[ u ,ₓ x ]" := (a_append u x) (at level 9) : asgn_scope.
+
+
X: Type
Γ, Δ: ctx X
F: Fam₁ X (ctx X)
a: X

Proper (asgn_eq Γ Δ ==> eq ==> asgn_eq (Γ ▶ₓ a) Δ) + a_append
+
X: Type
Γ, Δ: ctx X
F: Fam₁ X (ctx X)
a: X

Proper (asgn_eq Γ Δ ==> eq ==> asgn_eq (Γ ▶ₓ a) Δ) + a_append
+
X: Type
Γ, Δ: ctx X
F: Fam₁ X (ctx X)
a: X
x, y: Γ =[ F ]> Δ
Hu: x ≡ₐ y
x0, y0: F Δ a
Hx: x0 = y0
a0: X
i: Γ ▶ₓ a ∋ a0

([x,ₓ x0])%asgn a0 i = ([y,ₓ y0])%asgn a0 i
+
X: Type
Γ0, Δ: ctx X
F: Fam₁ X (ctx X)
a0: X
x, y: Γ0 =[ F ]> Δ
Hu: x ≡ₐ y
x0, y0: F Δ a0
Hx: x0 = y0

x0 = y0
X: Type
Γ1, Δ: ctx X
F: Fam₁ X (ctx X)
y1: X
x, y: Γ1 =[ F ]> Δ
Hu: x ≡ₐ y
x0, y0: F Δ y1
Hx: x0 = y0
a0: X
v: var a0 Γ1
x a0 v = y a0 v
+
X: Type
Γ0, Δ: ctx X
F: Fam₁ X (ctx X)
a0: X
x, y: Γ0 =[ F ]> Δ
Hu: x ≡ₐ y
x0, y0: F Δ a0
Hx: x0 = y0

x0 = y0
exact Hx. +
X: Type
Γ1, Δ: ctx X
F: Fam₁ X (ctx X)
y1: X
x, y: Γ1 =[ F ]> Δ
Hu: x ≡ₐ y
x0, y0: F Δ y1
Hx: x0 = y0
a0: X
v: var a0 Γ1

x a0 v = y a0 v
now apply Hu. +Qed.

These concrete definition of shifts compute better than their generic counterpart.

+
Definition r_shift1 {X} {Γ Δ : ctx X} {a} (f : Γ ⊆ Δ)
+  : (Γ ▶ₓ a) ⊆ (Δ ▶ₓ a)
+  := [ f ᵣ⊛ r_pop ,ₓ top ].
+
+Definition r_shift2 {X} {Γ Δ : ctx X} {a b} (f : Γ ⊆ Δ)
+  : (Γ ▶ₓ a ▶ₓ b) ⊆ (Δ ▶ₓ a ▶ₓ b)
+  := [ [ f ᵣ⊛ r_pop ᵣ⊛ r_pop ,ₓ pop top ] ,ₓ top ].
+
+Definition r_shift3 {X} {Γ Δ : ctx X} {a b c} (f : Γ ⊆ Δ)
+  : (Γ ▶ₓ a ▶ₓ b ▶ₓ c) ⊆ (Δ ▶ₓ a ▶ₓ b ▶ₓ c)
+  := [ [ [ f ᵣ⊛ r_pop ᵣ⊛ r_pop ᵣ⊛ r_pop ,ₓ pop (pop top) ] ,ₓ pop top ] ,ₓ top ].
+
+
X: Type
Γ, Δ: ctx X
a: X

Proper (asgn_eq Γ Δ ==> asgn_eq (Γ ▶ₓ a) (Δ ▶ₓ a)) + r_shift1
+
X: Type
Γ, Δ: ctx X
a: X

Proper (asgn_eq Γ Δ ==> asgn_eq (Γ ▶ₓ a) (Δ ▶ₓ a)) + r_shift1
+
intros ?? Hu; unfold r_shift1; now rewrite Hu. +Qed. + +
X: Type
Γ, Δ: ctx X
a, b: X

Proper + (asgn_eq Γ Δ ==> asgn_eq (Γ ▶ₓ a ▶ₓ b) (Δ ▶ₓ a ▶ₓ b)) + r_shift2
+
X: Type
Γ, Δ: ctx X
a, b: X

Proper + (asgn_eq Γ Δ ==> asgn_eq (Γ ▶ₓ a ▶ₓ b) (Δ ▶ₓ a ▶ₓ b)) + r_shift2
+
intros ?? Hu; unfold r_shift2; now rewrite Hu. +Qed. + +
X: Type
Γ, Δ: ctx X
a, b, c: X

Proper + (asgn_eq Γ Δ ==> + asgn_eq (Γ ▶ₓ a ▶ₓ b ▶ₓ c) (Δ ▶ₓ a ▶ₓ b ▶ₓ c)) + r_shift3
+
X: Type
Γ, Δ: ctx X
a, b, c: X

Proper + (asgn_eq Γ Δ ==> + asgn_eq (Γ ▶ₓ a ▶ₓ b ▶ₓ c) (Δ ▶ₓ a ▶ₓ b ▶ₓ c)) + r_shift3
+
intros ?? Hu; unfold r_shift3; now rewrite Hu. +Qed. + +
X: Type
Γ: ctx X
a: X

r_shift1 r_id ≡ₐ r_id
+
intros ? v; now repeat (dependent elimination v; auto). +Qed. + +
X: Type
Γ: ctx X
a, b: X

r_shift2 r_id ≡ₐ r_id
+
intros ? v; now repeat (dependent elimination v; auto). +Qed. + +
X: Type
Γ: ctx X
a, b, c: X

r_shift3 r_id ≡ₐ r_id
+
intros ? v; now repeat (dependent elimination v; auto). +Qed. + +
X: Type
Γ1, Γ2, Γ3: ctx X
a: X
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3

r_shift1 (r1 ᵣ⊛ r2) ≡ₐ r_shift1 r1 ᵣ⊛ r_shift1 r2
+
intros ? v; now repeat (dependent elimination v; auto). +Qed. + +
X: Type
Γ1, Γ2, Γ3: ctx X
a, b: X
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3

r_shift2 (r1 ᵣ⊛ r2) ≡ₐ r_shift2 r1 ᵣ⊛ r_shift2 r2
+
intros ? v; now repeat (dependent elimination v; auto). +Qed. + +
X: Type
Γ1, Γ2, Γ3: ctx X
a, b, c: X
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3

r_shift3 (r1 ᵣ⊛ r2) ≡ₐ r_shift3 r1 ᵣ⊛ r_shift3 r2
+
intros ? v; now repeat (dependent elimination v; auto). +Qed.

This is the end for now, but we have not yet instanciated the rest of the abstract +context structure. This is a bit more work, it takes place in another file: +Ctx/Covering.v

+
+
+
+ diff --git a/docs/Delay.html b/docs/Delay.html new file mode 100644 index 0000000..2d370aa --- /dev/null +++ b/docs/Delay.html @@ -0,0 +1,179 @@ + + + + + + +Delay Monad + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Delay Monad

+ +

Instead of defining the delay monad from scratch, we construct it as a special case of +itree, namely ones with an empty signature ∅ₑ (disallowing Vis nodes) and +indexed over the singleton type T1.

+

The delay monad (Def. 9) is formalized as an itree over an empty signature: in the +absence of events, Tau and Ret are the only possible transitions.

+

Relevant definitions can be found:

+ +
Definition delay (X : Type) : Type := itree ∅ₑ (fun _ => X) T1_0.

Embedding delay into itrees over arbitrary signatures.

+
Definition emb_delay {I} {E : event I I} {X i} : delay X -> itree E (X @ i) i :=
+  cofix _emb_delay x :=
+      go (match x.(_observe) with
+         | RetF r => RetF (Fib r)
+         | TauF t => TauF (_emb_delay t)
+         | VisF e k => match e with end
+         end).
+
+#[global] Notation "'RetD' x" := (RetF (x : (fun _ : T1 => _) T1_0)) (at level 40).
+#[global] Notation "'TauD' t" := (TauF (t : itree ∅ₑ (fun _ : T1 => _) T1_0)) (at level 40).

Specialization of the operations to the delay monad. Most of them are a bit cumbersome +since our definition of itree is indexed, but delay should not. As such there +is a bit of a dance around the singleton type T1 which is used as index. Too bad, +since Coq does not have typed conversion we don't get definitional eta-law for the unit +type...

+
Definition ret_delay {X} : X -> delay X := fun x => Ret' x .
+
+Definition tau_delay {X} : delay X -> delay X :=
+  fun t => go (TauF (t : itree ∅ₑ (fun _ : T1 => X) T1_0)) .

Binding a delay computation in the context of an itree.

+
Definition bind_delay {I} {E : event I I} {X Y i}
+  : delay X -> (X -> itree E Y i) -> itree E Y i
+  := fun x f => bind (emb_delay x) (fun _ '(Fib x) => f x) .

Simpler definition of bind when the conclusion is again in delay. +See Not. 4.

+
Definition bind_delay' {X Y}
+  : delay X -> (X -> delay Y) -> delay Y
+  := fun x f => bind x (fun 'T1_0 y => f y).

Functorial action on maps.

+
Definition fmap_delay {X Y} (f : X -> Y) : delay X -> delay Y :=
+  fmap (fun _ => f) T1_0 .

Iteration operator.

+
Definition iter_delay {X Y} : (X -> delay (X + Y)) -> X -> delay Y :=
+  fun f => iter (fun 'T1_0 => f) T1_0 .

Alternative to bind_delay, written from scratch.

+
Definition subst_delay {I} {E : event I I} {X Y i} (f : X -> itree E Y i)
+  : delay X -> itree E Y i
+  := cofix _subst_delay x := go match x.(_observe) with
+                                | RetF r => (f r).(_observe)
+                                | TauF t => TauF (_subst_delay t)
+                                | VisF e k => match e with end
+                                end .
+
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I

Proper + ((RX ==> it_eq RY (i:=i)) ==> + it_eq (fun _ : T1 => RX) (i:=T1_0) ==> + it_eq RY (i:=i)) subst_delay
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I

Proper + ((RX ==> it_eq RY (i:=i)) ==> + it_eq (fun _ : T1 => RX) (i:=T1_0) ==> + it_eq RY (i:=i)) subst_delay
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) (subst_delay y y0)
t1, t2: itree ∅ₑ (fun _ : T1 => X) T1_0
H: it_eq (fun _ : T1 => RX) t1 t2

it_eq_bt E RY R i (subst_delay x t1) + (subst_delay y t2)
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) (subst_delay y y0)
t1, t2: itree ∅ₑ (fun _ : T1 => X) T1_0
H: it_eqF ∅ₑ (fun _ : T1 => RX) + (it_eq (fun _ : T1 => RX)) T1_0 (_observe t1) + (_observe t2)

it_eqF E RY (it_eq_t E RY R) i + match _observe t1 with + | RetF r => _observe (x r) + | TauF t => TauF (subst_delay x t) + | VisF e _ => match e return (itree' E Y i) with + end + end + match _observe t2 with + | RetF r => _observe (y r) + | TauF t => TauF (subst_delay y t) + | VisF e _ => match e return (itree' E Y i) with + end + end
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) (subst_delay y y0)
t2: itree ∅ₑ (fun _ : T1 => X) T1_0
ot1: itree' ∅ₑ (fun _ : T1 => X) T1_0
H: it_eqF ∅ₑ (fun _ : T1 => RX) + (it_eq (fun _ : T1 => RX)) T1_0 ot1 + (_observe t2)

it_eqF E RY (it_eq_t E RY R) i + match ot1 with + | RetF r => _observe (x r) + | TauF t => TauF (subst_delay x t) + | VisF e _ => match e return (itree' E Y i) with + end + end + match _observe t2 with + | RetF r => _observe (y r) + | TauF t => TauF (subst_delay y t) + | VisF e _ => match e return (itree' E Y i) with + end + end
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) (subst_delay y y0)
ot1, ot2: itree' ∅ₑ (fun _ : T1 => X) T1_0
H: it_eqF ∅ₑ (fun _ : T1 => RX) + (it_eq (fun _ : T1 => RX)) T1_0 ot1 ot2

it_eqF E RY (it_eq_t E RY R) i + match ot1 with + | RetF r => _observe (x r) + | TauF t => TauF (subst_delay x t) + | VisF e _ => match e return (itree' E Y i) with + end + end + match ot2 with + | RetF r => _observe (y r) + | TauF t => TauF (subst_delay y t) + | VisF e _ => match e return (itree' E Y i) with + end + end
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) (subst_delay y y0)
r1, r2: (fun _ : T1 => X) T1_0
r_rel: (fun _ : T1 => RX) T1_0 r1 r2

it_eqF E RY (it_eq_t E RY R) i (_observe (x r1)) + (_observe (y r2))
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) + (subst_delay y y0)
t1, t2: itree ∅ₑ (fun _ : T1 => X) T1_0
t_rel: it_eq (fun _ : T1 => RX) t1 t2
it_eqF E RY (it_eq_t E RY R) i + (TauF (subst_delay x t1)) + (TauF (subst_delay y t2))
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) + (subst_delay y y0)
q: e_qry T1_0
k1, k2: forall x : e_rsp q, +itree ∅ₑ (fun _ : T1 => X) (e_nxt x)
k_rel: forall r : e_rsp q, +it_eq (fun _ : T1 => RX) (k1 r) (k2 r)
it_eqF E RY (it_eq_t E RY R) i + match q return (itree' E Y i) with + end match q return (itree' E Y i) with + end
+
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) + (subst_delay y y0)
r1, r2: (fun _ : T1 => X) T1_0
r_rel: (fun _ : T1 => RX) T1_0 r1 r2

it_eqF E RY (it_eq_t E RY R) i + (_observe (x r1)) (_observe (y r2))
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) + (subst_delay y y0)
r1, r2: (fun _ : T1 => X) T1_0
r_rel: (fun _ : T1 => RX) T1_0 r1 r2

it_eqF E RY (gfp (it_eq_map E RY)) i + (_observe (x r1)) (_observe (y r2))
+
specialize (Hf _ _ r_rel); apply it_eq_step in Hf; exact Hf. +
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) + (subst_delay y y0)
t1, t2: itree ∅ₑ (fun _ : T1 => X) T1_0
t_rel: it_eq (fun _ : T1 => RX) t1 t2

it_eqF E RY (it_eq_t E RY R) i + (TauF (subst_delay x t1)) + (TauF (subst_delay y t2))
econstructor; now apply CIH. +
I: Type
E: event I I
X: Type
RX: relation X
Y: psh I
RY: relᵢ Y Y
i: I
x, y: X -> itree E Y i
Hf: (RX ==> it_eq RY (i:=i))%signature x y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall x0 y0 : itree ∅ₑ (fun _ : T1 => X) T1_0, +it_eq (fun _ : T1 => RX) x0 y0 -> +it_eq_t E RY R i (subst_delay x x0) + (subst_delay y y0)
q: e_qry T1_0
k1, k2: forall x : e_rsp q, +itree ∅ₑ (fun _ : T1 => X) (e_nxt x)
k_rel: forall r : e_rsp q, +it_eq (fun _ : T1 => RX) (k1 r) (k2 r)

it_eqF E RY (it_eq_t E RY R) i + match q return (itree' E Y i) with + end match q return (itree' E Y i) with + end
destruct q. +Qed.
+
+
+ diff --git a/docs/DirectSum.html b/docs/DirectSum.html new file mode 100644 index 0000000..ff858d1 --- /dev/null +++ b/docs/DirectSum.html @@ -0,0 +1,136 @@ + + + + + + +Direct sum of context structure + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Direct sum of context structure

+ +

A random calculus you may find in the wild will most likely not fit into the rigid +well-scoped and well-typed format with concrete contexts and DeBruijn indices. Sometimes +this is because the designers have found useful to formalize this calculus with two +contexts, storing two kinds of variables for different use. The usual trick is to change +the set of types to a coproduct and store everything in one big context, eg using +ctx (S + T) instead of ctx S × ctx T. This does work, but it might make some things +more cumbersome.

+

Using our abstraction over context structures, we can readily express the case of two +separate contexts: the direct sum.

+

Let's assume we have two contexts structures.

+
Section with_param.
+  Context {T1 C1 : Type} {CC1 : context T1 C1} {CL1 : context_laws T1 C1}.
+  Context {T2 C2 : Type} {CC2 : context T2 C2} {CL2 : context_laws T2 C2}.

A pair of contexts is just that.

+
  Definition dsum := C1 × C2.

Empty context and concatenation are without suprise.

+
  Definition c_emp2 : dsum := (∅ , ∅) .
+
+  Definition c_cat2 (Γ12 : dsum) (Δ12 : dsum) : dsum
+    := (fst Γ12 +▶ fst Δ12 , snd Γ12 +▶ snd Δ12).

Now the interesting part: variables! The new set of types is either a type from the +first context or from the second: T₁ + T₂. We then compute the set of variables +by case splitting on this coproduct: either a variable from the left or from the right.

+
  Equations c_var2 : dsum -> T1 + T2 -> Type :=
+   c_var2 Γ12 (inl t1) := fst Γ12 ∋ t1 ;
+   c_var2 Γ12 (inr t2) := snd Γ12 ∋ t2 .

This instanciates the relevant part.

+
  #[global] Instance direct_sum_context : context (T1 + T2) dsum :=
+    {| c_emp := c_emp2 ; c_cat := c_cat2 ; c_var := c_var2 |}.

And the laws are straightforward.

+
  
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

context_cat_wkn (T1 + T2) dsum
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

context_cat_wkn (T1 + T2) dsum
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (Γ Δ : dsum) (t : T1 + T2), Γ ∋ t -> Γ +▶ Δ ∋ t
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
forall (Γ Δ : dsum) (t : T1 + T2), Δ ∋ t -> Γ +▶ Δ ∋ t
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (Γ Δ : dsum) (t : T1 + T2), Γ ∋ t -> Γ +▶ Δ ∋ t
intros ?? [ t1 | t2 ] i; cbn; now apply r_cat_l. +
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (Γ Δ : dsum) (t : T1 + T2), Δ ∋ t -> Γ +▶ Δ ∋ t
intros ?? [ t1 | t2 ] i; cbn; now apply r_cat_r. + Defined. + +
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

context_laws (T1 + T2) dsum
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

context_laws (T1 + T2) dsum
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (t : T1 + T2) (i : c_var2 c_emp2 t), +c_emp_view t i
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
forall (Γ Δ : dsum) (t : T1 + T2) + (i : c_var2 (c_cat2 Γ Δ) t), c_cat_view Γ Δ t i
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
forall (Γ Δ : dsum) (t : T1 + T2), +injective + match + t as s + return (c_var2 Γ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i : fst Γ ∋ a => r_cat_l i + | inr b => fun i : snd Γ ∋ b => r_cat_l i + end
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
forall (Γ Δ : dsum) (t : T1 + T2), +injective + match + t as s + return (c_var2 Δ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i : fst Δ ∋ a => r_cat_r i + | inr b => fun i : snd Δ ∋ b => r_cat_r i + end
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
forall (Γ Δ : dsum) (t : T1 + T2) (i : c_var2 Γ t) + (j : c_var2 Δ t), +¬ (match + t as s + return (c_var2 Γ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i0 : fst Γ ∋ a => r_cat_l i0 + | inr b => fun i0 : snd Γ ∋ b => r_cat_l i0 + end i = + match + t as s + return (c_var2 Δ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i0 : fst Δ ∋ a => r_cat_r i0 + | inr b => fun i0 : snd Δ ∋ b => r_cat_r i0 + end j)
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (t : T1 + T2) (i : c_var2 c_emp2 t), +c_emp_view t i
intros [] i; cbn in i; now destruct (c_view_emp i). +
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (Γ Δ : dsum) (t : T1 + T2) + (i : c_var2 (c_cat2 Γ Δ) t), c_cat_view Γ Δ t i
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T1
i: fst Γ ∋ t

c_cat_view Γ Δ (inl t) (r_cat_l i)
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T1
j: fst Δ ∋ t
c_cat_view Γ Δ (inl t) (r_cat_r j)
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T2
i: snd Γ ∋ t
c_cat_view Γ Δ (inr t) (r_cat_l i)
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T2
j: snd Δ ∋ t
c_cat_view Γ Δ (inr t) (r_cat_r j)
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T1
j: fst Δ ∋ t

c_cat_view Γ Δ (inl t) (r_cat_r j)
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T2
i: snd Γ ∋ t
c_cat_view Γ Δ (inr t) (r_cat_l i)
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T2
j: snd Δ ∋ t
c_cat_view Γ Δ (inr t) (r_cat_r j)
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T2
i: snd Γ ∋ t

c_cat_view Γ Δ (inr t) (r_cat_l i)
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T2
j: snd Δ ∋ t
c_cat_view Γ Δ (inr t) (r_cat_r j)
+
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2
Γ, Δ: dsum
t: T2
j: snd Δ ∋ t

c_cat_view Γ Δ (inr t) (r_cat_r j)
+
now refine (Vcat_r _). +
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (Γ Δ : dsum) (t : T1 + T2), +injective + match + t as s + return (c_var2 Γ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i : fst Γ ∋ a => r_cat_l i + | inr b => fun i : snd Γ ∋ b => r_cat_l i + end
intros ?? []; cbn; intros ?? H; now apply (r_cat_l_inj _ _ H). +
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (Γ Δ : dsum) (t : T1 + T2), +injective + match + t as s + return (c_var2 Δ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i : fst Δ ∋ a => r_cat_r i + | inr b => fun i : snd Δ ∋ b => r_cat_r i + end
intros ?? []; cbn; intros ?? H; now apply (r_cat_r_inj _ _ H). +
T1, C1: Type
CC1: context T1 C1
CL1: context_laws T1 C1
T2, C2: Type
CC2: context T2 C2
CL2: context_laws T2 C2

forall (Γ Δ : dsum) (t : T1 + T2) (i : c_var2 Γ t) + (j : c_var2 Δ t), +¬ (match + t as s + return (c_var2 Γ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i0 : fst Γ ∋ a => r_cat_l i0 + | inr b => fun i0 : snd Γ ∋ b => r_cat_l i0 + end i = + match + t as s + return (c_var2 Δ s -> c_var2 (c_cat2 Γ Δ) s) + with + | inl a => fun i0 : fst Δ ∋ a => r_cat_r i0 + | inr b => fun i0 : snd Δ ∋ b => r_cat_r i0 + end j)
intros ?? []; cbn; intros ?? H; now apply (r_cat_disj _ _ H). + Qed. +End with_param.

Let's have a notation for this.

+
#[global] Arguments dsum C1 C2 : clear implicits.
+#[global] Notation "C ⊕ D" := (dsum C D).
+
+
+ diff --git a/docs/Eq.html b/docs/Eq.html new file mode 100644 index 0000000..1aa6f94 --- /dev/null +++ b/docs/Eq.html @@ -0,0 +1,582 @@ + + + + + + +Interaction Trees: (weak) bisimilarity + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Interaction Trees: (weak) bisimilarity

+ +

As is usual with coinductive types in Coq, eq is not the right notion of equivalence. +We define through this file strong and weak bisimilarity of itrees, and their +generalization lifting value relations.

+

These coinductive relations are implemented using Damien Pous's coinduction library. +Indeed, our previous coinductive definitions like itree where implemented using Coq's +native coinductive types, but their manipulation is a bit brittle due to the syntactic +guardedness criterion. For the case of bisimilarity---which is also a coinductive types--- +we have better tools. Indeed bisimilarity is a Prop-valued relation, and since Coq's +Prop universe feature impredicativity, the set of Prop-valued relation enjoy the +structure of a complete lattice. This enables us to derive greatest fixpoints ourselves, +using an off-the-shelf fixpoint construction on complete lattices.

+

The version of coinduction we use constructs greatest fixpoints using the "companion" +construction, enjoying good properties w.r.t. up-to techniques: we will be able to +discharge bisimilarity proof by providing less than a full-blown bisimulation relation. +Since the time of writing, the library has been upgraded to an even more practical +construction based on tower-induction, but we have not yet ported our code to this +upgraded API.

+
+

Strong bisimilarity

+

Strong bisimilarity is very useful as it is the natural notion of extensional +equality for coinductive types. Here we introduce it_eq RR, a slight generalization +where the relation on the leaves of the tree does not need to be equality on the type +of the leaves, but only a proof of the relation RR, which might be heterogeneous. This +might be described as the relational lifting of itree arising from strong bisimilarity.

+

We will write for strong bisimilarity, aka it_eq (eqᵢ _).

+

First, we define a monotone endofunction it_eq_map over indexed relations between +trees. Strong bisimilarity is then defined the greatest fixpoint of it_eq_map RR, +for a fixed value relation RR.

+
Variant it_eqF {I} E
+  {X1 X2} (RX : relᵢ X1 X2) {Y1 Y2} (RR : relᵢ Y1 Y2)
+  (i : I) : itreeF E X1 Y1 i -> itreeF E X2 Y2 i -> Prop :=
+| EqRet {r1 r2} (r_rel : RX i r1 r2)                : it_eqF _ _ _ _ (RetF r1)   (RetF r2)
+| EqTau {t1 t2} (t_rel : RR i t1 t2)                : it_eqF _ _ _ _ (TauF t1)   (TauF t2)
+| EqVis {q k1 k2} (k_rel : forall r, RR _ (k1 r) (k2 r)) : it_eqF _ _ _ _ (VisF q k1) (VisF q k2)
+.
Equations it_eqF_mon {I E X1 X2 RX Y1 Y2}
+  : Proper (leq ==> leq) (@it_eqF I E X1 X2 RX Y1 Y2) :=
+  it_eqF_mon _ _ H1 _ _ _ (EqRet r_rel) := EqRet r_rel ;
+  it_eqF_mon _ _ H1 _ _ _ (EqTau t_rel) := EqTau (H1 _ _ _ t_rel) ;
+  it_eqF_mon _ _ H1 _ _ _ (EqVis k_rel) := EqVis (fun r => H1 _ _ _ (k_rel r)) .
+#[global] Existing Instance it_eqF_mon.
+
+Definition it_eq_map {I} E {X1 X2} RX : mon (relᵢ (@itree I E X1) (@itree I E X2)) := {|
+  body RR i x y := it_eqF E RX RR i (observe x) (observe y) ;
+  Hbody _ _ H _ _ _ r := it_eqF_mon _ _ H _ _ _ r ;
+|}.

Now the definition of the bisimilarity itself as greatest fixed point. See Def. 10.

+
Definition it_eq {I E X1 X2} RX [i] := gfp (@it_eq_map I E X1 X2 RX) i.
+#[global] Notation it_eq_t E RX := (t (it_eq_map E RX)).
+#[global] Notation it_eq_bt E RX := (bt (it_eq_map E RX)).
+#[global] Notation it_eq_T E RX := (T (it_eq_map E RX)).
+#[global] Notation "a ≊ b" := (it_eq (eqᵢ _) a b) (at level 20).
+

Basic properties

+
Definition it_eq' {I E X1 X2} RX [i]
+  := @it_eqF I E X1 X2 RX (itree E X1) (itree E X2) (it_eq RX) i.
+
+Definition it_eq_step {I E X1 X2 RX} : it_eq RX <= @it_eq_map I E X1 X2 RX (it_eq RX)
+  := fun i x y => proj1 (gfp_fp (it_eq_map E RX) i x y) .
+
+Definition it_eq_unstep {I E X1 X2 RX} : @it_eq_map I E X1 X2 RX (it_eq RX) <= it_eq RX
+  := fun i x y => proj2 (gfp_fp (it_eq_map E RX) i x y) .
+
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

Proper (leq ==> leq) (it_eq_bt E RX)
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

Proper (leq ==> leq) (it_eq_bt E RX)
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R1, R2: relᵢ (itree E X1) (itree E X2)
H: R1 <= R2
i: I
x: itree E X1 i
y: itree E X2 i

it_eq_bt E RX R1 i x y <= it_eq_bt E RX R2 i x y
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R1, R2: relᵢ (itree E X1) (itree E X2)
H: R1 <= R2
i: I
x: itree E X1 i
y: itree E X2 i

it_eq_t E RX R1 <= it_eq_t E RX R2
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R1, R2: relᵢ (itree E X1) (itree E X2)
H: R1 <= R2
i: I
x: itree E X1 i
y: itree E X2 i

it_eq_t E RX R2 <= it_eq_t E RX R2
reflexivity. +Qed.

Justifying strong bisimulations up-to reflexivity, symmetry, and transitivity.

+
Section it_eq_facts.
+  Context {I} {E : event I I} {X : psh I} {RX : relᵢ X X}.

Reversal, symmetry.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
Y1, Y2: psh I
RR: relᵢ Y1 Y2

revᵢ (it_eqF E RX RR) <= it_eqF E RX (revᵢ RR)
+
intros ? ? ? p; cbn in *; destruct p; try symmetry in r_rel; auto. + Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX

converseᵢ <= it_eq_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX

converseᵢ <= it_eq_t E RX
apply leq_t; repeat intro; now apply it_eqF_sym. Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
RR: relᵢ (itree E X) (itree E X)

Symmetricᵢ (it_eq_t E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
RR: relᵢ (itree E X) (itree E X)

Symmetricᵢ (it_eq_t E RX RR)
apply build_symmetric, (ft_t it_eq_up2sym RR). Qed.

Reflexivity.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
Y: psh I

eqᵢ (itreeF E X Y) <= it_eqF E RX (eqᵢ Y)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
Y: psh I

eqᵢ (itreeF E X Y) <= it_eqF E RX (eqᵢ Y)
intros ? [] ? <-; auto. Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX

const (eqᵢ (itree E X)) <= it_eq_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX

const (eqᵢ (itree E X)) <= it_eq_t E RX
apply leq_t; repeat intro; now apply (it_eqF_rfl), (f_equal observe). Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
RR: relᵢ (itree E X) (itree E X)

Reflexiveᵢ (it_eq_t E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
RR: relᵢ (itree E X) (itree E X)

Reflexiveᵢ (it_eq_t E RX RR)
apply build_reflexive, (ft_t it_eq_up2rfl RR). Qed.

Concatenation, transitivity.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
Y1, Y2, Y3: psh I
R1: relᵢ Y1 Y2
R2: relᵢ Y2 Y3

(it_eqF E RX R1 ⨟ it_eqF E RX R2) <= +it_eqF E RX (R1 ⨟ R2)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
Y1, Y2, Y3: psh I
R1: relᵢ Y1 Y2
R2: relᵢ Y2 Y3

(it_eqF E RX R1 ⨟ it_eqF E RX R2) <= +it_eqF E RX (R1 ⨟ R2)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
Y1, Y2, Y3: psh I
R1: relᵢ Y1 Y2
R2: relᵢ Y2 Y3
a: I
a0: itreeF E X Y1 a
a1: itreeF E X Y3 a
x: itreeF E X Y2 a
u: it_eqF E RX R1 a a0 x
v: it_eqF E RX R2 a x a1

it_eqF E RX (R1 ⨟ R2) a a0 a1
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
Y1, Y2, Y3: psh I
R1: relᵢ Y1 Y2
R2: relᵢ Y2 Y3
a: I
r3, r1, r2: X a
r_rel: RX a r1 r2
r_rel0: RX a r2 r3

it_eqF E RX (R1 ⨟ R2) a (RetF r1) (RetF r3)
+
econstructor; transitivity r2; auto. + Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

squareᵢ <= it_eq_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

squareᵢ <= it_eq_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
a: relᵢ (itree E X) (itree E X)
a0: I
a1, a2, x: itree E X a0
H: it_eqF E RX a a0 (observe a1) (observe x) /\ +it_eqF E RX a a0 (observe x) (observe a2)

it_eqF E RX (a ⨟ a) a0 (observe a1) (observe a2)
+
apply it_eqF_tra; eauto. + Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
RR: relᵢ (itree E X) (itree E X)

Transitiveᵢ (it_eq_t E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
RR: relᵢ (itree E X) (itree E X)

Transitiveᵢ (it_eq_t E RX RR)
apply build_transitive, (ft_t it_eq_up2tra RR). Qed.

We can now package the previous properties as equivalences.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

Equivalenceᵢ (it_eq_t E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

Equivalenceᵢ (it_eq_t E RX RR)
econstructor; typeclasses eauto. Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

Equivalenceᵢ (it_eq_bt E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

Equivalenceᵢ (it_eq_bt E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

eqᵢ (itree E X) <= it_eq_bt E RX RR
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)
converseᵢ (it_eq_bt E RX RR) <= it_eq_bt E RX RR
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)
squareᵢ (it_eq_bt E RX RR) <= it_eq_bt E RX RR
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

eqᵢ (itree E X) <= it_eq_bt E RX RR
apply (fbt_bt it_eq_up2rfl). +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

converseᵢ (it_eq_bt E RX RR) <= it_eq_bt E RX RR
apply (fbt_bt it_eq_up2sym). +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
RR: relᵢ (itree E X) (itree E X)

squareᵢ (it_eq_bt E RX RR) <= it_eq_bt E RX RR
apply (fbt_bt it_eq_up2tra). + Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
RR: relᵢ (itree E X) (itree E X)

Subrelationᵢ (it_eq RX) (it_eq_bt E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
RR: relᵢ (itree E X) (itree E X)

Subrelationᵢ (it_eq RX) (it_eq_bt E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
RR: relᵢ (itree E X) (itree E X)
i: I
x, y: itree E X i
r: it_eq RX x y

it_eq_bt E RX RR i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
RR: relᵢ (itree E X) (itree E X)
i: I
x, y: itree E X i
r: it_eq_map E RX (gfp (it_eq_map E RX)) i x y

it_eq_bt E RX RR i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
RR: relᵢ (itree E X) (itree E X)
i: I
x, y: itree E X i
r: it_eqF E RX (gfp (it_eq_map E RX)) i (observe x) + (observe y)

it_eqF E RX (it_eq_t E RX RR) i (observe x) + (observe y)
+
I: Type
E: event I I
X: psh I
RR: relᵢ (itree E X) (itree E X)
i: I
RX: relᵢ X X
t1, t2: itree E X i
t_rel: gfp (it_eq_map E RX) i t1 t2
x0: itree E X i

it_eqF E RX (it_eq_t E RX RR) i (TauF t1) (TauF t2)
I: Type
E: event I I
X: psh I
RR: relᵢ (itree E X) (itree E X)
i: I
RX: relᵢ X X
q: e_qry i
k1, k2: forall x : e_rsp q, itree E X (e_nxt x)
k_rel: forall r : e_rsp q, +gfp (it_eq_map E RX) (e_nxt r) (k1 r) (k2 r)
x0: itree E X i
it_eqF E RX (it_eq_t E RX RR) i + (VisF q k1) (VisF q k2)
+
I: Type
E: event I I
X: psh I
RR: relᵢ (itree E X) (itree E X)
i: I
RX: relᵢ X X
t1, t2: itree E X i
t_rel: gfp (it_eq_map E RX) i t1 t2
x0: itree E X i

it_eqF E RX (it_eq_t E RX RR) i (TauF t1) (TauF t2)
econstructor; apply (gfp_t (it_eq_map E RX)); auto. +
I: Type
E: event I I
X: psh I
RR: relᵢ (itree E X) (itree E X)
i: I
RX: relᵢ X X
q: e_qry i
k1, k2: forall x : e_rsp q, itree E X (e_nxt x)
k_rel: forall r : e_rsp q, +gfp (it_eq_map E RX) (e_nxt r) (k1 r) (k2 r)
x0: itree E X i

it_eqF E RX (it_eq_t E RX RR) i (VisF q k1) + (VisF q k2)
econstructor; intro r; apply (gfp_t (it_eq_map E RX)); auto. + Qed. + +End it_eq_facts.
+
+
+

Weak bisimilarity

+

Similarly to strong bisimilarity, we define weak bisimilarity as the greatest fixpoint +of a monotone endofunction. A characteristic of weak bisimilarity is that it can +"skip over" a finite number of Tau nodes on either side. As such, the endofunction +will allow "eating" a number of Tau nodes before a synchronization step.

+

Note that itree encodes deterministic LTSs, hence we do not need to worry about +allowing to strip off Tau nodes after the synchronization as well.

+

We will start by defining an inductive "eating" relation, such that intuitively +it_eat X Y := ∃ n, X = Tau^n(Y).

+
Section it_eat.
+  Context {I : Type} {E : event I I} {R : psh I}.
+
+  Inductive it_eat i : itree' E R i -> itree' E R i -> Prop :=
+  | EatRefl {t} : it_eat i t t
+  | EatStep {t1 t2} : it_eat _ (observe t1) t2 -> it_eat i (TauF t1) t2
+  .

Let's prove some easy properties.

+
  
I: Type
E: event I I
R: psh I

Transitiveᵢ it_eat
+
I: Type
E: event I I
R: psh I

Transitiveᵢ it_eat
+
intros i x y z r1 r2; dependent induction r1; auto. + Defined. + + Equations eat_cmp : (revᵢ it_eat ⨟ it_eat) <= (it_eat ∨ᵢ revᵢ it_eat) := + eat_cmp i' x' y' (ex_intro _ z' (conj p' q')) := _eat_cmp p' q' + where _eat_cmp {i x y z} + : it_eat i x y -> it_eat i x z -> (it_eat i y z \/ it_eat i z y) := + _eat_cmp (EatRefl) q := or_introl q ; + _eat_cmp p (EatRefl) := or_intror p ; + _eat_cmp (EatStep p) (EatStep q) := _eat_cmp p q . + + Definition it_eat' : relᵢ (itree E R) (itree E R) := + fun i u v => it_eat i u.(_observe) v.(_observe). + +
I: Type
E: event I I
R: psh I
i: I
x, y: itree E R i
H: it_eat i (TauF x) (TauF y)

it_eat i (_observe x) (_observe y)
+
I: Type
E: event I I
R: psh I
i: I
x, y: itree E R i
H: it_eat i (TauF x) (TauF y)

it_eat i (_observe x) (_observe y)
+
I: Type
E: event I I
R: psh I
i: I
x, y: itree E R i
H: it_eat i (observe x) (TauF y)
IHit_eat: forall y0 x0 : itree E R i, +observe x = TauF x0 -> +TauF y = TauF y0 -> +it_eat i (_observe x0) (_observe y0)

it_eat i (_observe x) (_observe y)
+
unfold observe in H; destruct x.(_observe) eqn:Hx; try inversion H; eauto. + Defined. +End it_eat.

Now we are ready to define the monotone endofunction on indexed relations for +weak bisimilarity.

+
Section wbisim.
+  Context {I : Type} (E : event I I) {X1 X2 : psh I} (RX : relᵢ X1 X2).
+
+  Variant it_wbisimF RR i (t1 : itree' E X1 i) (t2 : itree' E X2 i) : Prop :=
+    | WBisim {x1 x2}
+        (r1 : it_eat i t1 x1)
+        (r2 : it_eat i t2 x2)
+        (rr : it_eqF E RX RR i x1 x2).
  Definition it_wbisim_map : mon (relᵢ (itree E X1) (itree E X2)) :=
+    {|
+      body RR i x y := it_wbisimF RR i (observe x) (observe y) ;
+      Hbody _ _ H _ _ _ '(WBisim r1 r2 rr) := WBisim r1 r2 (it_eqF_mon _ _ H _ _ _ rr) ;
+    |}.

And this is it, we can define heterogeneous weak bisimilarity by it_wbisim RR for some +value relation RR. See Def. 10.

+
  Definition it_wbisim := gfp it_wbisim_map.
+  Definition it_wbisim' := it_wbisimF it_wbisim.
+End wbisim.
#[global] Notation "a ≈ b" := (it_wbisim (eqᵢ _) _ a b) (at level 20).
+

Properties

+
Definition it_wbisim_step {I E X1 X2 RX} :
+  it_wbisim RX <= @it_wbisim_map I E X1 X2 RX (it_wbisim RX) :=
+  fun i x y => proj1 (gfp_fp (it_wbisim_map E RX) i x y) .
+
+Definition it_wbisim_unstep {I E X1 X2 RX} :
+  @it_wbisim_map I E X1 X2 RX (it_wbisim RX) <= it_wbisim RX :=
+  fun i x y => proj2 (gfp_fp (it_wbisim_map E RX) i x y) .

Weak bisimilarity up to synchronization.

+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

it_eq_map E RX <= it_wbisim_t E RX
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

it_eq_map E RX <= it_wbisim_t E RX
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x: itree E X1 i
y: itree E X2 i
H: (it_eq_map E RX ° it_wbisim_map E RX) R i x y

bT (it_wbisim_map E RX) (it_eq_map E RX) R i x y
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x0, t1: itree E X1 i
t2: itree E X2 i
t_rel: it_wbisimF E RX R i (observe t1) (observe t2)

it_wbisim_T E RX (it_eq_map E RX) R i t1 t2
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x0: itree E X1 i
y: itree E X2 i
q: e_qry i
k1: forall x : e_rsp q, itree E X1 (e_nxt x)
k2: forall x : e_rsp q, itree E X2 (e_nxt x)
k_rel: forall r : e_rsp q, +it_wbisimF E RX R (e_nxt r) + (observe (k1 r)) (observe (k2 r))
forall r : e_rsp q, +it_wbisim_T E RX (it_eq_map E RX) R + (e_nxt r) (k1 r) (k2 r)
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x0, t1: itree E X1 i
t2: itree E X2 i
t_rel: it_wbisimF E RX R i (observe t1) (observe t2)

it_wbisim_T E RX (it_eq_map E RX) R i t1 t2
apply (b_T (it_wbisim_map E RX)), t_rel. +
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x0: itree E X1 i
y: itree E X2 i
q: e_qry i
k1: forall x : e_rsp q, itree E X1 (e_nxt x)
k2: forall x : e_rsp q, itree E X2 (e_nxt x)
k_rel: forall r : e_rsp q, +it_wbisimF E RX R (e_nxt r) + (observe (k1 r)) (observe (k2 r))

forall r : e_rsp q, +it_wbisim_T E RX (it_eq_map E RX) R (e_nxt r) (k1 r) + (k2 r)
intro r; apply (b_T (it_wbisim_map E RX)), k_rel. +Qed. + +Section wbisim_facts_het. + Context {I : Type} {E : event I I} {X1 X2 : psh I} {RX : relᵢ X1 X2}.

Transitivity will be quite more involved to prove than for strong bisimilarity. In order +to prove it, we will need quite a bit of lemmata for moving synchronization points around.

+

First a helper for go/_observe ("in"/"out") maps of the final coalgebra.

+
  
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
i: I
x: itree E X1 i
y: itree E X2 i

it_wbisim RX i x y -> +it_wbisim RX i {| _observe := _observe x |} + {| _observe := _observe y |}
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
i: I
x: itree E X1 i
y: itree E X2 i

it_wbisim RX i x y -> +it_wbisim RX i {| _observe := _observe x |} + {| _observe := _observe y |}
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
i: I
x: itree E X1 i
y: itree E X2 i
H: it_wbisim RX i x y

it_wbisim RX i {| _observe := _observe x |} + {| _observe := _observe y |}
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
i: I
x: itree E X1 i
y: itree E X2 i
H: it_wbisim_map E RX (it_wbisim RX) i x y

it_wbisim RX i {| _observe := _observe x |} + {| _observe := _observe y |}
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
i: I
x: itree E X1 i
y: itree E X2 i
H: it_wbisim_map E RX (it_wbisim RX) i x y

it_wbisim_map E RX (it_wbisim RX) i + {| _observe := _observe x |} + {| _observe := _observe y |}
+
exact H. + Qed.

Strong bisimilarity implies weak bisimilarity.

+
  
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

it_eq RX <= it_wbisim RX
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

it_eq RX <= it_wbisim RX
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

forall (a : I) (a0 : itree E X1 a) (a1 : itree E X2 a), +Basics.impl (it_eq RX a0 a1) + (gfp (it_wbisim_map E RX) a a0 a1)
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2

forall (a : I) (a0 : itree E X1 a) (a1 : itree E X2 a), +it_eq RX a0 a1 -> gfp (it_wbisim_map E RX) a a0 a1
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
CIH: forall (a : I) (a0 : itree E X1 a) (a1 : itree E X2 a), +it_eq RX a0 a1 -> it_wbisim_t E RX R a a0 a1
i: I
x: itree E X1 i
y: itree E X2 i
H: it_eq RX x y

it_wbisim_bt E RX R i x y
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
CIH: forall (a : I) (a0 : itree E X1 a) (a1 : itree E X2 a), +it_eq RX a0 a1 -> it_wbisim_t E RX R a a0 a1
i: I
x: itree E X1 i
y: itree E X2 i
H: it_eqF E RX (it_eq RX) i (observe x) (observe y)

it_wbisimF E RX (it_wbisim_t E RX R) i (observe x) + (observe y)
+
dependent destruction H; simpl_depind; eauto. + Qed.

Adding a Tau left or right.

+
  
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x: itree' E X1 i
y: itree E X2 i

it_wbisimF E RX R i x (observe y) -> +it_wbisimF E RX R i x (TauF y)
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x: itree' E X1 i
y: itree E X2 i

it_wbisimF E RX R i x (observe y) -> +it_wbisimF E RX R i x (TauF y)
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x: itree' E X1 i
y: itree E X2 i
x1: itree' E X1 i
x2: itree' E X2 i
r1: it_eat i x x1
r2: it_eat i (observe y) x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX R i x (TauF y)
exact (WBisim r1 (EatStep r2) rr). + Qed. + +
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x: itree E X1 i
y: itree' E X2 i

it_wbisimF E RX R i (observe x) y -> +it_wbisimF E RX R i (TauF x) y
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x: itree E X1 i
y: itree' E X2 i

it_wbisimF E RX R i (observe x) y -> +it_wbisimF E RX R i (TauF x) y
+
I: Type
E: event I I
X1, X2: psh I
RX: relᵢ X1 X2
R: relᵢ (itree E X1) (itree E X2)
i: I
x: itree E X1 i
y: itree' E X2 i
x1: itree' E X1 i
x2: itree' E X2 i
r1: it_eat i (observe x) x1
r2: it_eat i y x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX R i (TauF x) y
exact (WBisim (EatStep r1) r2 rr). + Qed.

Removing a Tau left or right.

+
  Equations wbisim_step_l {i x y} :
+    it_wbisim' E RX i x (TauF y) ->
+    it_wbisim' E RX i x (observe y)
+    :=
+    wbisim_step_l (WBisim p (EatRefl) (EqTau r))
+      with it_wbisim_step _ _ _ r :=
+      { | WBisim w1 w2 s := WBisim (eat_trans _ _ _ _ p (EatStep w1)) w2 s } ;
+    wbisim_step_l (WBisim p (EatStep q) v) := WBisim p q v.
+
+  Equations wbisim_step_r {i x y} :
+    it_wbisim' E RX i (TauF x) y ->
+    it_wbisim' E RX i (observe x) y
+    :=
+    wbisim_step_r (WBisim (EatRefl) q (EqTau r))
+      with it_wbisim_step _ _ _ r :=
+      { | WBisim w1 w2 s := WBisim w1 (eat_trans _ _ _ _ q (EatStep w2)) s } ;
+    wbisim_step_r (WBisim (EatStep p) q v) := WBisim p q v.

Pulling a Tau synchronization point up.

+
  Equations wbisim_tau_up_r {i x y z}
+    (u : it_eat i x (TauF y))
+    (v : it_eqF E RX (it_wbisim RX) i (TauF y) z) :
+    it_eqF E RX (it_wbisim RX) i x z
+    :=
+    wbisim_tau_up_r (EatRefl)   q         := q ;
+    wbisim_tau_up_r (EatStep p) (EqTau q) with it_wbisim_step _ _ _ q := {
+      | WBisim w1 w2 s :=
+          EqTau (it_wbisim_unstep _ _ _ (WBisim (eat_trans _ _ _ _ p (EatStep w1)) w2 s))
+      }.
+
+  Equations wbisim_tau_up_l {i x y z}
+    (u : it_eqF E RX (it_wbisim RX) i x (TauF y))
+    (v : it_eat i z (TauF y)) :
+    it_eqF E RX (it_wbisim RX) i x z
+    :=
+    wbisim_tau_up_l p         (EatRefl)   := p ;
+    wbisim_tau_up_l (EqTau p) (EatStep q) with it_wbisim_step _ _ _ p := {
+      | WBisim w1 w2 s :=
+          EqTau (it_wbisim_unstep _ _ _ (WBisim w1 (eat_trans _ _ _ _ q (EatStep w2)) s))
+      }.

Pushing a Ret or Vis synchronization down.

+
  Equations wbisim_ret_down_l {i x y r} :
+    it_wbisim' E RX i x y ->
+    it_eat i y (RetF r) ->
+    (it_eat ⨟ it_eqF E RX (it_wbisim RX)) i x (RetF r)
+    :=
+    wbisim_ret_down_l (WBisim p (EatRefl) w) (EatRefl)   := p ⨟⨟ w ;
+    wbisim_ret_down_l w                      (EatStep q) := wbisim_ret_down_l
+                                                              (wbisim_step_l w) q.
+
+  Equations wbisim_ret_down_r {i x y r} :
+    it_eat i x (RetF r) ->
+    it_wbisim' E RX i x y ->
+    (it_eqF E RX (it_wbisim RX) ⨟ revᵢ it_eat) i (RetF r) y
+    :=
+    wbisim_ret_down_r (EatRefl)   (WBisim (EatRefl) q w) := w ⨟⨟ q ;
+    wbisim_ret_down_r (EatStep p) w                      := wbisim_ret_down_r p
+                                                              (wbisim_step_r w).
+
+  Equations wbisim_vis_down_l {i x y e k} :
+    it_wbisim' E RX i x y ->
+    it_eat i y (VisF e k) ->
+    (it_eat ⨟ it_eqF E RX (it_wbisim RX)) i x (VisF e k)
+    :=
+    wbisim_vis_down_l (WBisim p (EatRefl) w) (EatRefl)   := p ⨟⨟ w ;
+    wbisim_vis_down_l w                      (EatStep q) := wbisim_vis_down_l
+                                                              (wbisim_step_l w) q.
+
+  Equations wbisim_vis_down_r {i x y e k} :
+    it_eat i x (VisF e k) ->
+    it_wbisim' E RX i x y ->
+    (it_eqF E RX (it_wbisim RX) ⨟ revᵢ it_eat) i (VisF e k) y
+    :=
+    wbisim_vis_down_r (EatRefl)   (WBisim (EatRefl) q w) := w ⨟⨟ q ;
+    wbisim_vis_down_r (EatStep p) w                      := wbisim_vis_down_r p
+                                                              (wbisim_step_r w) .
+End wbisim_facts_het.

We are now ready to prove the useful properties.

+
Section wbisim_facts_hom.
+  Context {I : Type} {E : event I I} {X : psh I} {RX : relᵢ X X}.

Registering that strong bisimilarity is a subrelation.

+
  #[global] Instance it_eq_wbisim_subrel :
+    Subrelationᵢ (it_eq (E:=E) RX) (it_wbisim (E:=E) RX)
+    := it_eq_wbisim.

Reflexivity.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX

const (eqᵢ (itree E X)) <= it_wbisim_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX

const (eqᵢ (itree E X)) <= it_wbisim_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX

const (eqᵢ (itree E X)) ° it_wbisim_map E RX <= +it_wbisim_map E RX ° const (eqᵢ (itree E X))
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
a: relᵢ (itree E X) (itree E X)
a0: I
a1, a2: itree E X a0
H: (const (eqᵢ (itree E X)) ° it_wbisim_map E RX) a + a0 a1 a2

(it_wbisim_map E RX ° const (eqᵢ (itree E X))) a a0 a1 + a2
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
a: relᵢ (itree E X) (itree E X)
a0: I
a1, a2: itree E X a0
H: (const (eqᵢ (itree E X)) ° it_wbisim_map E RX) a + a0 a1 a2

(it_wbisim_map E RX ° const (eqᵢ (itree E X))) a a0 a2 + a2
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
a: relᵢ (itree E X) (itree E X)
a0: I
a1, a2: itree E X a0
H: (const (eqᵢ (itree E X)) ° it_wbisim_map E RX) a + a0 a1 a2

it_eqF E RX (const (eqᵢ (itree E X)) a) a0 + (observe a2) (observe a2)
+
now apply it_eqF_rfl. + Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
RR: relᵢ (itree E X) (itree E X)

Reflexiveᵢ (it_wbisim_t E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Reflexiveᵢ0: Reflexiveᵢ RX
RR: relᵢ (itree E X) (itree E X)

Reflexiveᵢ (it_wbisim_t E RX RR)
apply build_reflexive, (ft_t it_wbisim_up2rfl RR). Qed.

Symmetry.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX

converseᵢ <= it_wbisim_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX

converseᵢ <= it_wbisim_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
a: relᵢ (itree E X) (itree E X)
a0: I
a1, a2: itree E X a0
x1, x2: itree' E X a0
r1: it_eat a0 (observe a2) x1
r2: it_eat a0 (observe a1) x2
rr: it_eqF E RX a a0 x1 x2

(it_wbisim_map E RX ° converseᵢ) a a0 a1 a2
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
a: relᵢ (itree E X) (itree E X)
a0: I
a1, a2: itree E X a0
x1, x2: itree' E X a0
r1: it_eat a0 (observe a2) x1
r2: it_eat a0 (observe a1) x2
rr: it_eqF E RX a a0 x1 x2

it_eqF E RX (converseᵢ a) a0 x2 x1
+
now apply it_eqF_sym. + Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
RR: relᵢ (itree E X) (itree E X)

Symmetricᵢ (it_wbisim_t E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
RR: relᵢ (itree E X) (itree E X)

Symmetricᵢ (it_wbisim_t E RX RR)
apply build_symmetric, (ft_t it_wbisim_up2sym RR). Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
RR: relᵢ (itree E X) (itree E X)

Symmetricᵢ (it_wbisim_bt E RX RR)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Symmetricᵢ0: Symmetricᵢ RX
RR: relᵢ (itree E X) (itree E X)

Symmetricᵢ (it_wbisim_bt E RX RR)
apply build_symmetric, (fbt_bt it_wbisim_up2sym RR). Qed.

Concatenation, transitivity.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

(it_wbisim' E RX ⨟ it_wbisim' E RX) <= +it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

(it_wbisim' E RX ⨟ it_wbisim' E RX) <= +it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, z, x1, x2: itree' E X i
u1: it_eat i x x1
u2: it_eat i z x2
uS: it_eqF E RX (it_wbisim RX) i x1 x2
y1, y2: itree' E X i
v1: it_eat i z y1
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: it_eat i x2 y1

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i x2 y1
it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: it_eat i x2 y1

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
r: X i
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (RetF r) y2
w: it_eat i x2 (RetF r)

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
t: itree E X i
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (TauF t) y2
w: it_eat i x2 (TauF t)
it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
q: e_qry i
k: forall r : e_rsp q, itree E X (e_nxt r)
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (VisF q k) y2
w: it_eat i x2 (VisF q k)
it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
r: X i
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (RetF r) y2
w: it_eat i x2 (RetF r)

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
r: X i
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (RetF r) y2
z: itree' E X i
w1: it_eat i x z
ww: it_eqF E RX (it_wbisim RX) i z (RetF r)

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
r, r2: X i
v2: it_eat i y (RetF r2)
r_rel: RX i r r2
r1: X i
w1: it_eat i x (RetF r1)
r_rel0: RX i r1 r

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
refine (WBisim w1 v2 (EqRet _)); now transitivity r. +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
t: itree E X i
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (TauF t) y2
w: it_eat i x2 (TauF t)

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
exact (WBisim u1 v2 (it_eqF_tra _ _ _ (uS ⨟⨟ wbisim_tau_up_r w vS))). +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
q: e_qry i
k: forall r : e_rsp q, itree E X (e_nxt r)
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (VisF q k) y2
w: it_eat i x2 (VisF q k)

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
q: e_qry i
k: forall r : e_rsp q, itree E X (e_nxt r)
y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i (VisF q k) y2
z: itree' E X i
w1: it_eat i x z
ww: it_eqF E RX (it_wbisim RX) i z (VisF q k)

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
q: e_qry i
k, k2: forall x : e_rsp q, itree E X (e_nxt x)
v2: it_eat i y (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim RX (e_nxt r) (k r) (k2 r)
k1: forall x : e_rsp q, itree E X (e_nxt x)
w1: it_eat i x (VisF q k1)
k_rel0: forall r : e_rsp q, +it_wbisim RX (e_nxt r) (k1 r) (k r)

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
exact (WBisim w1 v2 (EqVis (fun r => k_rel0 r ⨟⨟ k_rel r))). +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1, x2: itree' E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 x2
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i x2 y1

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
r: X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (RetF r)
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i (RetF r) y1

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
t: itree E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (TauF t)
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i (TauF t) y1
it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
q: e_qry i
k: forall r : e_rsp q, itree E X (e_nxt r)
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (VisF q k)
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i (VisF q k) y1
it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
r: X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (RetF r)
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i (RetF r) y1

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
r: X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (RetF r)
y1, y2, z: itree' E X i
ww: it_eqF E RX (it_wbisim RX) i (RetF r) z
w1: revᵢ it_eat i z y

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y: itree' E X i
r1, r: X i
u1: it_eat i x (RetF r1)
r_rel: RX i r1 r
y1, y2: itree' E X i
r2: X i
r_rel0: RX i r r2
w1: revᵢ it_eat i (RetF r2) y

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
refine (WBisim u1 w1 (EqRet _)); now transitivity r. +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
t: itree E X i
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (TauF t)
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i (TauF t) y1

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
exact (WBisim u1 v2 (it_eqF_tra _ _ _ (wbisim_tau_up_l uS w ⨟⨟ vS))). +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
q: e_qry i
k: forall r : e_rsp q, itree E X (e_nxt r)
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (VisF q k)
y1, y2: itree' E X i
v2: it_eat i y y2
vS: it_eqF E RX (it_wbisim RX) i y1 y2
w: revᵢ it_eat i (VisF q k) y1

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y, x1: itree' E X i
q: e_qry i
k: forall r : e_rsp q, itree E X (e_nxt r)
u1: it_eat i x x1
uS: it_eqF E RX (it_wbisim RX) i x1 (VisF q k)
y1, y2, z: itree' E X i
ww: it_eqF E RX (it_wbisim RX) i (VisF q k) z
w1: revᵢ it_eat i z y

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
i: I
x, y: itree' E X i
q: e_qry i
k1, k: forall r : e_rsp q, itree E X (e_nxt r)
u1: it_eat i x (VisF q k1)
k_rel: forall r : e_rsp q, +it_wbisim RX (e_nxt r) (k1 r) (k r)
y1, y2: itree' E X i
k2: forall x : e_rsp q, itree E X (e_nxt x)
k_rel0: forall r : e_rsp q, +it_wbisim RX (e_nxt r) (k r) (k2 r)
w1: revᵢ it_eat i (VisF q k2) y

it_wbisimF E RX (it_wbisim RX ⨟ it_wbisim RX) i x y
+
exact (WBisim u1 w1 (EqVis (fun r => k_rel r ⨟⨟ k_rel0 r))). + Qed. + +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

Transitiveᵢ (it_wbisim RX)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

Transitiveᵢ (it_wbisim RX)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
a: I
a0, a1, x: itree E X a
u: it_wbisim RX a a0 x
v: it_wbisim RX a x a1

it_wbisim_bt E RX (squareᵢ (it_wbisim RX)) a a0 a1
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
a: I
a0, a1, x: itree E X a
u: it_wbisim RX a a0 x
v: it_wbisim RX a x a1

?x <= it_wbisim_t E RX (squareᵢ (it_wbisim RX))
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
a: I
a0, a1, x: itree E X a
u: it_wbisim RX a a0 x
v: it_wbisim RX a x a1
it_wbisim_map E RX ?x a a0 a1
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
a: I
a0, a1, x: itree E X a
u: it_wbisim RX a a0 x
v: it_wbisim RX a x a1

?x <= it_wbisim_t E RX (squareᵢ (it_wbisim RX))
apply id_t. +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
a: I
a0, a1, x: itree E X a
u: it_wbisim RX a a0 x
v: it_wbisim RX a x a1

it_wbisim_map E RX (id (squareᵢ (it_wbisim RX))) a a0 + a1
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
a: I
a0, a1, x: itree E X a
u: it_wbisim RX a a0 x
v: it_wbisim RX a x a1

(it_wbisim' E RX ⨟ it_wbisim' E RX) a + (observe a0) (observe a1)
+
refine (_ ⨟⨟ _) ; apply it_wbisim_step; [ exact u | exact v ]. + Qed.

Packaging the above as equivalence.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX

Equivalenceᵢ (it_wbisim RX)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX

Equivalenceᵢ (it_wbisim RX)
econstructor; typeclasses eauto. Qed.

Eliminating Tau on both sides.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i

it_wbisim RX i (Tau' x) (Tau' y) -> it_wbisim RX i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i

it_wbisim RX i (Tau' x) (Tau' y) -> it_wbisim RX i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)

it_wbisim RX i x y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)

it_wbisim RX i x (Tau' x)
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)
it_wbisim RX i (Tau' x) y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)

it_wbisim_map E RX (it_wbisim RX) i x (Tau' x)
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)
it_wbisim RX i (Tau' x) y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)

it_wbisim RX i (Tau' x) y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)

it_wbisim RX i (Tau' x) (Tau' y)
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)
it_wbisim RX i (Tau' y) y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)

it_wbisim RX i (Tau' y) y
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Equivalenceᵢ0: Equivalenceᵢ RX
i: I
x, y: itree E X i
H1: it_wbisim RX i (Tau' x) (Tau' y)

it_wbisim_map E RX (it_wbisim RX) i (Tau' y) y
+
econstructor; [ exact (EatStep EatRefl) | exact EatRefl | destruct (observe y); eauto ]. + Qed.

We have proven that strong bisimilarity entails weak bisimilarity, but now we prove the +much more powerful fact that we can prove weak bisimilarity up-to strong bisimilarity. +That is, we will be allowed to close any weak bisimulation candidate by strong bisimilarity. +Let us first define a helper relation taking a relation to its saturation by strong +bisimilarity.

+
  Variant eq_clo (R : relᵢ (itree E X) (itree E X)) i (x y : itree E X i) : Prop :=
+    | EqClo {a b} : it_eq RX x a -> it_eq RX b y -> R i a b -> eq_clo R i x y
+  .
+  #[global] Arguments EqClo {R i x y a b}.

This helper is monotone...

+
  Definition eq_clo_map : mon (relᵢ (itree E X) (itree E X)) :=
+    {| body R := eq_clo R ;
+      Hbody _ _ H _ _ _ '(EqClo p q r) := EqClo p q (H _ _ _ r) |}.

... and below the companion of weak bisimilarity, hence justifying the up-to.

+
  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

eq_clo_map <= it_wbisim_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

eq_clo_map <= it_wbisim_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eq RX a c
v: it_eq RX d b
x1, x2: itree' E X i
r1: it_eat i (observe c) x1
r2: it_eat i (observe d) x2
rr: it_eqF E RX R i x1 x2

bT (it_wbisim_map E RX) eq_clo_map R i a b
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eqF E RX (it_eq RX) i (observe a) (observe c)
v: it_eqF E RX (it_eq RX) i (observe d) (observe b)
x1, x2: itree' E X i
r1: it_eat i (observe c) x1
r2: it_eat i (observe d) x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i + (observe a) (observe b)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
b, c, d: itree E X i
oa: itree' E X i
u: it_eqF E RX (it_eq RX) i oa (observe c)
v: it_eqF E RX (it_eq RX) i (observe d) (observe b)
x1, x2: itree' E X i
r1: it_eat i (observe c) x1
r2: it_eat i (observe d) x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + (observe b)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
c, d: itree E X i
oa: itree' E X i
u: it_eqF E RX (it_eq RX) i oa (observe c)
ob: itree' E X i
v: it_eqF E RX (it_eq RX) i (observe d) ob
x1, x2: itree' E X i
r1: it_eat i (observe c) x1
r2: it_eat i (observe d) x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
d: itree E X i
oa, oc: itree' E X i
u: it_eqF E RX (it_eq RX) i oa oc
ob: itree' E X i
v: it_eqF E RX (it_eq RX) i (observe d) ob
x1, x2: itree' E X i
r1: it_eat i oc x1
r2: it_eat i (observe d) x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
oa, oc: itree' E X i
u: it_eqF E RX (it_eq RX) i oa oc
ob, od: itree' E X i
v: it_eqF E RX (it_eq RX) i od ob
x1, x2: itree' E X i
r1: it_eat i oc x1
r2: it_eat i od x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t, oa, ob, od, x2: itree' E X i
u: it_eqF E RX (it_eq RX) i oa t
r2: it_eat i od x2
v: it_eqF E RX (it_eq RX) i od ob
rr: it_eqF E RX R i t x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t1: itree E X i
t2: itree' E X i
r1: it_eat i (observe t1) t2
IHr1: forall oa ob od x2 : itree' E X i, +it_eqF E RX (it_eq RX) i oa (observe t1) -> +it_eat i od x2 -> +it_eqF E RX (it_eq RX) i od ob -> +it_eqF E RX R i t2 x2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
oa, ob, od, x2: itree' E X i
u: it_eqF E RX (it_eq RX) i oa (TauF t1)
r2: it_eat i od x2
v: it_eqF E RX (it_eq RX) i od ob
rr: it_eqF E RX R i t2 x2
it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t, oa, ob, od, x2: itree' E X i
u: it_eqF E RX (it_eq RX) i oa t
r2: it_eat i od x2
v: it_eqF E RX (it_eq RX) i od ob
rr: it_eqF E RX R i t x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t, t0, oa, ob: itree' E X i
u: it_eqF E RX (it_eq RX) i oa t
v: it_eqF E RX (it_eq RX) i t0 ob
rr: it_eqF E RX R i t t0

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t: itree' E X i
t1: itree E X i
t2: itree' E X i
r2: it_eat i (observe t1) t2
IHr2: forall oa ob : itree' E X i, +it_eqF E RX (it_eq RX) i oa t -> +it_eqF E RX (it_eq RX) i (observe t1) ob -> +it_eqF E RX R i t t2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
oa, ob: itree' E X i
u: it_eqF E RX (it_eq RX) i oa t
v: it_eqF E RX (it_eq RX) i (TauF t1) ob
rr: it_eqF E RX R i t t2
it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t, t0, oa, ob: itree' E X i
u: it_eqF E RX (it_eq RX) i oa t
v: it_eqF E RX (it_eq RX) i t0 ob
rr: it_eqF E RX R i t t0

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
r3, r5, r4: X i
r_rel0: RX i r3 r4
r1: X i
r_rel1: RX i r1 r5
r_rel: RX i r4 r1

RX i r3 r5
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t3, t5, t4: itree E X i
t_rel0: it_eq RX t3 t4
t1: itree E X i
t_rel1: it_eq RX t1 t5
t_rel: R i t4 t1
it_wbisim_T E RX eq_clo_map R i t3 t5
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
q: e_qry i
k3, k5, k4: forall x : e_rsp q, itree E X (e_nxt x)
k_rel0: forall r : e_rsp q, it_eq RX (k3 r) (k4 r)
k1: forall x : e_rsp q, itree E X (e_nxt x)
k_rel1: forall r : e_rsp q, it_eq RX (k1 r) (k5 r)
k_rel: forall r : e_rsp q, R (e_nxt r) (k4 r) (k1 r)
forall r : e_rsp q, +it_wbisim_T E RX eq_clo_map R (e_nxt r) (k3 r) (k5 r)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
r3, r5, r4: X i
r_rel0: RX i r3 r4
r1: X i
r_rel1: RX i r1 r5
r_rel: RX i r4 r1

RX i r3 r5
transitivity r4; auto; transitivity r1; auto. +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t3, t5, t4: itree E X i
t_rel0: it_eq RX t3 t4
t1: itree E X i
t_rel1: it_eq RX t1 t5
t_rel: R i t4 t1

it_wbisim_T E RX eq_clo_map R i t3 t5
apply (f_Tf (it_wbisim_map E RX)); exact (EqClo t_rel0 t_rel1 t_rel). +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
q: e_qry i
k3, k5, k4: forall x : e_rsp q, itree E X (e_nxt x)
k_rel0: forall r : e_rsp q, it_eq RX (k3 r) (k4 r)
k1: forall x : e_rsp q, itree E X (e_nxt x)
k_rel1: forall r : e_rsp q, it_eq RX (k1 r) (k5 r)
k_rel: forall r : e_rsp q, R (e_nxt r) (k4 r) (k1 r)

forall r : e_rsp q, +it_wbisim_T E RX eq_clo_map R (e_nxt r) (k3 r) (k5 r)
intro r; apply (f_Tf (it_wbisim_map E RX)); exact (EqClo (k_rel0 r) (k_rel1 r) (k_rel r)). +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t: itree' E X i
t1: itree E X i
t2: itree' E X i
r2: it_eat i (observe t1) t2
IHr2: forall oa ob : itree' E X i, +it_eqF E RX (it_eq RX) i oa t -> +it_eqF E RX (it_eq RX) i (observe t1) ob -> +it_eqF E RX R i t t2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
oa, ob: itree' E X i
u: it_eqF E RX (it_eq RX) i oa t
v: it_eqF E RX (it_eq RX) i (TauF t1) ob
rr: it_eqF E RX R i t t2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t: itree' E X i
t3: itree E X i
t2: itree' E X i
r2: it_eat i (observe t3) t2
IHr2: forall oa ob : itree' E X i, +it_eqF E RX (it_eq RX) i oa t -> +it_eqF E RX (it_eq RX) i (observe t3) ob -> +it_eqF E RX R i t t2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
oa: itree' E X i
t4: itree E X i
u: it_eqF E RX (it_eq RX) i oa t
t_rel: it_eq RX t3 t4
rr: it_eqF E RX R i t t2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + (TauF t4)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t: itree' E X i
t3: itree E X i
t2: itree' E X i
r2: it_eat i (observe t3) t2
IHr2: forall oa ob : itree' E X i, +it_eqF E RX (it_eq RX) i oa t -> +it_eqF E RX (it_eq RX) i (observe t3) ob -> +it_eqF E RX R i t t2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
oa: itree' E X i
t4: itree E X i
u: it_eqF E RX (it_eq RX) i oa t
t_rel: it_eq_map E RX (it_eq RX) i t3 t4
rr: it_eqF E RX R i t t2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + (TauF t4)
+
apply wbisim_unstep_l, IHr2; auto. +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t1: itree E X i
t2: itree' E X i
r1: it_eat i (observe t1) t2
IHr1: forall oa ob od x2 : itree' E X i, +it_eqF E RX (it_eq RX) i oa (observe t1) -> +it_eat i od x2 -> +it_eqF E RX (it_eq RX) i od ob -> +it_eqF E RX R i t2 x2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
oa, ob, od, x2: itree' E X i
u: it_eqF E RX (it_eq RX) i oa (TauF t1)
r2: it_eat i od x2
v: it_eqF E RX (it_eq RX) i od ob
rr: it_eqF E RX R i t2 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i oa + ob
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t4: itree E X i
t2: itree' E X i
r1: it_eat i (observe t4) t2
IHr1: forall oa ob od x2 : itree' E X i, +it_eqF E RX (it_eq RX) i oa (observe t4) -> +it_eat i od x2 -> +it_eqF E RX (it_eq RX) i od ob -> +it_eqF E RX R i t2 x2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
t3: itree E X i
ob, od, x2: itree' E X i
t_rel: it_eq RX t3 t4
r2: it_eat i od x2
v: it_eqF E RX (it_eq RX) i od ob
rr: it_eqF E RX R i t2 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i + (TauF t3) ob
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
t4: itree E X i
t2: itree' E X i
r1: it_eat i (observe t4) t2
IHr1: forall oa ob od x2 : itree' E X i, +it_eqF E RX (it_eq RX) i oa (observe t4) -> +it_eat i od x2 -> +it_eqF E RX (it_eq RX) i od ob -> +it_eqF E RX R i t2 x2 -> +it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) + i oa ob
t3: itree E X i
ob, od, x2: itree' E X i
t_rel: it_eq_map E RX (it_eq RX) i t3 t4
r2: it_eat i od x2
v: it_eqF E RX (it_eq RX) i od ob
rr: it_eqF E RX R i t2 x2

it_wbisimF E RX (it_wbisim_T E RX eq_clo_map R) i + (TauF t3) ob
+
apply wbisim_unstep_r, (IHr1 (observe t3) ob od x2); auto. + Qed.

We now do the same for up-to eating.

+
  Variant eat_clo (R : relᵢ (itree E X) (itree E X)) i (x y : itree E X i) : Prop :=
+    | EatClo {a b} : it_eat' i x a -> it_eat' i y b -> R i a b -> eat_clo R i x y
+  .
+  #[global] Arguments EatClo {R i x y a b}.
+
+  Definition eat_clo_map : mon (relᵢ (itree E X) (itree E X)) :=
+    {| body R := eat_clo R ;
+       Hbody _ _ H _ _ _ '(EatClo p q r) := EatClo p q (H _ _ _ r) |}.
+
+  
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX

eat_clo_map <= it_wbisim_t E RX
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat' i a c
v: it_eat' i b d
x1, x2: itree' E X i
r1: it_eat i (observe c) x1
r2: it_eat i (observe d) x2
rr: it_eqF E RX R i x1 x2

(it_wbisim_map E RX ° eat_clo_map) R i a b
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2
rr: it_eqF E RX R i x1 x2

it_wbisimF E RX (eat_clo R) i (_observe a) + (_observe b)
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2
rr: it_eqF E RX R i x1 x2

it_eat i (_observe a) ?x1
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2
rr: it_eqF E RX R i x1 x2
it_eat i (_observe b) ?x2
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2
rr: it_eqF E RX R i x1 x2
it_eqF E RX (eat_clo R) i ?x1 ?x2
+
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2
rr: it_eqF E RX R i x1 x2

it_eat i (_observe a) ?x1
etransitivity; [ exact u | exact r1 ]. +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2
rr: it_eqF E RX R i x1 x2

it_eat i (_observe b) ?x2
etransitivity; [ exact v | exact r2 ]. +
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2
rr: it_eqF E RX R i x1 x2

it_eqF E RX (eat_clo R) i x1 x2
I: Type
E: event I I
X: psh I
RX: relᵢ X X
Transitiveᵢ0: Transitiveᵢ RX
R: relᵢ (itree E X) (itree E X)
i: I
a, b, c, d: itree E X i
u: it_eat i (_observe a) (_observe c)
v: it_eat i (_observe b) (_observe d)
x1, x2: itree' E X i
r1: it_eat i (_observe c) x1
r2: it_eat i (_observe d) x2

R <= eat_clo R
+
intros; econstructor; try econstructor; auto. + Qed. +End wbisim_facts_hom.
+
+
+
+ diff --git a/docs/Event.html b/docs/Event.html new file mode 100644 index 0000000..b19c087 --- /dev/null +++ b/docs/Event.html @@ -0,0 +1,42 @@ + + + + + + +Game event + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Game event

+ +

In order to specify the set of visible moves of an indexed interaction tree, we use the +notion of indexed polynomial functor. See "Indexed Containers" by Thorsten Altenkirch, +Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris.

+

In our interaction-oriented nomenclature, an indexed container consists of a family of +queries e_qry, a family of responses e_rsp and a function assigning the next +index to each response e_nxt.

+
Record event (I J : Type) : Type := Event {
+  e_qry : I -> Type ;
+  e_rsp : forall i, e_qry i -> Type ;
+  e_nxt : forall i (q : e_qry i), e_rsp i q -> J
+}.

Finally we can interpret an event as a functor from families over J to families +over I.

+
Definition e_interp {I J} (E : event I J) (X : psh J) : psh I :=
+  fun i => { q : E.(e_qry) i & forall (r : E.(e_rsp) q), X (E.(e_nxt) r) } .

We define the empty event.

+
Definition emptyₑ {I} : event I I :=
+  {| e_qry := fun _ => T0 ;
+     e_rsp := fun _ => ex_falso ;
+     e_nxt := fun _ x => ex_falso x |}.
+
+#[global] Notation "∅ₑ" := (emptyₑ).
+
+
+ diff --git a/docs/Family.html b/docs/Family.html new file mode 100644 index 0000000..3dd0b97 --- /dev/null +++ b/docs/Family.html @@ -0,0 +1,68 @@ + + + + + + +Scoped and sorted families + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Scoped and sorted families

+ +

In this file we bootstrap the abstract theory of contexts, variables and substitution +by defining a special case of type-families: families indexed by a set of contexts C +and possibly a number of times by a set of types T.

+
Definition Fam₀ (T C : Type) := C -> Type .
+Definition Fam₁ (T C : Type) := C -> T -> Type .
+Definition Fam₂ (T C : Type) := C -> T -> T -> Type .

Additionally, to represent binders we use the following alternative to sorted families +Fam₁. In this definition, the set of binders is indexed by the set of types T but +not by the set of contexts C. Instead, we have a projection into C. This is important +for reasons of bidirectional typing information flow. We could go with Fam₁ instead, but +this would entail quite a bit of equality dance when manipulating it.

+
Record Oper T C := {
+  o_op : T -> Type ;
+  o_dom : forall x, o_op x -> C ;
+}.

Now a first combinator: the formal cut of two families. This takes two 1-indexed families +and returns the 0-indexed family consisting pairs of matching elements.

+
Record f_cut {T C} (F G : Fam₁ T C) (Γ : C) :=
+  Cut { cut_ty : T ; cut_l : F Γ cut_ty ; cut_r : G Γ cut_ty }. 

We embed binder descriptions into sorted families, by dropping the context.

+
Definition bare_op {T C} (O : Oper T C) : Fam₁ T C := fun _ x => O x.

We define maps of these families, their identity and composition.

+
  Definition arr_fam₀ (F G : Fam₀ T C) := forall Γ, F Γ -> G Γ.
+  Definition arr_fam₁ (F G : Fam₁ T C) := forall Γ x, F Γ x -> G Γ x.
+  Definition arr_fam₂ (F G : Fam₂ T C) := forall Γ x y, F Γ x y -> G Γ x y.
+
+  Notation "F ⇒₀ G" := (arr_fam₀ F G).
+  Notation "F ⇒₁ G" := (arr_fam₁ F G).
+  Notation "F ⇒₂ G" := (arr_fam₂ F G).
+
+  Definition f_id₀ {F : Fam₀ T C} : F ⇒ F := fun _ a => a.
+  Definition f_id₁ {F : Fam₁ T C} : F ⇒ F := fun _ _ a => a.
+  Definition f_id₂ {F : Fam₂ T C} : F ⇒ F := fun _ _ _ a => a.
+
+  Definition f_comp₀ {F G H : Fam₀ T C} (u : G ⇒ H) (v : F ⇒ G) : F ⇒ H
+    := fun _ x => u _ (v _ x).
+  Definition f_comp₁ {F G H : Fam₁ T C} (u : G ⇒ H) (v : F ⇒ G) : F ⇒ H
+    := fun _ _ x => u _ _ (v _ _ x).
+  Definition f_comp₂ {F G H : Fam₂ T C} (u : G ⇒ H) (v : F ⇒ G) : F ⇒ H
+    := fun _ _ _ x => u _ _ _ (v _ _ _ x).
  Definition f_cut_map {F1 F2 G1 G2 : Fam₁ T C} (f : F1 ⇒ F2) (g : G1 ⇒ G2)
+    : (f_cut F1 G1) ⇒ (f_cut F2 G2)
+    := fun _ c => Cut (f _ _ c.(cut_l)) (g _ _ c.(cut_r)).

Now a bunch of notations for our constructions.

+
#[global] Notation "u ⦿₀ v" := (f_comp₀ u v).
+#[global] Notation "u ⦿₁ v" := (f_comp₁ u v).
+#[global] Notation "u ⦿₂ v" := (f_comp₂ u v).
+
+#[global] Notation "F ∥ₛ G" := (f_cut F G).
+#[global] Notation "u ⋅ v" := (Cut u v).
+
+#[global] Notation "⦉ S ⦊" := (bare_op S) .
+
+
+ diff --git a/docs/Game.html b/docs/Game.html new file mode 100644 index 0000000..7f23b48 --- /dev/null +++ b/docs/Game.html @@ -0,0 +1,104 @@ + + + + + + +Game.v + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+ + +
+

The OGS Game (§ 5.1 and 5.2)

+
From OGS Require Import Prelude.
+From OGS.Utils Require Import Rel.
+From OGS.Ctx Require Import All Ctx.
+From OGS.OGS Require Import Obs.
+From OGS.ITree Require Import Event ITree.
+
+Reserved Notation "↓⁺ Ψ" (at level 9).
+Reserved Notation "↓⁻ Ψ" (at level 9).
+Reserved Notation "↓[ p ] Ψ" (at level 9).
+
+

Games (§ 5.1)

+

Levy and Staton's general notion of game.

+

An half games (Def 5.1) is composed of "moves" as an indexed family of types, +and a "next" map computing the next index following a move.

+
Record half_game (I J : Type) := {
+ g_move : I -> Type ;
+ g_next : forall i, g_move i -> J
+}.

Action (h_actv) and reaction (h_pasv) functors (Def 5.8)

+
Definition h_actv {I J} (H : half_game I J) (X : psh J) : psh I :=
+  fun i => { m : H.(g_move) i & X (H.(g_next) m) } .
+
+Definition h_actvR {I J} (H : half_game I J) {X Y : psh J} (R : relᵢ X Y)
+  : relᵢ (h_actv H X) (h_actv H Y) :=
+  fun i u v => exists p : projT1 u = projT1 v , R _ (rew p in projT2 u) (projT2 v) .
+
+Definition h_pasv {I J} (H : half_game I J) (X : psh J) : psh I :=
+  fun i => forall (m : H.(g_move) i), X (H.(g_next) m) .
+
+Definition h_pasvR {I J} (H : half_game I J) {X Y : psh J} (R : relᵢ X Y)
+  : relᵢ (h_pasv H X) (h_pasv H Y) := fun i u v => forall m, R _ (u m) (v m) .

A game (Def 5.4) is composed of two compatible half games.

+
Record game (I J : Type) : Type := {
+  g_client : half_game I J ;
+  g_server : half_game J I
+}.

Given a game, we can construct an event. See ITree/Event.v

+
Definition e_of_g {I J} (G : game I J) : event I I :=
+  {| e_qry := fun i => G.(g_client).(g_move) i ;
+     e_rsp := fun i q => G.(g_server).(g_move) (G.(g_client).(g_next) q) ;
+     e_nxt := fun i q r => G.(g_server).(g_next) r |} .
+
+

The OGS Game (§ 5.2)

+

First let us define a datatype for polarities, active and passive (called "waiting") in +the paper.

+
Variant polarity : Type := Act | Pas .
+Derive NoConfusion for polarity.
+
+Equations p_switch : polarity -> polarity :=
+  p_switch Act := Pas ;
+  p_switch Pas := Act .
+#[global] Notation "p ^" := (p_switch p) (at level 5).
+
+Section with_param.

We consider an observation structure, given by a set of types T, a notion of contexts +C and a operator giving the observations and their domain. See +Ctx/Family.v and OGS/Obs.v.

+
  Context `{CC : context T C} {obs : obs_struct T C}.

Interleaved contexts (Def 5.12) are given by the free context structure over C.

+
  Definition ogs_ctx := ctx C.

We define the collapsing functions (Def 5.13).

+
  Equations join_pol : polarity -> ogs_ctx -> C :=
+    join_pol Act ∅ₓ       := ∅ ;
+    join_pol Act (Ψ ▶ₓ Γ) := join_pol Pas Ψ +▶ Γ ;
+    join_pol Pas ∅ₓ       := ∅ ;
+    join_pol Pas (Ψ ▶ₓ Γ) := join_pol Act Ψ .
+
+  Notation "↓⁺ Ψ" := (join_pol Act Ψ).
+  Notation "↓⁻ Ψ" := (join_pol Pas Ψ).
+  Notation "↓[ p ] Ψ" := (join_pol p Ψ).

Finally we define the OGS half-game and game (Def 5.15).

+
  Definition ogs_hg : half_game ogs_ctx ogs_ctx :=
+    {| g_move Ψ := obs∙ ↓⁺Ψ ;
+       g_next Ψ m := Ψ ▶ₓ m_dom m |} .
+
+  Definition ogs_g : game ogs_ctx ogs_ctx :=
+    {| g_client := ogs_hg ;
+       g_server := ogs_hg  |} .

We define the event of OGS moves.

+
  Definition ogs_e : event ogs_ctx ogs_ctx := e_of_g ogs_g.

And finally we define active OGS strategies and passive OGS strategies.

+
  Definition ogs_act (Δ : C) : psh ogs_ctx := itree ogs_e (fun _ => obs∙ Δ).
+  Definition ogs_pas (Δ : C) : psh ogs_ctx := h_pasv ogs_hg (ogs_act Δ).
+
+End with_param.
+
+#[global] Notation "↓⁺ Ψ" := (join_pol Act Ψ).
+#[global] Notation "↓⁻ Ψ" := (join_pol Pas Ψ).
+#[global] Notation "↓[ p ] Ψ" := (join_pol p Ψ).
+
+
+ diff --git a/docs/Guarded.html b/docs/Guarded.html new file mode 100644 index 0000000..ea62f40 --- /dev/null +++ b/docs/Guarded.html @@ -0,0 +1,3531 @@ + + + + + + +Guarded Iteration + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Guarded Iteration

+ +

The iter combinator, adapted directly from the Interaction Tree library, +happily builds a computation iter f for any set of equations f. +The resulting computation satisfies in particular an unfolding equation: +iter f i ≈ f i >>= case_ (iter f) (ret) +In general, this solution is however not unique, depriving us from a +powerful tool to prove the equivalence of two computations.

+

Through this file, we recover uniqueness by introducing an alternate +combinator iter_guarded restricted to so-called guarded sets of equations: +they cannot be reduced to immediately returning a new index to iterate over. +Both combinators agree over guarded equations (w.r.t. to weak bisimilarity), but +the new one satisfies uniqueness.

+

Then, we refine the result to allow more sets of equations: not all must +be guarded, but they must always finitely lead to a guarded one.

+
+

Guarded iteration

+
Section guarded.
+
+  Context {I} {E : event I I}.

A set of equations is an (indexed) family of computations, i.e. body fed to the +combinator (Def. 30).

+
  Definition eqn R X Y : Type := X ⇒ᵢ itree E (Y +ᵢ R) .
+
+  Definition apply_eqn {R X Y} (q : eqn R X Y) : itree E (X +ᵢ R) ⇒ᵢ itree E (Y +ᵢ R) :=
+    fun _ t => t >>= fun _ r => match r with
+                            | inl x => q _ x
+                            | inr y => Ret' (inr y)
+                            end .

A computation is guarded if it is not reduced to Ret (inl i), i.e. +if as part of the loop, this specific iteration will be observable w.r.t. +strong bisimilarity. It therefore may:

+
    +
  • end the iteration
  • +
  • produce a silent step
  • +
  • produce an external event
  • +
+

A set of equation is then said to be guarded if all its equations are guarded +(Def. 33).

+
  Variant guarded' {X Y i} : itree' E (X +ᵢ Y) i -> Prop :=
+    | GRet y : guarded' (RetF (inr y))
+    | GTau t : guarded' (TauF t)
+    | GVis e k : guarded' (VisF e k)
+  .
+  Definition guarded {X Y i} (t : itree E (X +ᵢ Y) i)
+    := guarded' t.(_observe).
+  Definition eqn_guarded {R X Y} (e : eqn R X Y) : Prop
+    := forall i (x : X i), guarded (e i x) .

The iter combinator gets away with putting no restriction on the equations +by aggressively guarding with Tau all recursive calls. +In contrast, by assuming the equations are guarded, we do not need to introduce +any spurious guard: they are only legitimate in the case of returning immediately +a new index, which we can here rule out via elim_guarded.

+
  Equations elim_guarded {R X i x} : @guarded' R X i (RetF (inl x)) -> T0 := | ! .
+
+  Definition iter_guarded_aux {R X}
+    (e : eqn R X X) (EG : eqn_guarded e)
+    : itree E (X +ᵢ R) ⇒ᵢ itree E R
+    := cofix CIH i t :=
+      t >>= fun _ r =>
+          go match r with
+            | inl x => match (e _ x).(_observe) as t return guarded' t -> _ with
+                      | RetF (inl x) => fun g => ex_falso (elim_guarded g)
+                      | RetF (inr r) => fun _ => RetF r
+                      | TauF t       => fun _ => TauF (CIH _ t)
+                      | VisF q k     => fun _ => VisF q (fun r => CIH _ (k r))
+                      end (EG _ x)
+            | inr y => RetF y
+            end .

A better iteration for guarded equations.

+
  Definition iter_guarded {R X}
+    (f : eqn R X X) (EG : eqn_guarded f)
+    : X ⇒ᵢ itree E R
+    := fun _ x =>
+      go (match (f _ x).(_observe) as t return guarded' t -> _ with
+          | RetF (inl x) => fun g => ex_falso (elim_guarded g)
+          | RetF (inr r) => fun _ => RetF r
+          | TauF t       => fun _ => TauF (iter_guarded_aux f EG _ t)
+          | VisF q k     => fun _ => VisF q (fun r => iter_guarded_aux f EG _ (k r))
+          end (EG _ x)) .

The absence of a spurious guard is reflected in the unfolding equation: +w.r.t. strong bisimilarity, it directly satisfies what one would expect, +i.e. we run the current equation, and either terminate or jump to the next +one.

+
  
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
t: itree E (X +ᵢ Y) i

it_eq RY (iter_guarded_aux f EG i t) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
t: itree E (X +ᵢ Y) i

it_eq RY (iter_guarded_aux f EG i t) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i

it_eq_bt E RY R i (iter_guarded_aux f EG i t) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
ot:= _observe t: itree' E (X +ᵢ Y) i

it_eqF E RY (it_eq_t E RY R) i + match ot with + | RetF (inl x) => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r1 => + fun _ : guarded' (RetF (inr r1)) => + RetF r1 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r0 : e_rsp q => + iter_guarded_aux f EG (e_nxt r0) (k r0)) + end (EG i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => + match + _observe (f i x) as t0 + return + (guarded' t0 -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> + itree' E Y i) + with + | inl x0 => + ex_falso ∘ elim_guarded + | inr r1 => + fun + _ : guarded' + (RetF (inr r1)) => + RetF r1 + end + | TauF t0 => + fun _ : guarded' (TauF t0) => + TauF + (iter_guarded_aux f EG i t0) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r0 : e_rsp q => + iter_guarded_aux f EG + (e_nxt r0) (k r0)) + end (EG i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => + match + _observe (f i x) as t + return + (guarded' t -> itree' E Y i) + with + | RetF r1 => + match + r1 as r2 + return + (guarded' (RetF r2) -> + itree' E Y i) + with + | inl x0 => + ex_falso ∘ elim_guarded + | inr r2 => + fun + _ : guarded' + (RetF (inr r2)) => + RetF r2 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k0 => + fun _ : guarded' (VisF q k0) => + VisF q + (fun r1 : e_rsp q => + iter_guarded_aux f EG + (e_nxt r1) (k0 r1)) + end (EG i x) + | inr y => RetF y + end + |}) =<< k r) + end + match ot with + | RetF r => + _observe + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
x: X i

it_eqF E RY (it_eq_t E RY R) i + (match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux f EG (e_nxt r) (k r)) + end (EG i x)) + (match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux f EG (e_nxt r) (k r)) + end (EG i x))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
y: Y i
it_eqF E RY (it_eq_t E RY R) i (RetF y) (RetF y)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t, t0: itree E (X +ᵢ Y) i
it_eqF E RY (it_eq_t E RY R) i + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r1 => + fun + _ : guarded' (RetF (inr r1)) + => RetF r1 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r0 : e_rsp q => + iter_guarded_aux f EG (e_nxt r0) + (k r0)) + end (EG i x) + | inr y => RetF y + end + |}) =<< t0)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
it_eqF E RY (it_eq_t E RY R) i + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r1 => + match + r1 as r2 + return + (guarded' (RetF r2) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r2 => + fun + _ : guarded' (RetF (inr r2)) + => RetF r2 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r1 : e_rsp q => + iter_guarded_aux f EG (e_nxt r1) + (k r1)) + end (EG i x) + | inr y => RetF y + end + |}) =<< k r)) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
x: X i
y: Y i

it_eqF E RY (it_eq_t E RY R) i (RetF y) (RetF y)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
x: X i
t0: itree E (X +ᵢ Y) i
it_eqF E RY (it_eq_t E RY R) i + (TauF (iter_guarded_aux f EG i t0)) + (TauF (iter_guarded_aux f EG i t0))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
it_eqF E RY (it_eq_t E RY R) i + (VisF e + (fun r : e_rsp e => + iter_guarded_aux f EG (e_nxt r) (k r))) + (VisF e + (fun r : e_rsp e => + iter_guarded_aux f EG (e_nxt r) (k r)))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
y: Y i
it_eqF E RY (it_eq_t E RY R) i (RetF y) (RetF y)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t, t0: itree E (X +ᵢ Y) i
it_eqF E RY (it_eq_t E RY R) i + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r1 => + fun + _ : guarded' (RetF (inr r1)) + => RetF r1 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r0 : e_rsp q => + iter_guarded_aux f EG (e_nxt r0) + (k r0)) + end (EG i x) + | inr y => RetF y + end + |}) =<< t0)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
it_eqF E RY (it_eq_t E RY R) i + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r1 => + match + r1 as r2 + return + (guarded' (RetF r2) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r2 => + fun + _ : guarded' (RetF (inr r2)) + => RetF r2 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r1 : e_rsp q => + iter_guarded_aux f EG (e_nxt r1) + (k r1)) + end (EG i x) + | inr y => RetF y + end + |}) =<< k r)) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t, t0: itree E (X +ᵢ Y) i

it_eq_t E RY R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r1 => + fun _ : guarded' (RetF (inr r1)) + => RetF r1 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r0 : e_rsp q => + iter_guarded_aux f EG (e_nxt r0) + (k r0)) + end (EG i x) + | inr y => RetF y + end + |}) =<< t0) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
forall r : e_rsp q, +it_eq_t E RY R (e_nxt r) + ((fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r1 => + match + r1 as r2 + return + (guarded' (RetF r2) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r2 => + fun _ : guarded' (RetF (inr r2)) + => RetF r2 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r1 : e_rsp q => + iter_guarded_aux f EG (e_nxt r1) + (k r1)) + end (EG i x) + | inr y => RetF y + end + |}) =<< k r) + ((fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t, t0: itree E (X +ᵢ Y) i

it_eq_t E RY R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r1 => + fun _ : guarded' (RetF (inr r1)) + => RetF r1 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r0 : e_rsp q => + iter_guarded_aux f EG (e_nxt r0) + (k r0)) + end (EG i x) + | inr y => RetF y + end + |}) =<< t0) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp q
it_eq_t E RY R (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> + itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r1 => + fun _ : guarded' (RetF (inr r1)) + => RetF r1 + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r0 : e_rsp q => + iter_guarded_aux f EG (e_nxt r0) + (k r0)) + end (EG i x) + | inr y => RetF y + end + |}) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t, t0: itree E (X +ᵢ Y) i

forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_eq_t E RY R i + {| + _observe := + match x1 with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => + RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux f EG (e_nxt r) (k r)) + end (EG i x) + | inr y => RetF y + end + |} + match x2 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E (X +ᵢ Y) i), +it_eq_t E RY R i (iter_guarded_aux f EG i t0) +(t0 >>= +(fun (i0 : I) (r : (X +ᵢ Y) i0) => +match r with +| inl x => iter_guarded f EG i0 x +| inr y => Ret' y +end))
i: I
t: itree E (X +ᵢ Y) i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp q
forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_eq_t E RY R i + {| + _observe := + match x1 with + | inl x => + match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return + (guarded' (RetF r1) -> itree' E Y i) + with + | inl x0 => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => + RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux f EG (e_nxt r) (k r)) + end (EG i x) + | inr y => RetF y + end + |} + match x2 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end
+
all: intros ? ? x2 ->; destruct x2; auto. + Qed.

Guarded iteration is a fixed point of the equation w.r.t. strong bisimilarity.

+
  
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i

it_eq RY (iter_guarded f EG i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i

it_eq RY (iter_guarded f EG i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i

it_eqF E RY (it_eq RY) i + (match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux f EG (e_nxt r) (k r)) + end (EG i x)) + match _observe (f i x) with + | RetF r => + _observe + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i
p:= EG i x: guarded' (_observe (f i x))

it_eqF E RY (it_eq RY) i + (match + _observe (f i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux f EG (e_nxt r) (k r)) + end p) + match _observe (f i x) with + | RetF r => + _observe + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Reflexiveᵢ RY
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i
ot:= _observe (f i x): itree' E (X +ᵢ Y) i
p:= EG i x: guarded' ot

it_eqF E RY (it_eq RY) i + (match + ot as t return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF (iter_guarded_aux f EG i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux f EG (e_nxt r) (k r)) + end p) + match ot with + | RetF r => + _observe + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
destruct p; econstructor; [ now apply H | | intro r ]; apply iter_guarded_aux_unfold. + Qed.

The payoff: iter_guarded does not only deliver a solution to the equations, +but it also is the unique such.

+
  
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))

forall (i : I) (x : X i), +it_eq RY (g i x) (iter_guarded f EG i x)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))

forall (i : I) (x : X i), +it_eq RY (g i x) (iter_guarded f EG i x)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i

it_eq_bt E RY R i (g i x) (iter_guarded f EG i x)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i

it_eq_bt E RY R i (g i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i

it_eqF E RY (it_eq_t E RY R) i + match _observe (f i x) with + | RetF r => + _observe + match r with + | inl x => g i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => g i x + | inr y => Ret' y + end) =<< k r) + end + match _observe (f i x) with + | RetF r => + _observe + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
a:= _observe (f i x): itree' E (X +ᵢ Y) i

it_eqF E RY (it_eq_t E RY R) i + match a with + | RetF r => + _observe + match r with + | inl x => g i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => g i x + | inr y => Ret' y + end) =<< k r) + end + match a with + | RetF r => + _observe + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
a:= _observe (f i x): itree' E (X +ᵢ Y) i
Ha:= EG i x: guarded' a

it_eqF E RY (it_eq_t E RY R) i + match a with + | RetF r => + _observe + match r with + | inl x => g i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => g i x + | inr y => Ret' y + end) =<< k r) + end + match a with + | RetF r => + _observe + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i

it_eq_t E RY R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< t) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp e
it_eq_t E RY R (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i

it_eq_t E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp e
it_eq_t E RY R (e_nxt r) + (k r >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (k r >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i

(it_eq_t E RY ° it_eq_t E RY) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp e
(it_eq_t E RY ° it_eq_t E RY) R (e_nxt r) + (k r >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (k r >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i

forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_eq_t E RY R i + match x1 with + | inl x => g i x + | inr y => Ret' y + end + match x2 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
r: e_rsp e
forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_eq_t E RY R i + match x1 with + | inl x => g i x + | inr y => Ret' y + end + match x2 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end
+
all: intros ? ? ? <-; destruct x1; auto. + Qed.

Furthermore, w.r.t. weak bisimilarity, we compute the same solution as what iter does.

+
  
I: Type
E: event I I
X, Y: psh I
i: I
s, t: itree' E (X +ᵢ Y) i
EQ: it_eq' (eqᵢ (X +ᵢ Y)) s t
g: guarded' s

guarded' t
+
I: Type
E: event I I
X, Y: psh I
i: I
s, t: itree' E (X +ᵢ Y) i
EQ: it_eq' (eqᵢ (X +ᵢ Y)) s t
g: guarded' s

guarded' t
+
destruct EQ as [ [] | | ]; [ dependent elimination g | rewrite <- r_rel | | ]; econstructor. + Qed. + + Definition guarded_cong {X Y} {i} (s t : itree E (X +ᵢ Y) i) + (EQ : s ≊ t) (g : guarded s) : guarded t + := guarded_cong' s.(_observe) t.(_observe) (it_eq_step _ _ _ EQ) g .
  
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i

iter_guarded f EG i x ≈ iter f i x
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
i: I
x: X i

iter_guarded f EG i x ≈ iter f i x
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i

it_wbisim_bt E (eqᵢ Y) R i (iter_guarded f EG i x) + (iter f i x)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i

(eq_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i + (iter_guarded f EG i x) (iter f i x)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i

iter_guarded f EG i x ≊ ?a
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
?b ≊ iter f i x
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
it_wbisim_bt E (eqᵢ Y) R i ?a ?b
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i

?b ≊ iter f i x
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
it_wbisim_bt E (eqᵢ Y) R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end)) ?b
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i

it_wbisim_bt E (eqᵢ Y) R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end)) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
g: guarded (f i x)

it_wbisim_bt E (eqᵢ Y) R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end)) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: guarded t

it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: guarded' (_observe t)

it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
ot: itree' E (X +ᵢ Y) i
Heqot: ot = _observe t
g: guarded' ot

it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
y: Y i
Heqot: RetF (inr y) = _observe t

it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (RetF y) (RetF y)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t
it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t0))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r)) + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t

it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t0))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r)) + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t

it_wbisim_t E (eqᵢ Y) R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t0)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e
it_wbisim_t E (eqᵢ Y) R + (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t

(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< t0) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t0)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e
(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R + (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t

forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_wbisim_t E (eqᵢ Y) R i + match x1 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + {| + _observe := + match x2 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e
forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_wbisim_t E (eqᵢ Y) R i + match x1 with + | inl x => iter_guarded f EG i x + | inr y => Ret' y + end + {| + _observe := + match x2 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t
i0: I
x0: X i0

it_wbisim_t E (eqᵢ Y) R i0 + (iter_guarded f EG i0 x0) + (Tau' (iter f i0 x0))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e
i0: I
x0: X i0
it_wbisim_t E (eqᵢ Y) R i0 + (iter_guarded f EG i0 x0) + (Tau' (iter f i0 x0))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, t0: itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t
i0: I
x0: X i0

(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 + (iter_guarded f EG i0 x0) + (Tau' (iter f i0 x0))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_guarded f EG i x) + (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
Heqot: VisF e k = _observe t
r: e_rsp e
i0: I
x0: X i0
(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 + (iter_guarded f EG i0 x0) + (Tau' (iter f i0 x0))
+
all: cbn; apply it_wbisim_up2eat; econstructor; + [ exact EatRefl | exact (EatStep EatRefl) | apply CIH ]. + Qed.

Minor technical lemmas: guardedness is proof irrelevant.

+
  
I: Type
E: event I I
R, X: psh I
i: I
t: itree' E (R +ᵢ X) i
p, q: guarded' t

p = q
+
destruct t; dependent elimination p; dependent elimination q; reflexivity. + Qed. + +
I: Type
E: event I I
R, X: psh I
i: I
t: itree E (R +ᵢ X) i
p, q: guarded t

p = q
+
apply guarded'_irrelevant. + Qed. + +End guarded.
+
+

Eventually guarded iteration

+

For our purpose, proving the soundness of the ogs, guardedness is a bit too +restrictive: while not all equations are guarded, they all inductively lead +to a guarded one. We capture this intuition via the notion of "eventually +guarded" set of equations, and establish similar result to ones in the +guarded case (these properties are collectively refered to as Prop. 5 in the +paper).

+
Section eventually_guarded.
+
+  Context {I} {E : event I I}.

A set of equations is eventually guarded if they all admit an inductive path following +its non-guarded indirections that leads to a guarded equation (Def. 34).

+
  Unset Elimination Schemes.
+  Inductive ev_guarded' {X Y} (e : eqn Y X X) {i} : itree' E (X +ᵢ Y) i -> Prop :=
+  | GHead t : guarded' t -> ev_guarded' e t
+  | GNext x : ev_guarded' e (e i x).(_observe) -> ev_guarded' e (RetF (inl x))
+  .
+  #[global] Arguments GHead {X Y e i t}.
+  #[global] Arguments GNext {X Y e i x}.
+
+  Scheme ev_guarded'_ind := Induction for ev_guarded' Sort Prop.
+  Set Elimination Schemes.
+
+  Definition ev_guarded {X Y} (e : eqn Y X X) {i} (t : itree E (X +ᵢ Y) i)
+    := ev_guarded' e t.(_observe).
+  Definition eqn_ev_guarded {X Y} (e : eqn Y X X) : Type
+    := forall i (x : X i), ev_guarded e (e i x) .
+
+  Equations elim_ev_guarded' {X Y e i x} (g : @ev_guarded' X Y e i (RetF (inl x)))
+            : ev_guarded' e (e i x).(_observe) :=
+    elim_ev_guarded' (GNext g) := g .

Given eventually guarded equations e, we can build a set of guarded equations +eqn_evg_unroll_guarded e: we simply map all indices to their reachable guarded +equations. Iteration over eventually guarded equations is hence defined as guarded +iteration over their guarded counterpart.

+
  Fixpoint evg_unroll' {X Y} (e : eqn Y X X) {i}
+    (t : itree' E (X +ᵢ Y) i) (g : ev_guarded' e t) { struct g } : itree' E (X +ᵢ Y) i
+    := match t as t' return ev_guarded' e t' -> _ with
+       | RetF (inl x) => fun g => evg_unroll' e (e _ x).(_observe) (elim_ev_guarded' g)
+       | RetF (inr y) => fun _ => RetF (inr y)
+       | TauF t       => fun _ => TauF t
+       | VisF q k     => fun _ => VisF q k
+       end g .
+
+  Definition evg_unroll {X Y} (e : eqn Y X X) {i}
+    (t : itree E (X +ᵢ Y) i) (g : ev_guarded e t) : itree E (X +ᵢ Y) i
+    := go (evg_unroll' e t.(_observe) g) .
+
+  Definition eqn_evg_unroll {X Y} (e : eqn Y X X) (H : eqn_ev_guarded e) : eqn Y X X
+    := fun _ x => evg_unroll e _ (H _ x) .
+
+  
I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
t: itree' E (X +ᵢ Y) i
g: ev_guarded' e t

guarded' (evg_unroll' e t g)
+
I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
t: itree' E (X +ᵢ Y) i
g: ev_guarded' e t

guarded' (evg_unroll' e t g)
+
I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
t: itree' E (X +ᵢ Y) i
g: guarded' t

guarded' (evg_unroll' e t (GHead g))
+
I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
x: X i
g: guarded' (RetF (inl x))

guarded' (evg_unroll' e (RetF (inl x)) (GHead g))
+
dependent elimination g. + Qed. + + Definition evg_unroll_guarded {X Y} (e : eqn Y X X) {i} + (t : itree E (X +ᵢ Y) i) (EG : ev_guarded e t) : guarded (evg_unroll e t EG) + := evg_unroll_guarded' e t.(_observe) EG. + + Definition eqn_evg_unroll_guarded {X Y} + (e : eqn Y X X) (EG : eqn_ev_guarded e) : eqn_guarded (eqn_evg_unroll e EG) + := fun _ x => evg_unroll_guarded e _ (EG _ x) .
  Definition iter_ev_guarded {R X}
+    (e : eqn R X X) (EG : eqn_ev_guarded e) : X ⇒ᵢ itree E R
+    := fun _ x => iter_guarded _ (eqn_evg_unroll_guarded e EG) _ x .

Once again, we establish the expected unfolding lemma, for eventually guarded iteration.

+
  
I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
x: X i
g: ev_guarded' e (RetF (inl x))

evg_unroll' e (RetF (inl x)) g = +evg_unroll' e (_observe (e i x)) (elim_ev_guarded' g)
+
I: Type
E: event I I
X, Y: psh I
e: eqn Y X X
i: I
x: X i
g: ev_guarded' e (RetF (inl x))

evg_unroll' e (RetF (inl x)) g = +evg_unroll' e (_observe (e i x)) (elim_ev_guarded' g)
+
dependent elimination g; [ dependent elimination g | reflexivity ] . + Qed. + +
I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
p, q: ev_guarded' e t

p = q
+
I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
p, q: ev_guarded' e t

p = q
+
I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
g: guarded' t
q: ev_guarded' e t

GHead g = q
I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
x: R i
p: ev_guarded' e (_observe (e i x))
q: ev_guarded' e (RetF (inl x))
IHp: forall q : ev_guarded' e (_observe (e i x)), p = q
GNext p = q
+
I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
t: itree' E (R +ᵢ X) i
g: guarded' t
q: ev_guarded' e t

GHead g = q
destruct t as [ [] | | ]; [ dependent elimination g | | | ]; + dependent elimination q; f_equal; apply guarded'_irrelevant. +
I: Type
E: event I I
R, X: psh I
e: eqn X R R
i: I
x: R i
p: ev_guarded' e (_observe (e i x))
q: ev_guarded' e (RetF (inl x))
IHp: forall q : ev_guarded' e (_observe (e i x)), p = q

GNext p = q
dependent elimination q; [ dependent elimination g | ]; f_equal; apply IHp. + Qed. + +
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)

it_eq RY (iter_ev_guarded f EG i x1) + (iter_ev_guarded f EG i x2)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)

it_eq RY (iter_ev_guarded f EG i x1) + (iter_ev_guarded f EG i x2)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)

it_eq RY + (iter_guarded (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i x1) + (iter_ev_guarded f EG i x2)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)

it_eq RY + (eqn_evg_unroll f EG i x1 >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => + iter_guarded (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i x + | inr y => Ret' y + end)) (iter_ev_guarded f EG i x2)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)

it_eq RY + (eqn_evg_unroll f EG i x1 >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) (iter_ev_guarded f EG i x2)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)
q: ev_guarded f (f i x1)

it_eq RY + (evg_unroll f (f i x1) q >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) (iter_ev_guarded f EG i x2)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
p: _observe (f i x1) = RetF (inl x2)
q: ev_guarded f (f i x1)

it_eqF E RY (it_eq RY) i + match evg_unroll' f (_observe (f i x1)) q with + | RetF r => + _observe + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end (observe (iter_ev_guarded f EG i x2))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i
q: ev_guarded' f (RetF (inl x2))

it_eqF E RY (it_eq RY) i + match evg_unroll' f (RetF (inl x2)) q with + | RetF r => + _observe + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end (observe (iter_ev_guarded f EG i x2))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i

it_eqF E RY (it_eq RY) i + match + evg_unroll' f (_observe (f i x2)) (EG i x2) + with + | RetF r => + _observe + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end (observe (iter_ev_guarded f EG i x2))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x1, x2: X i

it_eq_map E RY (it_eq RY) i + (evg_unroll f (f i x2) (EG i x2) >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x => iter_ev_guarded f EG i0 x + | inr y => Ret' y + end)) (iter_ev_guarded f EG i x2)
+
apply it_eq_step; symmetry; exact (iter_guarded_unfold _ _). + Qed.
  
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i

it_eq RY (iter_ev_guarded f EG i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i

it_eq RY (iter_ev_guarded f EG i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i

it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + match _observe (f i x) with + | RetF r => + _observe + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
g: ev_guarded' f (_observe (f i x))

it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + match _observe (f i x) with + | RetF r => + _observe + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
i0: itree' E (X +ᵢ Y) i
Heqi0: i0 = _observe (f i x)
g: ev_guarded' f i0

it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + match i0 with + | RetF r => + _observe + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + | TauF t => + TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x, x0: X i
Heqi0: RetF (inl x0) = _observe (f i x)
g: ev_guarded' f (RetF (inl x0))

it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + (_observe (iter_ev_guarded f EG i x0))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g: ev_guarded' f (RetF (inr y))
it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + (_observe (Ret' y))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g: ev_guarded' f (TauF t)
it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g: ev_guarded' f (VisF q k)
it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g: ev_guarded' f (RetF (inr y))

it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + (_observe (Ret' y))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g: ev_guarded' f (TauF t)
it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g: ev_guarded' f (VisF q k)
it_eqF E RY (it_eq RY) i + (observe (iter_ev_guarded f EG i x)) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)

it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (_observe (f i x)) (EG i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end + (evg_unroll_guarded' f + (_observe (f i x)) + (EG i x))) (RetF y)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (_observe (f i x)) (EG i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end + (evg_unroll_guarded' f + (_observe (f i x)) + (EG i x))) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (_observe (f i x)) (EG i x) as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end + (evg_unroll_guarded' f + (_observe (f i x)) + (EG i x))) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g': ev_guarded' f (_observe (f i x))

it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (_observe (f i x)) g' as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end (evg_unroll_guarded' f (_observe (f i x)) g')) + (RetF y)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g': ev_guarded' f (_observe (f i x))
it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (_observe (f i x)) g' as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end (evg_unroll_guarded' f (_observe (f i x)) g')) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g': ev_guarded' f (_observe (f i x))
it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (_observe (f i x)) g' as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end (evg_unroll_guarded' f (_observe (f i x)) g')) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
y: Y i
Heqi0: RetF (inr y) = _observe (f i x)
g': ev_guarded' f (RetF (inr y))

it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (RetF (inr y)) g' as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end (evg_unroll_guarded' f (RetF (inr y)) g')) + (RetF y)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g': ev_guarded' f (TauF t)
it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (TauF t) g' as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end (evg_unroll_guarded' f (TauF t) g')) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g': ev_guarded' f (VisF q k)
it_eqF E RY (it_eq RY) i + (match + evg_unroll' f (VisF q k) g' as t + return (guarded' t -> itree' E Y i) + with + | RetF r0 => + match + r0 as r1 + return (guarded' (RetF r1) -> itree' E Y i) + with + | inl x => ex_falso ∘ elim_guarded + | inr r => + fun _ : guarded' (RetF (inr r)) => RetF r + end + | TauF t => + fun _ : guarded' (TauF t) => + TauF + (iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + | VisF q k => + fun _ : guarded' (VisF q k) => + VisF q + (fun r : e_rsp q => + iter_guarded_aux + (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + end (evg_unroll_guarded' f (VisF q k) g')) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
t: itree E (X +ᵢ Y) i
Heqi0: TauF t = _observe (f i x)
g: guarded' (TauF t)

it_eq RY + (iter_guarded_aux (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) i t) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i
q: e_qry i
k: forall r : e_rsp q, itree E (X +ᵢ Y) (e_nxt r)
Heqi0: VisF q k = _observe (f i x)
g: guarded' (VisF q k)
r: e_rsp q
it_eq RY + (iter_guarded_aux (eqn_evg_unroll f EG) + (eqn_evg_unroll_guarded f EG) + (e_nxt r) (k r)) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r)
+
all: apply iter_guarded_aux_unfold. + Qed.

Uniqueness still holds.

+
  
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))

forall (i : I) (x : X i), +it_eq RY (g i x) (iter_ev_guarded f EG i x)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))

forall (i : I) (x : X i), +it_eq RY (g i x) (iter_ev_guarded f EG i x)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i

it_eq_bt E RY R i (g i x) (iter_ev_guarded f EG i x)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i

it_eq_bt E RY R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
Ha: ev_guarded' f (_observe (f i x))

it_eq_bt E RY R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
Ha: ev_guarded' f (_observe t)

it_eq_bt E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), it_eq_t E RY R i (g i x) (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
ot: itree' E (X +ᵢ Y) i
Heqot: ot = _observe t
Ha: ev_guarded' f ot

it_eq_bt E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g0: guarded' t
t': itree E (X +ᵢ Y) i
Heqot: t = _observe t'

it_eq_bt E RY R i + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_eq_bt E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'
it_eq_bt E RY R i + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g0: guarded' t
t': itree E (X +ᵢ Y) i
Heqot: t = _observe t'

it_eq_bt E RY R i + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
t0, t': itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t'

it_eq_t E RY R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< t0) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t0)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
t': itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe t'
r: e_rsp e
it_eq_t E RY R (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
t0, t': itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t'

(it_eq_t E RY ° it_eq_t E RY) R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< t0) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t0)
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
t': itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe t'
r: e_rsp e
(it_eq_t E RY ° it_eq_t E RY) R + (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
t0, t': itree E (X +ᵢ Y) i
Heqot: TauF t0 = _observe t'

forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_eq_t E RY R i + match x1 with + | inl x => g i x + | inr y => Ret' y + end + match x2 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
t': itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe t'
r: e_rsp e
forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_eq_t E RY R i + match x1 with + | inl x => g i x + | inr y => Ret' y + end + match x2 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end
+
all: intros ? ? x2 ->; destruct x2; auto. +
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_eq_bt E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'

it_eq_bt E RY R i + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t' >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_eq_bt E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'

it_eqF E RY (it_eq_t E RY R) i + (_observe (g i x0)) + (_observe (iter_ev_guarded f EG i x0))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_eq_bt E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'

it_eq_map E RY (it_eq_t E RY R) i + (g i x0) (iter_ev_guarded f EG i x0)
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
H: Equivalenceᵢ RY
f: eqn Y X X
g: X ⇒ᵢ itree E Y
EG: eqn_ev_guarded f
EQ: forall (i : I) (x : X i), +it_eq RY (g i x) + (f i x >>= + (fun (i0 : I) (r : (X +ᵢ Y) i0) => + match r with + | inl x0 => g i0 x0 + | inr y => Ret' y + end))
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_eq_t E RY R i (g i x) + (iter_ev_guarded f EG i x)
i: I
x, x0: X i
Ha: ev_guarded' f (_observe (f i x0))
IHHa: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_eq_bt E RY R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
t': itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe t'

it_eq_map E RY (it_eq_t E RY R) i + (f i x0 >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => g i x + | inr y => Ret' y + end)) + (f i x0 >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end))
+
apply IHHa; auto. + Qed.

And w.r.t. weak bisimilarity, we still perform the same computation.

+
  
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i

iter_ev_guarded f EG i x ≈ iter f i x
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
i: I
x: X i

iter_ev_guarded f EG i x ≈ iter f i x
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i

it_wbisim_bt E (eqᵢ Y) R i (iter_ev_guarded f EG i x) + (iter f i x)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i

(eq_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i + (iter_ev_guarded f EG i x) (iter f i x)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i

iter_ev_guarded f EG i x ≊ ?a
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
?b ≊ iter f i x
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
it_wbisim_bt E (eqᵢ Y) R i ?a ?b
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i

?b ≊ iter f i x
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
it_wbisim_bt E (eqᵢ Y) R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) ?b
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i

it_wbisim_bt E (eqᵢ Y) R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
g: ev_guarded f (f i x)

it_wbisim_bt E (eqᵢ Y) R i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: ev_guarded f t

it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
g: ev_guarded' f (_observe t)

it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree E (X +ᵢ Y) i
ot: itree' E (X +ᵢ Y) i
Heqot: ot = _observe t
g: ev_guarded' f ot

it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g: guarded' t
u: itree E (X +ᵢ Y) i
Heqot: t = _observe u

it_wbisim_bt E (eqᵢ Y) R i + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u
it_wbisim_bt E (eqᵢ Y) R i + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t: itree' E (X +ᵢ Y) i
g: guarded' t
u: itree E (X +ᵢ Y) i
Heqot: t = _observe u

it_wbisim_bt E (eqᵢ Y) R i + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
y: Y i
u: itree E (X +ᵢ Y) i
Heqot: RetF (inr y) = _observe u

it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (RetF y) (RetF y)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u
it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r)) + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u

it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t)) + (TauF + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + match r0 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r)) + (VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X +ᵢ Y) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u

it_wbisim_t E (eqᵢ Y) R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e
it_wbisim_t E (eqᵢ Y) R + (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u

(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< t) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e
(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R + (e_nxt r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end) =<< k r) + ((fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u

forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_wbisim_t E (eqᵢ Y) R i + match x1 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + {| + _observe := + match x2 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e
forall (i : I) (x1 x2 : (X +ᵢ Y) i), +eqᵢ (X +ᵢ Y) i x1 x2 -> +it_wbisim_t E (eqᵢ Y) R i + match x1 with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end + {| + _observe := + match x2 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u
i0: I
x0: X i0

it_wbisim_t E (eqᵢ Y) R i0 + (iter_ev_guarded f EG i0 x0) (Tau' (iter f i0 x0))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e
i0: I
x0: X i0
it_wbisim_t E (eqᵢ Y) R i0 + (iter_ev_guarded f EG i0 x0) + (Tau' (iter f i0 x0))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x: X i
t, u: itree E (X +ᵢ Y) i
Heqot: TauF t = _observe u
i0: I
x0: X i0

(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 + (iter_ev_guarded f EG i0 x0) (Tau' (iter f i0 x0))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x: X i
e: e_qry i
k: forall r : e_rsp e, itree E (X +ᵢ Y) (e_nxt r)
u: itree E (X +ᵢ Y) i
Heqot: VisF e k = _observe u
r: e_rsp e
i0: I
x0: X i0
(it_wbisim_t E (eqᵢ Y) ° it_wbisim_t E (eqᵢ Y)) R i0 + (iter_ev_guarded f EG i0 x0) + (Tau' (iter f i0 x0))
+
all: cbn; apply it_wbisim_up2eat; econstructor; [ exact EatRefl | exact (EatStep EatRefl) | apply CIH ]. +
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

it_wbisim_bt E (eqᵢ Y) R i + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (u >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

it_wbisimF E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) R) i + (_observe (iter_ev_guarded f EG i x0)) + (TauF (iter f i x0))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

it_wbisim_bt E (eqᵢ Y) R i (iter_ev_guarded f EG i x0) + (Tau' (iter f i x0))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

?f <= it_wbisim_t E (eqᵢ Y)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u
(?f ° it_wbisim_bt E (eqᵢ Y)) R i + (iter_ev_guarded f EG i x0) + (Tau' (iter f i x0))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

(eat_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i + (iter_ev_guarded f EG i x0) (Tau' (iter f i x0))
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

it_wbisim_bt E (eqᵢ Y) R i (iter_ev_guarded f EG i x0) + (iter f i x0)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

?f <= it_wbisim_t E (eqᵢ Y)
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u
(?f ° it_wbisim_bt E (eqᵢ Y)) R i + (iter_ev_guarded f EG i x0) + (iter f i x0)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

(eq_clo_map ° it_wbisim_bt E (eqᵢ Y)) R i + (iter_ev_guarded f EG i x0) (iter f i x0)
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

iter_ev_guarded f EG i x0 ≊ ?a
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u
?b ≊ iter f i x0
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u
it_wbisim_bt E (eqᵢ Y) R i ?a ?b
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

?b ≊ iter f i x0
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i + (iter_ev_guarded f EG i x) + (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (t >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u
it_wbisim_bt E (eqᵢ Y) R i + (f i x0 >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) ?b
+
I: Type
E: event I I
X, Y: psh I
f: eqn Y X X
EG: eqn_ev_guarded f
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (x : X i), +it_wbisim_t E (eqᵢ Y) R i (iter_ev_guarded f EG i x) (iter f i x)
i: I
x, x0: X i
g: ev_guarded' f (_observe (f i x0))
IHg: forall t : itree E (X +ᵢ Y) i, +_observe (f i x0) = _observe t -> +it_wbisim_bt E (eqᵢ Y) R i +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +match r with +| inl x => iter_ev_guarded f EG i x +| inr y => Ret' y +end)) +(t >>= +(fun (i : I) (r : (X +ᵢ Y) i) => +{| +_observe := +match r with +| inl x => TauF (iter f i x) +| inr y => RetF y +end +|}))
u: itree E (X +ᵢ Y) i
Heqot: RetF (inl x0) = _observe u

it_wbisim_bt E (eqᵢ Y) R i + (f i x0 >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter_ev_guarded f EG i x + | inr y => Ret' y + end)) + (f i x0 >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
now apply IHg. + Qed. +End eventually_guarded.
+
+
+ diff --git a/docs/ITree.html b/docs/ITree.html new file mode 100644 index 0000000..1158edd --- /dev/null +++ b/docs/ITree.html @@ -0,0 +1,53 @@ + + + + + + +Interaction Trees: Definition + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Interaction Trees: Definition

+ +

We implement a subset of the Interaction Tree library in an indexed setting. +These indices provide dynamic control over the set of available external events +during the computation. In particular, the interface is composed of some event I I, +i.e.:

+ +
+

Indexed Interaction Trees

+
Section itree.
+  Context {I : Type}.
+  Context (E : event I I).
+  Context (R : psh I).
+
+  Variant itreeF (REC : psh I) (i : I) : Type :=
+    | RetF (r : R i) : itreeF REC i
+    | TauF (t : REC i) : itreeF REC i
+    | VisF (q : E.(e_qry) i) (k : forall (r : E.(e_rsp) q), REC (E.(e_nxt) r)) : itreeF REC i
+  .
+  Derive NoConfusion for itreeF.
+
+  CoInductive itree (i : I) : Type := go { _observe : itreeF itree i }.
+
+End itree.
Notation itree' E R := (itreeF E R (itree E R)).

The following function defines the coalgebra structure.

+
Definition observe {I E R i} (t : @itree I E R i) : itree' E R i := t.(_observe).
+
+Notation Ret' x := (go (RetF x)).
+Notation Tau' t := (go (TauF t)).
+Notation Vis' e k := (go (VisF e k)).
+
+
+ diff --git a/docs/Machine.html b/docs/Machine.html new file mode 100644 index 0000000..b84cfdd --- /dev/null +++ b/docs/Machine.html @@ -0,0 +1,81 @@ + + + + + + +Evaluation structure and language machine + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Evaluation structure and language machine

+ +

In this file we pull everything together and define evaluation structures and +the abstract characterization of a language machine, together with all the associated +laws.

+

Note that we have here a minor mismatch between the formalization and the paper: +we have realized a posteriori a more elegant way to decompose the abstract +machine as exposed in the paper.

+

Here, instead of only requiring an embedding of normal forms into +configurations (refold, from Def. 11), we require an observation +application function oapp describing how to build a configuration +from a value, an observation, and an assignment. Since normal forms are triples +of a variable, an observation and an assignment, the sole difference is in the +first component: instead of just a variable, oapp takes any value. Both +are easily interdefineable. While refold is more compact to introduce, +it is slightly more cumbersome to work with, which is why we axiomatize oapp +directly.

+

Patching the development to follow more closely the paper's presentation would be slightly +technical due to the technicality of the mechanized proofs involved, but essentially +straightforward.

+

We here define what is called an evaluation structure in the paper (Def. 11). It tells +us how to evaluate a configuration to a normal form and how to stitch one back together +from the data sent by Opponent.

+
Class machine (val : Fam₁ T C) (conf : Fam₀ T C) (obs : obs_struct T C) := {
+  eval : conf ⇒ (delay ∘ nf obs val) ;
+  oapp [Γ x] (v : val Γ x) (o : obs x) : dom o =[val]> Γ -> conf Γ ;
+}.

Next we define "evaluating then observing" (Def. 14).

+
Definition evalₒ `{machine val conf obs}
+  : conf ⇒ (delay ∘ obs∙) :=
+  fun _ t => then_to_obs (eval t) .
Notation "v ⊙ o ⦗ a ⦘" := (oapp v o a) (at level 20).

We can readily define the embedding from normal forms to configurations (i.e., we can +derive what is called refold in the paper).

+
Definition emb `{machine val conf obs} {_ : subst_monoid val}
+  : nf obs val ⇒ conf
+  := fun _ n => oapp (v_var (nf_var n)) (nf_obs n) (nf_args n) .

Next we define the "bad instanciation" relation (Def. 28).

+
Variant head_inst_nostep `{machine val conf obs} {VM : subst_monoid val} 
+        (u : sigT obs) : sigT obs -> Prop :=
+| HeadInst {Γ y} (v : val Γ y) (o : obs y) (a : dom o =[val]> Γ) (i : Γ ∋ projT1 u)
+    : ¬(is_var v)
+    -> evalₒ (v ⊙ o⦗a⦘) ≊ ret_delay (i ⋅ projT2 u)
+    -> head_inst_nostep u (y ,' o) .

Finally we define the structure containing all the remaining axioms of a language +machine (Def. 13).

+
Class machine_laws val conf obs {M : machine val conf obs}
+  {VM : subst_monoid val} {CM : subst_module val conf} := {

oapp respects pointwise equality of assignments.

+
   oapp_proper {Γ x} {v : val Γ x} {o} :: Proper (asgn_eq (dom o) Γ ==> eq) (oapp v o) ;

oapp commutes with substitutions. This is the equivalent of the second +equation at the end of Def. 13, in terms of oapp instead of refold.

+
   app_sub {Γ1 Γ2 x} (v : val Γ1 x) (o : obs x) (a : dom o =[val]> Γ1) (b : Γ1 =[val]> Γ2)
+   : (v ⊙ o⦗a⦘) ₜ⊛ b = (v ᵥ⊛ b) ⊙ o⦗a ⊛ b⦘ ;

"evaluation respects substitution". This is the core hypothesis of the OGS +soundness, stating essentially "substituting, then evaluating" is equivalent to +"evaluating, then substituting, then evaluating once more". It is the equvalent +of the first equation at the end of Def. 13.

+
   eval_sub {Γ Δ} (c : conf Γ) (a : Γ =[val]> Δ)
+   : eval (c ₜ⊛ a) ≋ bind_delay' (eval c) (fun n => eval (emb n ₜ⊛ a)) ;

Evaluating the embedding of a normal form is equivalent to returning the normal +form. This is part of the evaluation structure (Def. 11) in the paper.

+
   eval_nf_ret {Γ} (u : nf obs val Γ)
+   : eval (emb u) ≋ ret_delay u ;

At last the mystery hypothesis, stating that the machine has focused redexes (Def. 28). +It is necessary for establishing that the composition can be defined by eventually +guarded iteration.

+
    eval_app_not_var : well_founded head_inst_nostep ;
+  } .
+End with_param.

Finally we define a cute notation for applying an observation to a value.

+
#[global] Notation "v ⊙ o ⦗ a ⦘" := (oapp v o a) (at level 20).
+
+
+ diff --git a/docs/NfBisim.html b/docs/NfBisim.html new file mode 100644 index 0000000..9128abc --- /dev/null +++ b/docs/NfBisim.html @@ -0,0 +1,131 @@ + + + + + + +NfBisim.v + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+ + +
From OGS Require Import Prelude.
+From OGS.Utils Require Import Rel.
+From OGS.Ctx Require Import All Ctx Covering Subst.
+From OGS.ITree Require Import Event ITree Eq Delay.
+From OGS.OGS Require Import Obs Game Machine.
+
+Section with_param.
+  Context `{CC : context T C} {CL : context_laws T C} (obs : obs_struct T C).
+  Context {val} {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {conf} {CM : subst_module val conf} {CML : subst_module_laws val conf}.
+  Context (M : machine val conf obs).
+
+  (* NF bisimulation game *)
+  Definition nfb_g : game C (C × C)
+    := {| g_client := {| g_move Γ := obs∙ Γ ;
+                         g_next Γ o := (Γ , dom o.(cut_r)) |} ;
+          g_server := {| g_move '(Γ , Δ) := obs∙ Δ ;
+                         g_next '(Γ , Δ) o := Γ +▶ dom o.(cut_r) |} |}.
+
+  Definition nfb_e : event C C
+    := e_of_g nfb_g.
+
+  (* active NF bisimulation *)
+  Definition nfb_act := itree nfb_e ∅ᵢ.
+  (* single-var passive NF bisimulation *)
+  Definition nfb_pas₁ (Γ : C) (x : T) := forall o : obs x, nfb_act (Γ +▶ dom o) .
+  (* full passive NF bisimulation *)
+  Definition nfb_pas '(Γ , Δ) := Δ =[nfb_pas₁]> Γ .
+
+  (* active NF bisimulation with cut-off *)
+  Definition nfb_fin Δ Γ := itree nfb_e (fun _ => obs∙ Δ) Γ.
+  (* single-var passive NF bisimulation with cut-off *)
+  Definition nfb_fin_pas₁ (Δ Γ : C) (x : T) := forall o : obs x, nfb_fin Δ (Γ +▶ dom o) .
+
+  (* renaming active NF bisim *)
+  Definition nfb_ren : forall Γ1 Γ2, Γ1 ⊆ Γ2 -> nfb_act Γ1 -> nfb_act Γ2 :=
+    cofix _nfb_ren _ _ ρ t :=
+      go match t.(_observe) with
+         | RetF r => match r with end
+         | TauF t => TauF (_nfb_ren _ _ ρ t)
+         | VisF q k =>
+            VisF (ρ _ q.(cut_l) ⋅ q.(cut_r) : nfb_e.(e_qry) _)
+                 (fun r => _nfb_ren _ _ (r_shift (m_dom r) ρ) (k r))
+         end .
+
+  Definition nfb_var : c_var ⇒ nfb_pas₁
+    := cofix _nfb_var Γ x i o :=
+      Vis' (r_cat_l i ⋅ o : nfb_e.(e_qry) _)
+           (fun r => _nfb_var _ _ (r_cat_r r.(cut_l)) r.(cut_r)) .
+
+  (* renaming active NF bisim with cut-off *)
+  Program Definition nfb_fin_ren {Δ} : forall Γ1 Γ2, Γ1 ⊆ Γ2 -> nfb_fin Δ Γ1 -> nfb_fin Δ Γ2 :=
+    cofix _nfb_fin_ren _ _ ρ t :=
+      go match t.(_observe) with
+         | RetF r => RetF r
+         | TauF t => TauF (_nfb_fin_ren _ _ ρ t)
+         | VisF q k =>
+            VisF (ρ _ q.(cut_l) ⋅ q.(cut_r) : nfb_e.(e_qry) _)
+                 (fun r => _nfb_fin_ren _ _ (r_shift (m_dom r) ρ) (k r))
+         end .
+
+  (* tail-cutting of NF bisim *)
+  Program Definition nfb_stop : forall Δ Γ, nfb_act (Δ +▶ Γ) -> nfb_fin Δ Γ :=
+    cofix _nfb_stop Δ _ t :=
+      go match t.(_observe) with
+         | RetF r => match r with end
+         | TauF t => TauF (_nfb_stop _ _ t)
+         | VisF q k => ltac:(exact
+            match c_view_cat q.(cut_l) with
+            | Vcat_l i => RetF (i ⋅ q.(cut_r))
+            | Vcat_r j => VisF (j ⋅ q.(cut_r) : nfb_e.(e_qry) _)
+                              (fun r => _nfb_stop _ _ (nfb_ren _ _ r_assoc_r (k r)))
+            end)
+          end.
+
+  (* embed active NF-bisim with cut-off to active OGS strategy (generalized) *)
+  Definition nfb_to_ogs_aux {Δ}
+    : forall Φ (ks : ↓⁻Φ =[nfb_fin_pas₁ Δ]> ↓⁺Φ), nfb_fin Δ ↓⁺Φ -> ogs_act (obs:=obs) Δ Φ.
+    cofix _nfb_to_ogs; intros Φ ks t.
+    apply go; destruct (t.(_observe)).
+    + apply RetF; exact r.
+    + apply TauF; exact (_nfb_to_ogs _ ks t0).
+    + unshelve eapply VisF; [ exact q | ].
+      intro r.
+      pose (ks' := [ ks , fun _ j o => k (j ⋅ o) ]%asgn).
+      refine (_nfb_to_ogs (Φ ▶ₓ _ ▶ₓ _)%ctx _ (ks' _ r.(cut_l) r.(cut_r))).
+      intros ? i o.
+      refine (nfb_fin_ren _ _ [ r_cat_l ᵣ⊛ r_cat_l , r_cat_r ]%asgn (ks' _ i o)).
+  Defined.
+
+  (* embed active NF-bisim with cut-off to active OGS strategy (initial state) *)
+  Definition nfb_to_ogs {Δ Γ} : nfb_fin Δ Γ -> ogs_act Δ (∅ ▶ₓ Γ)
+    := fun u => nfb_to_ogs_aux (∅ ▶ₓ Γ) ! (nfb_fin_ren _ _ r_cat_r u) .
+
+  Definition app_no_arg {Γ x} (v : val Γ x) (o : obs x)
+    : conf (Γ +▶ dom o)
+    := v ᵥ⊛ᵣ r_cat_l ⊙ o ⦗ r_emb r_cat_r ⦘.
+
+  (* language machine to NF-bisim *)
+  Definition m_nfb_act : conf ⇒ nfb_act
+    := cofix _m_nfb Γ c
+      := subst_delay
+           (fun n => Vis' (nf_to_obs _ n : nfb_e.(e_qry) _)
+                       (fun o => _m_nfb _ (app_no_arg (nf_args n _ o.(cut_l)) o.(cut_r)))) 
+           (eval c).
+
+  Definition m_nfb_pas : val ⇒ nfb_pas₁
+    := fun _ _ v o => m_nfb_act _ (app_no_arg v o).
+End with_param.
+
+
+ diff --git a/docs/Obs.html b/docs/Obs.html new file mode 100644 index 0000000..254d9e5 --- /dev/null +++ b/docs/Obs.html @@ -0,0 +1,103 @@ + + + + + + +Observation Structure (§ 4.4) + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Observation Structure (§ 4.4)

+ +

The messages that player and opponent exchange in the OGS +arise from splitting normal forms into the head variable +on which it is stuck, an observation, and an assignment. +An observation structure axiomatizes theses observations +of the language. They consist of:

+ +

In fact as these make sense quite generally, we have already defined +them along with generic combinators on sorted families in +Ctx/Family.v. Much of the content of this file will +be to wrap these generic definitions with more suitable names and +provide specific utilities on top.

+

As explained above, observation structures are just operators. We +rename their domain o_dom to just dom.

+
#[global] Notation obs_struct T C := (Oper T C).
+#[global] Notation dom := o_dom.
+

System Message: WARNING/2 (theories/OGS/Obs.v, line 3); backlink

+Duplicate explicit target name: "ctx/family.v".
+

Pointed observations consist of a pair of a variable and a matching observation. +We construct them using the generic formal cut combinator on families defined +in Ctx/Family.v.

+
Definition pointed_obs `{CC : context T C} (O : Oper T C) : Fam₀ T C
+  := c_var ∥ₛ ⦉O⦊.
+#[global] Notation "O ∙" := (pointed_obs O).
+#[global] Notation m_var o := (o.(cut_l)).
+#[global] Notation m_obs o := (o.(cut_r)).
+#[global] Notation m_dom o := (o_dom o.(cut_r)).

Next we define normal forms, as triplets of a variable, an observation +and an assignment filling the domain of the observation. For this we again +use the formal cut combinator and the "observation filling" combinator, +defined in Ctx/Assignment.v.

+
Definition nf `{CC : context T C} (O : obs_struct T C) (X : Fam₁ T C) : Fam₀ T C
+  := c_var ∥ₛ (O # X).

We now define two utilities for projecting normal forms to pointed observations.

+
Definition nf_to_obs `{CC : context T C} {O} {X : Fam₁ T C} : forall Γ, nf O X Γ -> O∙ Γ
+  := f_cut_map f_id₁ forget_args.
+#[global] Coercion nf_to_obs : nf >-> pointed_obs.
+
+Definition then_to_obs `{CC : context T C} {O} {X : Fam₁ T C} {Γ}
+  : delay (nf O X Γ) -> delay (O∙ Γ)
+  := fmap_delay (nf_to_obs Γ).

Next, we define shortcuts for projecting normal forms into their various components.

+
Section with_param.
+  Context `{CC : context T C} {O : obs_struct T C} {X : Fam₁ T C}.
+
+  Definition nf_ty {Γ} (n : nf O X Γ) : T
+    := n.(cut_ty).
+  Definition nf_var {Γ} (n : nf O X Γ) : Γ ∋ nf_ty n
+    := n.(cut_l).
+  Definition nf_obs {Γ} (n : nf O X Γ) : O (nf_ty n)
+    := n.(cut_r).(fill_op).
+  Definition nf_dom {Γ} (n : nf O X Γ) : C
+    := dom n.(cut_r).(fill_op).
+  Definition nf_args {Γ} (n : nf O X Γ) : nf_dom n =[X]> Γ
+    := n.(cut_r).(fill_args).

As normal forms contain an assignment, Coq's equality is not the right notion of +equivalence: we wish to consider two normal forms as equivalent even if their assignment +are merely pointwise equal.

+
  Variant nf_eq {Γ} : nf O X Γ -> nf O X Γ -> Prop :=
+  | NfEq {t} {i : Γ ∋ t} {o a1 a2} : a1 ≡ₐ a2 -> nf_eq (i⋅o⦇a1⦈) (i⋅o⦇a2⦈).
+
+  #[global] Instance nf_eq_Equivalence {Γ} : Equivalence (@nf_eq Γ).
+  Proof.
+    split.
+    - intros ?; now econstructor.
+    - intros ?? []; now econstructor.
+    - intros ??? [] h2; dependent induction h2.
+      econstructor; now transitivity a2.
+  Qed.

We lift this notion of equivalence to computations returning normal forms.

+
  
The reference delay was not found in the current +environment.
+
+ #[global] Instance then_to_obs_proper {Γ} + : Proper (@comp_eq Γ ==> it_eq (eqᵢ _) (i:=_)) then_to_obs. + Proof. + intros a b; unfold comp_eq, then_to_obs, fmap_delay; cbn; intros H. + eapply fmap_eq; [ | exact H ]. + now intros [] ?? []. + Qed. +End with_param. + +#[global] Notation "u ≋ v" := (comp_eq u v).
+
+
+ diff --git a/docs/Prelude.html b/docs/Prelude.html new file mode 100644 index 0000000..e8d3bd3 --- /dev/null +++ b/docs/Prelude.html @@ -0,0 +1,92 @@ + + + + + + +Coq Prelude + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Coq Prelude

+ +

This file contains a bunch of setup, global options and imports.

+

Our notations have evolved quite organically. It would need refactoring, for now we +just disable warnings related to it.

+
#[global] Set Warnings "-notation-overridden".
+#[global] Set Warnings "-parsing".

Enable negative records with definitional eta-equivalence. A requirement for well-behaved +coinductive types.

+
#[global] Set Primitive Projections.

We use a lot of implicit variable declaration around typeclasses.

+
#[global] Generalizable All Variables.

Import the Equations library by Matthieu Sozeau, for Agda-like dependent pattern-matching.

+
From Equations Require Export Equations.
+#[global] Set Equations Transparent.
+#[global] Set Equations With UIP.

We import dependent induction tactics and inline rewriting notations from the Coq +standard library.

+

Also we hook up Equations with axiom K (equivalent to unicity of identity proofs, UIP), +for even more powerful matching.

+
Require Export Coq.Program.Equality.
+Export EqNotations.
+
+

forall X : Type, UIP X
+
X: Type

EqdepFacts.Eq_rect_eq X
+
exact (Eqdep.Eq_rect_eq.eq_rect_eq _). +Qed. +#[global] Existing Instance YesUIP.

We import basic definition for the use of the universe of strict proposition SProp.

+
Require Export Coq.Logic.StrictProp.

A bunch of notations and definitions for basic datatypes.

+
#[global] Notation "f ∘ g" := (fun x => f (g x))
+ (at level 40, left associativity) : function_scope.
+
+#[global] Notation "a ,' b" := (existT _ a b) (at level 30).
+
+(*
+Definition uncurry {A B} {C : A -> B -> Type} (f : forall a b, C a b) (i : A * B)
+  := f (fst i) (snd i).
+
+Definition curry {A B} {C : A -> B -> Type} (f : forall i, C (fst i) (snd i)) a b
+  := f (a , b).
+
+#[global] Notation curry' := (fun f a b => f (a ,' b)).
+#[global] Notation uncurry' := (fun f x => f (projT1 x) (projT2 x)).
+ *)
+
+#[global] Notation "A × B" := (prod A%type B%type) (at level 20).

Finite types.

+
Variant T0 : Type := .
+Derive NoConfusion for T0.
+
+Variant T1 : Type := T1_0.
+Derive NoConfusion for T1.

Absurdity elimination.

+
Definition ex_falso {A : Type} (bot : T0) : A := match bot with end.

Decidable predicates.

+
#[global] Notation "¬ P" := (P -> T0) (at level 5).
+Variant decidable (X : Type) : Type :=
+| Yes : X -> decidable X
+| No : ¬X -> decidable X
+.
+Derive NoConfusion NoConfusionHom for decidable.

Subset types based on strict propositions.

+
Record sigS {X : Type} (P : X -> SProp) := { sub_elt : X ; sub_prf : P sub_elt }.
+Arguments sub_elt {X P}.
+Arguments sub_prf {X P}.
+
+
X: Type
P: X -> SProp
a, b: sigS P
H: sub_elt a = sub_elt b

a = b
+
X: Type
P: X -> SProp
e: X
p: P e
b: sigS P
H: e = sub_elt b

{| sub_elt := e; sub_prf := p |} = b
+
X: Type
P: X -> SProp
e: X
b: sigS P
H: e = sub_elt b
p: P (sub_elt b)

{| sub_elt := sub_elt b; sub_prf := p |} = b
+
change p with b.(sub_prf); reflexivity. +Qed.

Misc.

+
Definition substS {X : SProp} (P : X -> Type) (a b : X) : P a -> P b := fun p => p .
+
+
A, B, C: Type
x: A
y: B
f: A -> B -> C

f_equal2 f eq_refl eq_refl = eq_refl
+
apply YesUIP. +Qed. + +Definition injective {A B : Type} (f : A -> B) := forall x y : A, f x = f y -> x = y .
+
+
+ diff --git a/docs/Properties.html b/docs/Properties.html new file mode 100644 index 0000000..248b783 --- /dev/null +++ b/docs/Properties.html @@ -0,0 +1,3016 @@ + + + + + + +Interaction Trees: Theory of the structure + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Interaction Trees: Theory of the structure

+ +

We collect in these file the main lemmas capturing the applicative, +monadic, and (unguarded) iteration structure of itrees.

+
Section withE.
+  Context {I} {E : event I I}.
+
+  
I: Type
E: event I I
X: psh I
i: I
t: itree E X i

Tau' t ≈ t
+
I: Type
E: event I I
X: psh I
i: I
t: itree E X i

Tau' t ≈ t
+
I: Type
E: event I I
X: psh I
i: I
t: itree E X i

it_eat i (observe (Tau' t)) ?x1
I: Type
E: event I I
X: psh I
i: I
t: itree E X i
it_eat i (observe t) ?x2
I: Type
E: event I I
X: psh I
i: I
t: itree E X i
it_eqF E (eqᵢ X) (gfp (it_wbisim_map E (eqᵢ X))) i + ?x1 ?x2
+
I: Type
E: event I I
X: psh I
i: I
t: itree E X i

it_eat i (observe (Tau' t)) ?x1
apply EatStep, EatRefl. +
I: Type
E: event I I
X: psh I
i: I
t: itree E X i

it_eat i (observe t) ?x2
apply EatRefl. +
I: Type
E: event I I
X: psh I
i: I
t: itree E X i

it_eqF E (eqᵢ X) (gfp (it_wbisim_map E (eqᵢ X))) i + (observe t) (observe t)
destruct (observe t); now econstructor. + Qed.

fmap respects strong bisimilarity.

+
  
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)

Proper + (dpointwise_relation (fun i : I => RX i ==> RY i) ==> + dpointwise_relation + (fun i : I => it_eq RX (i:=i) ==> it_eq RY (i:=i))) + fmap
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)

Proper + (dpointwise_relation (fun i : I => RX i ==> RY i) ==> + dpointwise_relation + (fun i : I => it_eq RX (i:=i) ==> it_eq RY (i:=i))) + fmap
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g

dpointwise_relation + (fun i : I => + (it_eq RX (i:=i) ==> it_eq RY (i:=i))%signature) + (fmap f) (fmap g)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g

forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +gfp (it_eq_map E RY) a (f <$> x) (g <$> y)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> it_eq_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
h: gfp (it_eq_map E RX) i x y

it_eq_bt E RY R i (f <$> x) (g <$> y)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> it_eq_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
h: it_eq_map E RX (gfp (it_eq_map E RX)) i x y

it_eq_bt E RY R i (f <$> x) (g <$> y)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> it_eq_t E RY R a (f <$> x) (g <$> y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2

it_eqF E RY (it_eq_t E RY R) i (RetF (f i r1)) + (RetF (g i r2))
+
econstructor; now apply H1. + Qed.

fmap respects weak bisimilarity.

+
  
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)

Proper + (dpointwise_relation (fun i : I => RX i ==> RY i) ==> + dpointwise_relation + (fun i : I => it_wbisim RX i ==> it_wbisim RY i)) + fmap
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)

Proper + (dpointwise_relation (fun i : I => RX i ==> RY i) ==> + dpointwise_relation + (fun i : I => it_wbisim RX i ==> it_wbisim RY i)) + fmap
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g

dpointwise_relation + (fun i : I => + (it_wbisim RX i ==> it_wbisim RY i)%signature) + (fmap f) (fmap g)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g

forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +gfp (it_wbisim_map E RY) a (f <$> x) (g <$> y)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
h: gfp (it_wbisim_map E RX) i x y

it_wbisim_bt E RY R i (f <$> x) (g <$> y)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: dpointwise_relation + (fun i : I => (RX i ==> RY i)%signature) f g
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
h: it_wbisim_map E RX (gfp (it_wbisim_map E RX)) i x + y

it_wbisim_bt E RY R i (f <$> x) (g <$> y)
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
h: it_wbisimF E RX (gfp (it_wbisim_map E RX)) i + (_observe x) (_observe y)

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
x1, x2: itree' E X i
r1: it_eat i (_observe x) x1
r2: it_eat i (_observe y) x2
rr: it_eqF E RX (gfp (it_wbisim_map E RX)) i x1 x2

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2
it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)
it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

itree' E Y i
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3
itree' E Y i
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3
it_eat i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end ?x1
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3
it_eat i + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end ?x2
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3
it_eqF E RY (it_wbisim_t E RY R) i ?x1 ?x2
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

itree' E Y i
exact (RetF (f i r0)). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

itree' E Y i
exact (RetF (g i r3)). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

it_eat i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end (RetF (f i r0))
I: Type
E: event I I
X, Y: psh I
f: forall a : I, X a -> Y a
i: I
r0: X i
ot: itree' E X i
r1: it_eat i ot (RetF r0)

it_eat i + match ot with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end (RetF (f i r0))
+
I: Type
E: event I I
X: psh I
i: I
t1: itree E X i
r0: X i
r1: it_eat i (observe t1) (RetF r0)
IHr1: forall (Y : psh I) + (f : forall a : I, X a -> Y a) + (r1 : X i), +RetF r0 = RetF r1 -> +it_eat i + match observe t1 with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => + VisF e (fun r : e_rsp e => f <$> k r) + end (RetF (f i r1))
Y: psh I
f: forall a : I, X a -> Y a

it_eat i (observe (f <$> t1)) (RetF (f i r0))
+
exact (IHr1 Y f r0 eq_refl). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

it_eat i + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end (RetF (g i r3))
I: Type
E: event I I
X, Y: psh I
g: forall a : I, X a -> Y a
i: I
r3: X i
ot: itree' E X i
r2: it_eat i ot (RetF r3)

it_eat i + match ot with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end (RetF (g i r3))
+
I: Type
E: event I I
X: psh I
i: I
t1: itree E X i
r3: X i
r2: it_eat i (observe t1) (RetF r3)
IHr2: forall (Y : psh I) + (g : forall a : I, X a -> Y a) + (r4 : X i), +RetF r3 = RetF r4 -> +it_eat i + match observe t1 with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => + VisF e (fun r : e_rsp e => g <$> k r) + end (RetF (g i r4))
Y: psh I
g: forall a : I, X a -> Y a

it_eat i (observe (g <$> t1)) (RetF (g i r3))
+
exact (IHr2 Y g r3 eq_refl). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

it_eqF E RY (it_wbisim_t E RY R) i + (RetF (f i r0)) (RetF (g i r3))
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
r0: X i
r1: it_eat i (_observe x) (RetF r0)
r3: X i
r2: it_eat i (_observe y) (RetF r3)
r_rel: RX i r0 r3

RY i (f i r0) (g i r3)
+
now apply H1. +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

itree' E Y i
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2
itree' E Y i
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2
it_eat i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end ?x1
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2
it_eat i + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end ?x2
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2
it_eqF E RY (it_wbisim_t E RY R) i ?x1 ?x2
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

itree' E Y i
exact (TauF (f <$> t1)). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

itree' E Y i
exact (TauF (g <$> t2)). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

it_eat i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end (TauF (f <$> t1))
I: Type
E: event I I
X, Y: psh I
f: forall a : I, X a -> Y a
i: I
t1: itree E X i
ot: itree' E X i
r1: it_eat i ot (TauF t1)

it_eat i + match ot with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end (TauF (f <$> t1))
+
I: Type
E: event I I
X: psh I
i: I
t0, t1: itree E X i
r1: it_eat i (observe t0) (TauF t1)
IHr1: forall (Y : psh I) + (f : forall a : I, X a -> Y a) + (t2 : itree E X i), +TauF t1 = TauF t2 -> +it_eat i + match observe t0 with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => + VisF e (fun r : e_rsp e => f <$> k r) + end (TauF (f <$> t2))
Y: psh I
f: forall a : I, X a -> Y a

it_eat i (observe (f <$> t0)) (TauF (f <$> t1))
+
exact (IHr1 Y f t1 eq_refl). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

it_eat i + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end (TauF (g <$> t2))
I: Type
E: event I I
X, Y: psh I
g: forall a : I, X a -> Y a
i: I
t2: itree E X i
ot: itree' E X i
r2: it_eat i ot (TauF t2)

it_eat i + match ot with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end (TauF (g <$> t2))
+
I: Type
E: event I I
X: psh I
i: I
t1, t2: itree E X i
r2: it_eat i (observe t1) (TauF t2)
IHr2: forall (Y : psh I) + (g : forall a : I, X a -> Y a) + (t3 : itree E X i), +TauF t2 = TauF t3 -> +it_eat i + match observe t1 with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => + VisF e (fun r : e_rsp e => g <$> k r) + end (TauF (g <$> t3))
Y: psh I
g: forall a : I, X a -> Y a

it_eat i (observe (g <$> t1)) (TauF (g <$> t2))
+
exact (IHr2 Y g t2 eq_refl). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

it_eqF E RY (it_wbisim_t E RY R) i + (TauF (f <$> t1)) (TauF (g <$> t2))
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y, t1: itree E X i
r1: it_eat i (_observe x) (TauF t1)
t2: itree E X i
r2: it_eat i (_observe y) (TauF t2)
t_rel: gfp (it_wbisim_map E RX) i t1 t2

it_wbisim_t E RY R i (f <$> t1) (g <$> t2)
+
now apply CIH. +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

itree' E Y i
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)
itree' E Y i
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)
it_eat i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end ?x1
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)
it_eat i + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end ?x2
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)
it_eqF E RY (it_wbisim_t E RY R) i ?x1 ?x2
+
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

itree' E Y i
exact (VisF q (fun r => f <$> k1 r)). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

itree' E Y i
exact (VisF q (fun r => g <$> k2 r)). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

it_eat i + match _observe x with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end (VisF q (fun r : e_rsp q => f <$> k1 r))
I: Type
E: event I I
X, Y: psh I
f: forall a : I, X a -> Y a
i: I
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
ot: itree' E X i
r1: it_eat i ot (VisF q k1)

it_eat i + match ot with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => VisF e (fun r : e_rsp e => f <$> k r) + end (VisF q (fun r : e_rsp q => f <$> k1 r))
+
I: Type
E: event I I
X: psh I
i: I
t1: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (observe t1) (VisF q k1)
IHr1: forall (Y : psh I) + (f : forall a : I, X a -> Y a) + (q0 : e_qry i) + (k2 : forall x : e_rsp q0, + itree E X (e_nxt x)), +VisF q k1 = VisF q0 k2 -> +it_eat i + match observe t1 with + | RetF r => RetF (f i r) + | TauF t => TauF (f <$> t) + | VisF e k => + VisF e (fun r : e_rsp e => f <$> k r) + end + (VisF q0 (fun r : e_rsp q0 => f <$> k2 r))
Y: psh I
f: forall a : I, X a -> Y a

it_eat i (observe (f <$> t1)) + (VisF q (fun r : e_rsp q => f <$> k1 r))
+
exact (IHr1 Y f q k1 eq_refl). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

it_eat i + match _observe y with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end (VisF q (fun r : e_rsp q => g <$> k2 r))
I: Type
E: event I I
X, Y: psh I
g: forall a : I, X a -> Y a
i: I
q: e_qry i
k2: forall x : e_rsp q, itree E X (e_nxt x)
ot: itree' E X i
r2: it_eat i ot (VisF q k2)

it_eat i + match ot with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end (VisF q (fun r : e_rsp q => g <$> k2 r))
+
I: Type
E: event I I
X: psh I
i: I
t1: itree E X i
q: e_qry i
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (observe t1) (VisF q k2)
IHr2: forall (Y : psh I) + (g : forall a : I, X a -> Y a) + (q0 : e_qry i) + (k3 : forall x : e_rsp q0, + itree E X (e_nxt x)), +VisF q k2 = VisF q0 k3 -> +it_eat i + match observe t1 with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => + VisF e (fun r : e_rsp e => g <$> k r) + end + (VisF q0 (fun r : e_rsp q0 => g <$> k3 r))
Y: psh I
g: forall a : I, X a -> Y a

it_eat i (observe (g <$> t1)) + (VisF q (fun r : e_rsp q => g <$> k2 r))
+
exact (IHr2 Y g q k2 eq_refl). +
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

it_eqF E RY (it_wbisim_t E RY R) i + (VisF q (fun r : e_rsp q => f <$> k1 r)) + (VisF q (fun r : e_rsp q => g <$> k2 r))
I: Type
E: event I I
X: psh I
RX: forall x : I, relation (X x)
Y: psh I
RY: forall x : I, relation (Y x)
f, g: forall a : I, X a -> Y a
H1: forall a : I, +(RX a ==> RY a)%signature (f a) (g a)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_wbisim_map E RX) a x y -> +it_wbisim_t E RY R a (f <$> x) (g <$> y)
i: I
x, y: itree E X i
q: e_qry i
k1: forall x : e_rsp q, itree E X (e_nxt x)
r1: it_eat i (_observe x) (VisF q k1)
k2: forall x : e_rsp q, itree E X (e_nxt x)
r2: it_eat i (_observe y) (VisF q k2)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k1 r) (k2 r)

forall r : e_rsp q, +it_wbisim_t E RY R (e_nxt r) (f <$> k1 r) (g <$> k2 r)
+
intro r; now apply CIH. + Qed.

subst respects strong bisimilarity.

+
  
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y

Proper + (dpointwise_relation + (fun i : I => RX i ==> it_eq RY (i:=i)) ==> + dpointwise_relation + (fun i : I => it_eq RX (i:=i) ==> it_eq RY (i:=i))) + subst
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y

Proper + (dpointwise_relation + (fun i : I => RX i ==> it_eq RY (i:=i)) ==> + dpointwise_relation + (fun i : I => it_eq RX (i:=i) ==> it_eq RY (i:=i))) + subst
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y

forall x y : forall a : I, X a -> itree E Y a, +(forall (a : I) (x0 y0 : X a), + RX a x0 y0 -> + gfp (it_eq_map E RY) a (x a x0) (y a y0)) -> +forall (a : I) (x0 y0 : itree E X a), +gfp (it_eq_map E RX) a x0 y0 -> +gfp (it_eq_map E RY) a (x =<< x0) (y =<< y0)
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x, y: itree E X i
h2: gfp (it_eq_map E RX) i x y

it_eq_bt E RY R i (f =<< x) (g =<< y)
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x, y: itree E X i
h2: it_eq_map E RX (gfp (it_eq_map E RX)) i x y

it_eq_bt E RY R i (f =<< x) (g =<< y)
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2

it_eqF E RY (it_eq_t E RY R) i (_observe (f i r1)) + (_observe (g i r2))
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2
h3:= h1 i r1 r2 r_rel: gfp (it_eq_map E RY) i (f i r1) (g i r2)

it_eqF E RY (it_eq_t E RY R) i + (_observe (f i r1)) (_observe (g i r2))
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2
h3: it_eq_map E RY (gfp (it_eq_map E RY)) i + (f i r1) (g i r2)

it_eqF E RY (it_eq_t E RY R) i + (_observe (f i r1)) (_observe (g i r2))
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2
h3: it_eqF E RY (gfp (it_eq_map E RY)) i + (_observe (f i r1)) (_observe (g i r2))

it_eqF E RY (it_eq_t E RY R) i + (_observe (f i r1)) (_observe (g i r2))
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2
t1, t2: itree E Y i
t_rel: gfp (it_eq_map E RY) i t1 t2

it_eq_t E RY R i t1 t2
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2
q: e_qry i
k1, k2: forall x : e_rsp q, itree E Y (e_nxt x)
k_rel: forall r : e_rsp q, +gfp (it_eq_map E RY) (e_nxt r) (k1 r) (k2 r)
forall r : e_rsp q, +it_eq_t E RY R (e_nxt r) (k1 r) (k2 r)
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2
t1, t2: itree E Y i
t_rel: gfp (it_eq_map E RY) i t1 t2

it_eq_t E RY R i t1 t2
I: Type
E: event I I
X, Y: psh I
RX: relᵢ X X
RY: relᵢ Y Y
f, g: forall a : I, X a -> itree E Y a
h1: forall (a : I) (x y : X a), +RX a x y -> +gfp (it_eq_map E RY) a (f a x) (g a y)
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (a : I) (x y : itree E X a), +gfp (it_eq_map E RX) a x y -> +it_eq_t E RY R a (f =<< x) (g =<< y)
i: I
x0: itree E X i
r1, r2: X i
r_rel: RX i r1 r2
q: e_qry i
k1, k2: forall x : e_rsp q, itree E Y (e_nxt x)
k_rel: forall r : e_rsp q, +gfp (it_eq_map E RY) (e_nxt r) (k1 r) (k2 r)
r: e_rsp q
it_eq_t E RY R (e_nxt r) (k1 r) (k2 r)
+
all: now apply (gfp_t (it_eq_map E RY)). + Qed.

A slight generalization of the monad law t ≊ t >>= η.

+
  
I: Type
E: event I I
X, Y: psh I
RX: relᵢ Y Y
H: Reflexiveᵢ RX
f: X ⇒ᵢ Y
i: I
t: itree E X i

it_eq RX (f <$> t) + (t >>= (fun (i : I) (x : X i) => Ret' (f i x)))
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ Y Y
H: Reflexiveᵢ RX
f: X ⇒ᵢ Y
i: I
t: itree E X i

it_eq RX (f <$> t) + (t >>= (fun (i : I) (x : X i) => Ret' (f i x)))
+
I: Type
E: event I I
X, Y: psh I
RX: relᵢ Y Y
H: Reflexiveᵢ RX
f: X ⇒ᵢ Y
R: relᵢ (itree E Y) (itree E Y)
CIH: forall (i : I) (t0 : itree E X i), +it_eq_t E RX R i (f <$> t0) +(t0 >>= (fun (i0 : I) (x : X i0) => Ret' (f i0 x)))
i: I
t: itree E X i

it_eq_bt E RX R i (f <$> t) + (t >>= (fun (i : I) (x : X i) => Ret' (f i x)))
+
cbn; destruct (_observe t); auto. + Qed. + +
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E Y
i: I

Proper (it_eat' i ==> it_eat' i) (subst f i)
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E Y
i: I

Proper (it_eat' i ==> it_eat' i) (subst f i)
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E Y
i: I
x, y: itree E X i
H: it_eat i (_observe x) (_observe y)

it_eat i + match _observe x with + | RetF r => _observe (f i r) + | TauF t => TauF (f =<< t) + | VisF e k => VisF e (fun r : e_rsp e => f =<< k r) + end + match _observe y with + | RetF r => _observe (f i r) + | TauF t => TauF (f =<< t) + | VisF e k => VisF e (fun r : e_rsp e => f =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E Y
i: I
x, y: itree E X i
_x: itree' E X i
H: it_eat i _x (_observe y)

it_eat i + match _x with + | RetF r => _observe (f i r) + | TauF t => TauF (f =<< t) + | VisF e k => VisF e (fun r : e_rsp e => f =<< k r) + end + match _observe y with + | RetF r => _observe (f i r) + | TauF t => TauF (f =<< t) + | VisF e k => VisF e (fun r : e_rsp e => f =<< k r) + end
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E Y
i: I
x, y: itree E X i
_x, _y: itree' E X i
H: it_eat i _x _y

it_eat i + match _x with + | RetF r => _observe (f i r) + | TauF t => TauF (f =<< t) + | VisF e k => VisF e (fun r : e_rsp e => f =<< k r) + end + match _y with + | RetF r => _observe (f i r) + | TauF t => TauF (f =<< t) + | VisF e k => VisF e (fun r : e_rsp e => f =<< k r) + end
+
dependent induction H; now econstructor. + Qed.

Composition law of bind.

+
  
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ itree E Z
i: I
x: itree E X i

it_eq RZ ((x >>= f) >>= g) (x >>= (f >=> g))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ itree E Z
i: I
x: itree E X i

it_eq RZ ((x >>= f) >>= g) (x >>= (f >=> g))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ itree E Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i ((x >>= f) >>= g) + (x >>= (f >=> g))
i: I
x: itree E X i

it_eq_bt E RZ R i ((x >>= f) >>= g) (x >>= (f >=> g))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ itree E Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i ((x >>= f) >>= g) + (x >>= (f >=> g))
i: I
x: itree E X i
r: X i

it_eqF E RZ (it_eq_t E RZ R) i + match _observe (f i r) with + | RetF r => _observe (g i r) + | TauF t => TauF (g =<< t) + | VisF e k => VisF e (fun r : e_rsp e => g =<< k r) + end + match _observe (f i r) with + | RetF r => _observe (g i r) + | TauF t => TauF (g =<< t) + | VisF e k => VisF e (fun r : e_rsp e => g =<< k r) + end
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ itree E Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i ((x >>= f) >>= g) + (x >>= (f >=> g))
i: I
x: itree E X i
r: X i
r0: Y i

it_eqF E RZ (it_eq_t E RZ R) i + (_observe (g i r0)) + (_observe (g i r0))
+
destruct ((g i r0).(_observe)); eauto. + Qed.

Composition law of fmap.

+
  
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ Y
g: Y ⇒ᵢ Z
i: I
x: itree E X i

it_eq RZ (g <$> (f <$> x)) + ((fun i : I => g i ∘ f i) <$> x)
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ Y
g: Y ⇒ᵢ Z
i: I
x: itree E X i

it_eq RZ (g <$> (f <$> x)) + ((fun i : I => g i ∘ f i) <$> x)
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ Y
g: Y ⇒ᵢ Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i (g <$> (f <$> x)) + ((fun i0 : I => g i0 ∘ f i0) <$> x)
i: I
x: itree E X i

it_eq_bt E RZ R i (g <$> (f <$> x)) + ((fun i : I => g i ∘ f i) <$> x)
+
cbn; destruct (x.(_observe)); eauto. + Qed.

bind and fmap interaction.

+
  
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ Y
g: Y ⇒ᵢ itree E Z
i: I
x: itree E X i

it_eq RZ ((f <$> x) >>= g) + (x >>= (fun i : I => g i ∘ f i))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ Y
g: Y ⇒ᵢ itree E Z
i: I
x: itree E X i

it_eq RZ ((f <$> x) >>= g) + (x >>= (fun i : I => g i ∘ f i))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ Y
g: Y ⇒ᵢ itree E Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i ((f <$> x) >>= g) + (x >>= (fun i0 : I => g i0 ∘ f i0))
i: I
x: itree E X i

it_eq_bt E RZ R i ((f <$> x) >>= g) + (x >>= (fun i : I => g i ∘ f i))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ Y
g: Y ⇒ᵢ itree E Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i ((f <$> x) >>= g) + (x >>= (fun i0 : I => g i0 ∘ f i0))
i: I
x: itree E X i
r: X i

it_eqF E RZ (it_eq_t E RZ R) i + (_observe (g i (f i r))) + (_observe (g i (f i r)))
+
destruct ((g i (f i r)).(_observe)); eauto. + Qed. + +
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ Z
i: I
x: itree E X i

it_eq RZ (g <$> (x >>= f)) + (x >>= (fun i : I => fmap g i ∘ f i))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ Z
i: I
x: itree E X i

it_eq RZ (g <$> (x >>= f)) + (x >>= (fun i : I => fmap g i ∘ f i))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i (g <$> (x >>= f)) + (x >>= (fun i0 : I => fmap g i0 ∘ f i0))
i: I
x: itree E X i

it_eq_bt E RZ R i (g <$> (x >>= f)) + (x >>= (fun i : I => fmap g i ∘ f i))
+
I: Type
E: event I I
X, Y, Z: psh I
RZ: forall x : I, relation (Z x)
Reflexiveᵢ0: Reflexiveᵢ RZ
f: X ⇒ᵢ itree E Y
g: Y ⇒ᵢ Z
R: relᵢ (itree E Z) (itree E Z)
CIH: forall (i : I) (x : itree E X i), +it_eq_t E RZ R i (g <$> (x >>= f)) + (x >>= (fun i0 : I => fmap g i0 ∘ f i0))
i: I
x: itree E X i
r: X i

it_eqF E RZ (it_eq_t E RZ R) i + match _observe (f i r) with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end + match _observe (f i r) with + | RetF r => RetF (g i r) + | TauF t => TauF (g <$> t) + | VisF e k => VisF e (fun r : e_rsp e => g <$> k r) + end
+
destruct ((f i r).(_observe)); eauto. + Qed.

Rewording the composition law of bind.

+
  
I: Type
E: event I I
X, Y, Z: psh I
f: Y ⇒ᵢ itree E Z
g: X ⇒ᵢ itree E Y
i: I
x: itree E X i

((x >>= g) >>= f) ≊ (x >>= (g >=> f))
+
I: Type
E: event I I
X, Y, Z: psh I
f: Y ⇒ᵢ itree E Z
g: X ⇒ᵢ itree E Y
i: I
x: itree E X i

((x >>= g) >>= f) ≊ (x >>= (g >=> f))
apply bind_bind_com. Qed.

Proof of the up-to bind principle: we may close bisimulation candidates by prefixing +related elements by bisimilar computations.

+
  Variant bindR {X1 X2 Y1 Y2} (RX : relᵢ X1 X2)
+    (R : relᵢ (itree E X1) (itree E X2))
+    (S : relᵢ (itree E Y1) (itree E Y2)) :
+    relᵢ (itree E Y1) (itree E Y2) :=
+    | BindR {i t1 t2 k1 k2}
+        (u : R i t1 t2)
+        (v : forall i x1 x2, RX i x1 x2 -> S i (k1 i x1) (k2 i x2))
+      : bindR RX R S i (t1 >>= k1) (t2 >>= k2).
+  Arguments BindR {X1 X2 Y1 Y2 RX R S i t1 t2 k1 k2}.
+  Hint Constructors bindR : core.

Up-to bind is valid for strong bisimilarity.

+
  Program Definition bindR_eq_map {X1 X2 Y1 Y2} (RX : relᵢ X1 X2) : mon (relᵢ (itree E Y1) (itree E Y2)) :=
+    {| body S := bindR RX (@it_eq _ E _ _ RX) S ;
+       Hbody _ _ H _ _ _ '(BindR u v) := BindR u (fun i _ _ r => H _ _ _ (v i _ _ r)) |}.
+
+  
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2

bindR_eq_map RX <= it_eq_t E RY
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2

bindR_eq_map RX <= it_eq_t E RY
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
u: it_eq RX t1 t2
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eq_map E RY R i (k1 i x1) (k2 i x2)

bT (it_eq_map E RY) (bindR_eq_map RX) R i0 (t1 >>= k1) + (t2 >>= k2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
u: it_eq_map E RX (gfp (it_eq_map E RX)) i0 t1 t2
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eq_map E RY R i (k1 i x1) (k2 i x2)

bT (it_eq_map E RY) (bindR_eq_map RX) R i0 (t1 >>= k1) + (t2 >>= k2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
u: it_eqF E RX (gfp (it_eq_map E RX)) i0 + (_observe t1) (_observe t2)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eqF E RY (it_eq_T E RY (bindR_eq_map RX) R) i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r1: X1 i0
r2: X2 i0
r_rel: RX i0 r1 r2
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eqF E RY (it_eq_T E RY (bindR_eq_map RX) R) i0 + (_observe (k1 i0 r1)) (_observe (k2 i0 r2))
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
t3: itree E X2 i0
t_rel: gfp (it_eq_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eqF E RY (it_eq_T E RY (bindR_eq_map RX) R) i0 + (TauF (k1 =<< t0)) (TauF (k2 =<< t3))
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
k_rel: forall r : e_rsp q, +gfp (it_eq_map E RX) (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eqF E RY (it_eq_T E RY (bindR_eq_map RX) R) i0 + (VisF q (fun r : e_rsp q => k1 =<< k0 r)) + (VisF q (fun r : e_rsp q => k2 =<< k3 r))
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r1: X1 i0
r2: X2 i0
r_rel: RX i0 r1 r2
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eqF E RY (it_eq_T E RY (bindR_eq_map RX) R) i0 + (_observe (k1 i0 r1)) + (_observe (k2 i0 r2))
refine (it_eqF_mon _ _ (id_T _ _ R) _ _ _ (v i0 _ _ r_rel)). +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
t3: itree E X2 i0
t_rel: gfp (it_eq_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eqF E RY (it_eq_T E RY (bindR_eq_map RX) R) i0 + (TauF (k1 =<< t0)) (TauF (k2 =<< t3))
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
t3: itree E X2 i0
t_rel: gfp (it_eq_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

(bindR_eq_map RX ° it_eq_T E RY (bindR_eq_map RX)) R + i0 (k1 =<< t0) (k2 =<< t3)
+
refine (BindR t_rel (fun i _ _ r => b_T (it_eq_map E RY) _ _ _ _ _ (v i _ _ r))). +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
k_rel: forall r : e_rsp q, +gfp (it_eq_map E RX) (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eqF E RY (it_eq_T E RY (bindR_eq_map RX) R) i0 + (VisF q (fun r : e_rsp q => k1 =<< k0 r)) + (VisF q (fun r : e_rsp q => k2 =<< k3 r))
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x0: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
k_rel: forall r : e_rsp q, +gfp (it_eq_map E RX) (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_eqF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
r: e_rsp q

(bindR_eq_map RX ° it_eq_T E RY (bindR_eq_map RX)) R + (e_nxt r) (k1 =<< k0 r) + (k2 =<< k3 r)
+
refine (BindR (k_rel r) (fun i _ _ r => b_T (it_eq_map E RY) _ _ _ _ _ (v i _ _ r))). + Qed.

Up-to bind is valid for weak bisimilarity.

+
  Program Definition bindR_w_map {X1 X2 Y1 Y2} (RX : relᵢ X1 X2) : mon (relᵢ (itree E Y1) (itree E Y2)) :=
+    {| body S := bindR RX (@it_wbisim _ E _ _ RX) S ;
+       Hbody _ _ H _ _ _ '(BindR u v) := BindR u (fun i _ _ r => H _ _ _ (v i _ _ r)) |}.
+
+  
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2

bindR_w_map RX <= it_wbisim_t E RY
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2

bindR_w_map RX <= it_wbisim_t E RY
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
u: it_wbisim RX i0 t1 t2
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisim_map E RY R i (k1 i x1) (k2 i x2)

bT (it_wbisim_map E RY) (bindR_w_map RX) R i0 + (t1 >>= k1) (t2 >>= k2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
u: it_wbisim_map E RX (gfp (it_wbisim_map E RX)) i0 + t1 t2
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisim_map E RY R i (k1 i x1) (k2 i x2)

bT (it_wbisim_map E RY) (bindR_w_map RX) R i0 + (t1 >>= k1) (t2 >>= k2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
u: it_wbisimF E RX (gfp (it_wbisim_map E RX)) i0 + (_observe t1) (_observe t2)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_wbisimF E RY (it_wbisim_T E RY (bindR_w_map RX) R) + i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_wbisimF E RY (it_wbisim_T E RY (bindR_w_map RX) R) + i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_wbisimF E RY (it_wbisim_T E RY (bindR_w_map RX) R) + i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_wbisimF E RY (it_wbisim_T E RY (bindR_w_map RX) R) + i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_wbisimF E RY (it_wbisim_T E RY (bindR_w_map RX) R) + i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
x1: itree' E Y1 i0
x2: itree' E Y2 i0
s1: it_eat i0 (observe (k1 i0 r0)) x1
s2: it_eat i0 (observe (k2 i0 r3)) x2
ss: it_eqF E RY R i0 x1 x2

it_eat i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end ?x1
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
x1: itree' E Y1 i0
x2: itree' E Y2 i0
s1: it_eat i0 (observe (k1 i0 r0)) x1
s2: it_eat i0 (observe (k2 i0 r3)) x2
ss: it_eqF E RY R i0 x1 x2
it_eat i0 + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
x1: itree' E Y1 i0
x2: itree' E Y2 i0
s1: it_eat i0 (observe (k1 i0 r0)) x1
s2: it_eat i0 (observe (k2 i0 r3)) x2
ss: it_eqF E RY R i0 x1 x2
it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + ?x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
x1: itree' E Y1 i0
x2: itree' E Y2 i0
s1: it_eat i0 (observe (k1 i0 r0)) x1
s2: it_eat i0 (observe (k2 i0 r3)) x2
ss: it_eqF E RY R i0 x1 x2

it_eat i0 + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
x1: itree' E Y1 i0
x2: itree' E Y2 i0
s1: it_eat i0 (observe (k1 i0 r0)) x1
s2: it_eat i0 (observe (k2 i0 r3)) x2
ss: it_eqF E RY R i0 x1 x2
it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
r0: X1 i0
r1: it_eat i0 (_observe t1) (RetF r0)
r3: X2 i0
r2: it_eat i0 (_observe t2) (RetF r3)
r_rel: RX i0 r0 r3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
x1: itree' E Y1 i0
x2: itree' E Y2 i0
s1: it_eat i0 (observe (k1 i0 r0)) x1
s2: it_eat i0 (observe (k2 i0 r3)) x2
ss: it_eqF E RY R i0 x1 x2

it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + x1 x2
+
now apply (it_eqF_mon _ _ (id_T _ _ R)). +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_wbisimF E RY (it_wbisim_T E RY (bindR_w_map RX) R) + i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eat i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end ?x1
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eat i0 + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + ?x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eat i0 + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + (_observe (k1 =<< Tau' t0)) + ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + (_observe (k1 =<< Tau' t0)) + (_observe (k2 =<< Tau' t3))
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_wbisim_T E RY (bindR_w_map RX) R i0 + (k1 =<< t0) (k2 =<< t3)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
t0: itree E X1 i0
r1: it_eat i0 (_observe t1) (TauF t0)
t3: itree E X2 i0
r2: it_eat i0 (_observe t2) (TauF t3)
t_rel: gfp (it_wbisim_map E RX) i0 t0 t3
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

(bindR_w_map RX ° it_wbisim_T E RY (bindR_w_map RX)) R + i0 (k1 =<< t0) (k2 =<< t3)
+
econstructor; [ apply t_rel | intros; now apply (b_T (it_wbisim_map E RY)), v ]. +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_wbisimF E RY (it_wbisim_T E RY (bindR_w_map RX) R) + i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eat i0 + match _observe t1 with + | RetF r => _observe (k1 i0 r) + | TauF t => TauF (k1 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k1 =<< k r) + end ?x1
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eat i0 + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + ?x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eat i0 + match _observe t2 with + | RetF r => _observe (k2 i0 r) + | TauF t => TauF (k2 =<< t) + | VisF e k => VisF e (fun r : e_rsp e => k2 =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + (_observe (k1 =<< Vis' q k0)) + ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))

it_eqF E RY (it_wbisim_T E RY (bindR_w_map RX) R) i0 + (_observe (k1 =<< Vis' q k0)) + (_observe (k2 =<< Vis' q k3))
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
r: e_rsp q

it_wbisim_T E RY (bindR_w_map RX) R + (e_nxt r) (k1 =<< k0 r) + (k2 =<< k3 r)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
R: relᵢ (itree E Y1) (itree E Y2)
i: I
x: itree E Y1 i
y: itree E Y2 i
i0: I
t1: itree E X1 i0
t2: itree E X2 i0
k1: forall x : I, X1 x -> itree E Y1 x
k2: forall x : I, X2 x -> itree E Y2 x
q: e_qry i0
k0: forall x : e_rsp q, itree E X1 (e_nxt x)
r1: it_eat i0 (_observe t1) (VisF q k0)
k3: forall x : e_rsp q, itree E X2 (e_nxt x)
r2: it_eat i0 (_observe t2) (VisF q k3)
k_rel: forall r : e_rsp q, +gfp (it_wbisim_map E RX) + (e_nxt r) (k0 r) (k3 r)
v: forall (i : I) (x1 : X1 i) (x2 : X2 i), +RX i x1 x2 -> +it_wbisimF E RY R i (observe (k1 i x1)) + (observe (k2 i x2))
r: e_rsp q

(bindR_w_map RX ° it_wbisim_T E RY (bindR_w_map RX)) R + (e_nxt r) (k1 =<< k0 r) + (k2 =<< k3 r)
+
econstructor; [ apply k_rel | intros; now apply (b_T (it_wbisim_map E RY)), v ]. + Qed.

Pointwise strongly bisimilar equations have strongly bisimilar iteration.

+
  
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)

forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq RY (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)

forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq RY (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b

it_eq_bt E RY R i (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
h1:= H i a b r: it_eq (sumᵣ RX RY) (f i a) (g i b)

it_eq_bt E RY R i (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
h1: it_eqF E (sumᵣ RX RY) (it_eq (sumᵣ RX RY)) i + (_observe (f i a)) (_observe (g i b))

it_eqF E RY (it_eq_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
r1: (X1 +ᵢ Y1) i
r2: (X2 +ᵢ Y2) i
r_rel: sumᵣ RX RY i r1 r2

it_eqF E RY (it_eq_t E RY R) i + match r1 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + match r2 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
t2: itree E (X2 +ᵢ Y2) i
t_rel: it_eq (sumᵣ RX RY) t1 t2
it_eqF E RY (it_eq_t E RY R) i + (TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t1)) + (TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t2))
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
k_rel: forall r : e_rsp q, +it_eq (sumᵣ RX RY) (k1 r) (k2 r)
it_eqF E RY (it_eq_t E RY R) i + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k1 r)) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k2 r))
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
r1: (X1 +ᵢ Y1) i
r2: (X2 +ᵢ Y2) i
r_rel: sumᵣ RX RY i r1 r2

it_eqF E RY (it_eq_t E RY R) i + match r1 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + match r2 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end
destruct r_rel; eauto. +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
t2: itree E (X2 +ᵢ Y2) i
t_rel: it_eq (sumᵣ RX RY) t1 t2

it_eqF E RY (it_eq_t E RY R) i + (TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t1)) + (TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t2))
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
t2: itree E (X2 +ᵢ Y2) i
t_rel: it_eq (sumᵣ RX RY) t1 t2

it_eq_t E RY R i + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t1) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
t2: itree E (X2 +ᵢ Y2) i
t_rel: it_eq (sumᵣ RX RY) t1 t2

it_eq_t E RY (it_eq_t E RY R) i + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t1) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
t2: itree E (X2 +ᵢ Y2) i
t_rel: it_eq (sumᵣ RX RY) t1 t2

forall (i : I) (x1 : (X1 +ᵢ Y1) i) (x2 : (X2 +ᵢ Y2) i), +sumᵣ RX RY i x1 x2 -> +it_eq_t E RY R i + {| + _observe := + match x1 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |} + {| + _observe := + match x2 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}
+
intros ? ? ? []; apply (tt_t (it_eq_map E RY)), (b_t (it_eq_map E RY)); cbn; eauto. +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
k_rel: forall r : e_rsp q, +it_eq (sumᵣ RX RY) (k1 r) (k2 r)

it_eqF E RY (it_eq_t E RY R) i + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k1 r)) + (VisF q + (fun r : e_rsp q => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k2 r))
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
k_rel: forall r : e_rsp q, +it_eq (sumᵣ RX RY) (k1 r) (k2 r)
r0: e_rsp q

it_eq_t E RY R (e_nxt r0) + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k1 r0) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k2 r0)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
k_rel: forall r : e_rsp q, +it_eq (sumᵣ RX RY) (k1 r) (k2 r)
r0: e_rsp q

it_eq_t E RY (it_eq_t E RY R) + (e_nxt r0) + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k1 r0) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k2 r0)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_eq (sumᵣ RX RY) (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_eq_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
k_rel: forall r : e_rsp q, +it_eq (sumᵣ RX RY) (k1 r) (k2 r)
r0: e_rsp q

forall (i : I) (x1 : (X1 +ᵢ Y1) i) (x2 : (X2 +ᵢ Y2) i), +sumᵣ RX RY i x1 x2 -> +it_eq_t E RY R i + {| + _observe := + match x1 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |} + {| + _observe := + match x2 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}
+
intros ? ? ? []; apply (bt_t (it_eq_map E RY)); cbn; eauto. + Qed. + + #[global] Instance iter_proper_strong {X Y} {RX : relᵢ X X} {RY : relᵢ Y Y} : + Proper (dpointwise_relation (fun i => RX i ==> it_eq (sumᵣ RX RY) (i:=i)) + ==> dpointwise_relation (fun i => RX i ==> it_eq RY (i:=i))) + (@iter I E X Y) + := iter_cong_strong.

Pointwise weakly bisimilar equations have weakly bisimilar iteration.

+
  
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)

forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_wbisim RY i (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)

forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_wbisim RY i (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b

it_wbisim_bt E RY R i (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
H1:= H i a b r: it_wbisim (sumᵣ RX RY) i (f i a) (g i b)

it_wbisim_bt E RY R i (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
H1: it_wbisim_map E (sumᵣ RX RY) + (it_wbisim (sumᵣ RX RY)) i (f i a) (g i b)

it_wbisim_bt E RY R i (iter f i a) (iter g i b)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
H1: it_wbisimF E (sumᵣ RX RY) + (it_wbisim (sumᵣ RX RY)) i (_observe (f i a)) + (_observe (g i b))

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
r0: (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (RetF r0)
r3: (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (RetF r3)
r_rel: sumᵣ RX RY i r0 r3

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2
it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)
it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
r0: (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (RetF r0)
r3: (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (RetF r3)
r_rel: sumᵣ RX RY i r0 r3

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2
it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
H2:= H i x1 x2 H0: it_wbisim (sumᵣ RX RY) i (f i x1) (g i x2)

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
H2: it_wbisim_map E (sumᵣ RX RY) + (it_wbisim (sumᵣ RX RY)) i + (f i x1) (g i x2)

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3

it_eat i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x1
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3
it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3
it_eqF E RY (it_wbisim_t E RY R) i ?x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3

it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3
it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Ret' (inl x1))) + ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3

it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Ret' (inl x1))) + (_observe + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< Ret' (inl x2)))
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
x1: X1 i
r1: it_eat i (_observe (f i a)) (RetF (inl x1))
x2: X2 i
r2: it_eat i (_observe (g i b)) (RetF (inl x2))
H0: RX i x1 x2
x0: itree' E (X1 +ᵢ Y1) i
x3: itree' E (X2 +ᵢ Y2) i
s1: it_eat i (observe (f i x1)) x0
s2: it_eat i (observe (g i x2)) x3
ss: it_eqF E (sumᵣ RX RY) (it_wbisim (sumᵣ RX RY)) i + x0 x3

it_wbisim_t E RY R i (iter f i x1) (iter g i x2)
+
now apply CIH. +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2

it_eat i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x1
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2
it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2
it_eqF E RY (it_wbisim_t E RY R) i ?x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2

it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2
it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Ret' (inr y1))) + ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
y1: Y1 i
r1: it_eat i (_observe (f i a)) (RetF (inr y1))
y2: Y2 i
r2: it_eat i (_observe (g i b)) (RetF (inr y2))
H0: RY i y1 y2

it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Ret' (inr y1))) + (_observe + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< Ret' (inr y2)))
+
now cbn; econstructor. +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2

it_eat i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x1
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2
it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2
it_eqF E RY (it_wbisim_t E RY R) i ?x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2

it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2
it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Tau' t1)) + ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2

it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Tau' t1)) + (_observe + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< Tau' t2))
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2

it_wbisim_t E RY R i + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t1) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2

it_wbisim_t E RY (it_wbisim_t E RY R) i + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t1) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t2)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
t1: itree E (X1 +ᵢ Y1) i
r1: it_eat i (_observe (f i a)) (TauF t1)
t2: itree E (X2 +ᵢ Y2) i
r2: it_eat i (_observe (g i b)) (TauF t2)
t_rel: it_wbisim (sumᵣ RX RY) i t1 t2

forall (i : I) (x1 : (X1 +ᵢ Y1) i) (x2 : (X2 +ᵢ Y2) i), +sumᵣ RX RY i x1 x2 -> +it_wbisim_t E RY R i + {| + _observe := + match x1 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |} + {| + _observe := + match x2 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}
+
intros ? ? ? []; apply (tt_t (it_wbisim_map E RY)), (b_t (it_wbisim_map E RY)); cbn; eauto. +
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)

it_wbisimF E RY (it_wbisim_t E RY R) i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)

it_eat i + match _observe (f i a) with + | RetF (inl x) => TauF (iter f i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X1 +ᵢ Y1) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x1
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)
it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)
it_eqF E RY (it_wbisim_t E RY R) i ?x1 ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)

it_eat i + match _observe (g i b) with + | RetF (inl x) => TauF (iter g i x) + | RetF (inr y) => RetF y + | TauF t => + TauF + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< t) + | VisF e k => + VisF e + (fun r : e_rsp e => + (fun (i : I) (r0 : (X2 +ᵢ Y2) i) => + {| + _observe := + match r0 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k r) + end ?x2
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)
it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Vis' q k1)) + ?x2
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)

it_eqF E RY (it_wbisim_t E RY R) i + (_observe + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< Vis' q k1)) + (_observe + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< Vis' q k2))
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)
r0: e_rsp q

it_wbisim_t E RY R (e_nxt r0) + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k1 r0) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k2 r0)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)
r0: e_rsp q

it_wbisim_t E RY (it_wbisim_t E RY R) + (e_nxt r0) + ((fun (i : I) (r : (X1 +ᵢ Y1) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}) =<< k1 r0) + ((fun (i : I) (r : (X2 +ᵢ Y2) i) => + {| + _observe := + match r with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}) =<< k2 r0)
+
I: Type
E: event I I
X1, X2, Y1, Y2: psh I
RX: relᵢ X1 X2
RY: relᵢ Y1 Y2
f: forall x : I, X1 x -> itree E (X1 +ᵢ Y1) x
g: forall x : I, X2 x -> itree E (X2 +ᵢ Y2) x
H: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim (sumᵣ RX RY) i (f i a) (g i b)
R: relᵢ (itree E Y1) (itree E Y2)
CIH: forall (i : I) (a : X1 i) (b : X2 i), +RX i a b -> +it_wbisim_t E RY R i (iter f i a) (iter g i b)
i: I
a: X1 i
b: X2 i
r: RX i a b
q: e_qry i
k1: forall x : e_rsp q, itree E (X1 +ᵢ Y1) (e_nxt x)
r1: it_eat i (_observe (f i a)) (VisF q k1)
k2: forall x : e_rsp q, itree E (X2 +ᵢ Y2) (e_nxt x)
r2: it_eat i (_observe (g i b)) (VisF q k2)
k_rel: forall r : e_rsp q, +it_wbisim (sumᵣ RX RY) (e_nxt r) (k1 r) (k2 r)
r0: e_rsp q

forall (i : I) (x1 : (X1 +ᵢ Y1) i) (x2 : (X2 +ᵢ Y2) i), +sumᵣ RX RY i x1 x2 -> +it_wbisim_t E RY R i + {| + _observe := + match x1 with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |} + {| + _observe := + match x2 with + | inl x => TauF (iter g i x) + | inr y => RetF y + end + |}
+
intros ? ? ? []; apply (tt_t (it_wbisim_map E RY)), (b_t (it_wbisim_map E RY)); cbn; eauto. + Qed. + + #[global] Instance iter_weq {X Y} {RX : relᵢ X X} {RY : relᵢ Y Y} : + Proper (dpointwise_relation (fun i => RX i ==> it_wbisim (sumᵣ RX RY) i) + ==> dpointwise_relation (fun i => RX i ==> it_wbisim RY i)) + (@iter I E X Y) + := iter_cong_weak.

Iteration is a strong fixed point of the folowing guarded equation.

+
  
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
Reflexiveᵢ0: Reflexiveᵢ RY
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

it_eq RY (iter f i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
Reflexiveᵢ0: Reflexiveᵢ RY
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

it_eq RY (iter f i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
Reflexiveᵢ0: Reflexiveᵢ RY
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

it_eq_map E RY (gfp (it_eq_map E RY)) i + (iter f i x) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |}))
+
I: Type
E: event I I
X, Y: psh I
RY: forall x : I, relation (Y x)
Reflexiveᵢ0: Reflexiveᵢ RY
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i
r: (X +ᵢ Y) i

it_eqF E RY (gfp (it_eq_map E RY)) i + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end
+
destruct r; eauto. + Qed.

Iteration is a weak fixed point of the equation (Prop. 3).

+
  
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

iter f i x +≈ (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter f i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

iter f i x +≈ (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter f i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

(f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |})) +≈ (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter f i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

it_wbisim_t E (eqᵢ Y) (it_wbisim_t E (eqᵢ Y) bot) i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |})) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter f i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i

bindR_w_map (eqᵢ (X +ᵢ Y)) (it_wbisim_t E (eqᵢ Y) bot) + i + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + {| + _observe := + match r with + | inl x => TauF (iter f i x) + | inr y => RetF y + end + |})) + (f i x >>= + (fun (i : I) (r : (X +ᵢ Y) i) => + match r with + | inl x => iter f i x + | inr y => Ret' y + end))
+
I: Type
E: event I I
X, Y: psh I
f: X ⇒ᵢ itree E (X +ᵢ Y)
i: I
x: X i
i0: I
x0: X i0

it_wbisim_t E (eqᵢ Y) bot i0 (Tau' (iter f i0 x0)) + (iter f i0 x0)
+
exact (skip_tau _). + Qed. +End withE.

Misc. utilities.

+
Variant is_tau' {I} {E : event I I} {X i} : itree' E X i -> Prop :=
+  | IsTau {t : itree E X i} : is_tau' (TauF t) .
+Definition is_tau {I} {E : event I I} {X i} (t : itree E X i) : Prop := is_tau' t.(_observe).
+
+
+ diff --git a/docs/Psh.html b/docs/Psh.html new file mode 100644 index 0000000..f011fd1 --- /dev/null +++ b/docs/Psh.html @@ -0,0 +1,61 @@ + + + + + + +Type families + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Type families

+ +

This file is dully-named Psh.v but in fact is actually about +type families, that is maps I → Type for some I : Type.

+
Notation psh I := (I -> Type).

Pointwise arrows of families.

+
Definition arrᵢ {I} (X Y : psh I) : Type := forall i, X i -> Y i.
+#[global] Infix "⇒ᵢ" := (arrᵢ) (at level 20) : indexed_scope.

A bunch of combinators.

+
Definition voidᵢ {I : Type} : I -> Type := fun _ => T0.
+#[global] Notation "∅ᵢ" := (voidᵢ) : indexed_scope.
+
+Definition sumᵢ {I} (X Y : psh I) : psh I := fun i => (X i + Y i)%type.
+#[global] Infix "+ᵢ" := (sumᵢ) (at level 20) : indexed_scope.
+
+Definition prodᵢ {I} (X Y : psh I) : psh I := fun i => (X i * Y i)%type.
+#[global] Infix "×ᵢ" := (prodᵢ) (at level 20) : indexed_scope.

Fibers of a function are a particularly import kind of type family.

+
Inductive fiber {A B} (f : A -> B) : psh B := Fib a : fiber f (f a).
+Arguments Fib {A B f}.
+Derive NoConfusion for fiber.
+
+Equations fib_extr {A B} {f : A -> B} {b : B} : fiber f b -> A :=
+  fib_extr (Fib a) := a .
+Equations fib_coh {A B} {f : A -> B} {b : B} : forall p : fiber f b, f (fib_extr p) = b :=
+  fib_coh (Fib _) := eq_refl .
+Definition fib_constr {A B} {f : A -> B} a : forall b (p : f a = b), fiber f b :=
+  eq_rect (f a) (fiber f) (Fib a).

These next two functions form an isomorphism (fiber f ⇒ᵢ X) ≅ (∀ a → X (f a))

+
Equations fib_into {A B} {f : A -> B} X (h : forall a, X (f a)) : fiber f ⇒ᵢ X :=
+  fib_into _ h _ (Fib a) := h a .
+Definition fib_from {A B} {f : A -> B} X (h : fiber f ⇒ᵢ X) a : X (f a) :=
+  h _ (Fib a).

Using the fiber construction, we can define a "sparse" type family which will +be equal to some set at one point of the index and empty otherwise. This will +enable us to have an isomorphism (X @ i ⇒ᵢ Y) ≅ (X → Y i).

+

See the functional pearl by Conor McBride "Kleisli arrows of outrageous fortune" +for background on this construction and its use.

+
#[global] Notation "X @ i" := (fiber (fun (_ : X) => i)) (at level 20) : indexed_scope.
+
+Definition pin {I X} (i : I) : X -> (X @ i) i := Fib.
+Definition pin_from {I X Y} {i : I} : ((X @ i) ⇒ᵢ Y) -> (X -> Y i) := fib_from _.
+Definition pin_into {I X Y} {i : I} : (X -> Y i) -> (X @ i ⇒ᵢ Y) := fib_into _.
+
+Equations pin_map {I X Y} (f : X -> Y) {i : I} : (X @ i) ⇒ᵢ (Y @ i) :=
+  pin_map f _ (Fib x) := Fib (f x) .
+
+
+ diff --git a/docs/Readme.html b/docs/Readme.html new file mode 100644 index 0000000..3999ae9 --- /dev/null +++ b/docs/Readme.html @@ -0,0 +1,285 @@ + + + + + + +An abstract, certified account of operational game semantics + + + + + + + + + +
Built with Alectryon, running . Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

An abstract, certified account of operational game semantics

+ +

This is the companion artifact to the ESOP paper. The main contributions of +this library are:

+ +
+

Meta

+
    +
  • Author(s):
      +
    • Peio Borthelle
    • +
    • Tom Hirschowitz
    • +
    • Guilhem Jaber
    • +
    • Yannick Zakowski
    • +
    +
  • +
  • License: GPLv3
  • +
  • Compatible Coq versions: 8.17
  • +
  • Additional dependencies: +
  • +
  • Coq namespace: OGS
  • +
  • Documentation
  • +
+
+
+

Getting Started

+

To simply typecheck the Coq proofs, we provide a Docker image preloaded with +all the dependencies. The instructions to run it are given below. If instead +you want to manually install the OGS library on your own system, follow the +instructions from the section "Local Installation" at the end of the file.

+

First, ensure that your docker daemon is running.

+

We recommend building the docker image from source, by executing the following +command from the root of the repository. Note that this requires network access +and will download around 1.5GiB from hub.docker.com.

+
+make docker-build
+
+

Alternatively, if you prefer, you can download the precompiled image +docker_coq-ogs.tar.gz from the +Zenodo archive of this artifact, +and load it into docker with the following command.

+
+docker image load -i path/to/docker_coq-ogs.tar.gz
+
+

After the image is built or loaded from the file, verify that it is indeed +listed by the following command.

+
+docker image ls coq-ogs:latest
+
+

This image contains the full code artifact in the directory /home/coq/ogs. The +default command for the image typechecks the whole repository. Run it with a +tty to see the progress with the following command. This should take around +3-5min and conclude by displaying information about several soudness theorems.

+
+docker run --tty coq-ogs:latest
+
+
+
+

Step-by-Step Reproduction

+

The above "Getting Started" section already describes how to typecheck the +whole repository, validating our claims of certification from the paper. The +concluding output arises from a special file which we have included, +Checks.v, which imports core theorems, displays their type and list +of arguments, as well as the assumptions (axioms) they depend on.

+

If you wish to further inspect the repository, the following command will +start an interactive shell inside the container.

+
+docker run --tty --interactive coq-ogs:latest
+
+

The following section details in more precision the content of each file +and their relationship to the paper. We have furthermore tried to thoroughly +comment most parts of the development. If you prefer to navigate the code +in a web browser, an HTML rendering of the whole code together with the proof +state during intermediate steps is provided at the following URL:

+

https://lapin0t.github.io/ogs/Readme.html

+
+
+

Content

+
+

Structure of the repository

+

The Coq source code is contained in the theory/ directory, which has the +following structure, in approximate order of dependency.

+
    +
  • Readme.v: This file.
  • +
  • Prelude.v: Imports and setup.
  • +
  • Utils/ directory: general utilities. +
  • +
  • Ctx/ directory: general metatheory of substitution. This material has been +largely left untold in the paper, and as explained in the artifact report, we +introduce a novel gadget for abstracting over scope and variable +representations.
      +
    • Family.v: Definition of scoped +and sorted families (Def. 4).
    • +
    • Abstract.v: Definition of +scope structures. The comments make this file a good entry-point to the +understand the constructions from this directory.
    • +
    • Assignment.v: Generic +definition of assignments (Def. 5 and 6).
    • +
    • Renaming.v: Generic +definition of renamings as variable assignments, together with their +important equational laws.
    • +
    • Ctx.v: Definition of concrete +contexts (lists) and dependently-typed DeBruijn indices.
    • +
    • Covering.v: Instanciation of +the scope structure for concrete contexts from +Ctx.v.
    • +
    • DirectSum.v: Direct sum of +scope structures.
    • +
    • Subset.v: Sub-scope structure.
    • +
    • Subst.v: Axiomatization of +substitution monoid and substitution module (Def. 7 and 8), axiomatization of +clear-cut variables (Def. 27).
    • +
    +
  • +
  • ITree/ directory: implementation of a variant of interaction trees +over indexed types.
      +
    • Event.v: Indexed events (i.e., +indexed containers) parameterizing the interactions of an itree.
    • +
    • ITree.v: Coinductive definition.
    • +
    • Eq.v: Strong and weak bisimilarity +over interaction trees.
    • +
    • Structure.v: Combinators +(definitions) for the monadic structure and unguarded iteration (Def. 31).
    • +
    • Properties.v: General +properties of the combinators (Prop. 3).
    • +
    • Guarded.v: (Eventually) +guarded equations and iterations over them, together with their unicity +property (Def. 30, 33 and 34 and Prop. 5).
    • +
    • Delay.v: Definition of the +delay monad (as a special case of interaction trees over the empty event) +(Def. 9 and 10).
    • +
    +
  • +
  • OGS/ directory: construction of a sound OGS model for an abstract language +machine.
      +
    • Obs.v: Axiomatization of +observation structure (Def. 12) and normal forms (part of Def. 13).
    • +
    • Machine.v: Axiomatization of +evaluation structures (Def. 11), language machines (Def. 13) and focused +redexes (Def. 28).
    • +
    • Game.v: Abstract games (Def. 16 +and 18) and OGS game definition (Def. 21--23).
    • +
    • Strategy.v: Machine strategy +(Def. 24--26) and composition.
    • +
    • CompGuarded.v: Proof of +eventual guardedness of the equation defining the composition of strategies +(Prop. 6).
    • +
    • Adequacy.v: Proof of +adequacy of composition (Prop. 7).
    • +
    • Congruence.v: Proof of +congruence of composition (Prop. 4).
    • +
    • Soundness.v: Proof of +soundness of the OGS (Thm. 8).
    • +
    +
  • +
  • Examples/ directory: concrete language machines instanciating the generic +construction and soundness theorem.
      +
    • STLC_CBV.v: Simply typed, +call-by-value, lambda calculus, with a unit type and recursive functions. +This example is the most commented, with a complete walk-through of the +instanciation.
    • +
    • ULC_CBV.v: Pure, untyped, +call-by-value, lambda calculus. This example demonstrate that the +intrinsically typed and scoped approach still handles untyped calculi, by +treating them as "unityped".
    • +
    • SystemD.v: Mu-mu-tilde +calculus variant System D from Downen and Ariola, polarized. This is +our "flagship" example, as it is a very expressive calculus. We have +dropped existential and universal type quantifier as our framework only +captures simple types. We have added a slightly ad-hoc construction to +enable general recursion, making the calculus non-normalizing.
    • +
    • SystemL_CBV.v: +mu-mu-tilde calculus variant System L, in call by value +(i.e., lambda-bar-mu-mu-tilde-Q calculus from Herbelin and Curien).
    • +
    +
  • +
  • Checks.v: Interactively display +information about the most important theorems.
  • +
+
+
+
+

Axioms

+

The whole development relies only on axiom K, a conventional and sound axiom +from Coq's standard library (more precisely, Eq_rect_eq.eq_rect_eq). +It is used by Equations to perform some dependent pattern matching.

+

This fact can be verified from the output of typechecking Checks.v. It can +also be double checked in an interactive mode.

+
    +
  • For the abstract result of soundness of the OGS by running +Print Assumptions ogs_correction. at the end of +Soundness.v.
  • +
  • For any particular example, for instance by running +Print Assumptions stlc_ciu_correct. at the end of +STLC_CBV.v.
  • +
+
+
+

Local Installation

+

The most convenient way to experiment and develop with this library is to +install Coq locally and use some IDE such as emacs. To do so, first ensure you +have the source code for the project or download it with the following command.

+
+git clone -b esop25 https://github.com/lapin0t/ogs.git
+cd ogs
+
+

To install the Coq dependencies, first ensure you have a working opam +installation. This should usually be obtained from your systems package +distribution, see https://opam.ocaml.org/doc/Install.html for further +information.

+

Check if you have added the coq-released package repository with the command +opam repo. If it does not appear, add it with the following command.

+
+opam repo add coq-released https://coq.inria.fr/opam/released
+
+

Then, from the root of the repository, install the dependencies with +the following command

+
+opam install --deps-only .
+
+

We stress that the development has been only checked to compile against these +specific dependencies. In particular, it does not compiled at the moment +against latest version of coq-coinduction due to major changes in the API.

+

Finally, typecheck the code with the following command, again from the root of +the repository. This should take around 3-5min.

+
+dune build
+
+
+
+

Generating the Alectryon documentation

+

To build the html documentation, first install Alectryon:

+
+opam install "coq-serapi==8.17.0+0.17.3"
+python3 -m pip install --user alectryon
+
+

Then build the documentation with the following command.

+
+make doc
+
+

The html should now be generated in the docs folder. You can start a +local web server to view it with:

+
+make serve
+
+
+
+
+ diff --git a/docs/Rel.html b/docs/Rel.html new file mode 100644 index 0000000..fbfdf90 --- /dev/null +++ b/docs/Rel.html @@ -0,0 +1,123 @@ + + + + + + +Indexed relations + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Indexed relations

+ +

A few standard constructions to work with indexed relations.

+
From OGS Require Import Prelude.
+From OGS.Utils Require Import Psh.
+
+From Coq.Classes Require Export RelationClasses.
+From Coinduction Require Export lattice.
+
+#[export] Existing Instance CompleteLattice_dfun.
+
+#[global] Notation "∀ₕ x , R" := (forall_relation (fun x => R%signature))
+   (x binder, at level 60).
+Notation relᵢ A B := (forall i, A i -> B i -> Prop).
+
+#[global] Notation Reflexiveᵢ R := (forall i, Reflexive (R i)).
+#[global] Notation Symmetricᵢ R := (forall i, Symmetric (R i)).
+#[global] Notation Transitiveᵢ R := (forall i, Transitive (R i)).
+#[global] Notation Equivalenceᵢ R := (forall i, Equivalence (R i)).
+#[global] Notation Subrelationᵢ R S := (forall i, subrelation (R i) (S i)).
+#[global] Notation PreOrderᵢ R := (forall i, PreOrder (R i)).
+
+Definition eqᵢ {I} (X : psh I) : relᵢ X X := fun _ x y => x = y.
+Arguments eqᵢ _ _ _ /.
+
+
I: Type
X: psh I

Reflexiveᵢ (eqᵢ X)
+
I: Type
X: psh I

Reflexiveᵢ (eqᵢ X)
intros ? ?; reflexivity. Qed. + +
I: Type
X: psh I

Symmetricᵢ (eqᵢ X)
+
I: Type
X: psh I

Symmetricᵢ (eqᵢ X)
intros ? ? ? ?; now symmetry. Qed. + +
I: Type
X: psh I

Transitiveᵢ (eqᵢ X)
+
I: Type
X: psh I

Transitiveᵢ (eqᵢ X)
intros i x y z a b; now transitivity y. Qed. + +Variant sumᵣ {I} {X1 X2 Y1 Y2 : psh I} (R : relᵢ X1 X2) (S : relᵢ Y1 Y2) : relᵢ (X1 +ᵢ Y1) (X2 +ᵢ Y2) := + | RLeft {i x1 x2} : R i x1 x2 -> sumᵣ R S i (inl x1) (inl x2) + | RRight {i y1 y2} : S i y1 y2 -> sumᵣ R S i (inr y1) (inr y2) +. +#[global] Hint Constructors sumᵣ : core. + +
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S

Equivalenceᵢ (sumᵣ R S)
+
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S

Equivalenceᵢ (sumᵣ R S)
+
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Reflexive (sumᵣ R S i)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I
Symmetric (sumᵣ R S i)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I
Transitive (sumᵣ R S i)
+
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Reflexive (sumᵣ R S i)
intros []; eauto. +
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Symmetric (sumᵣ R S i)
intros ? ? []; econstructor; symmetry; eauto. +
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I

Transitive (sumᵣ R S i)
I: Type
X, Y: psh I
R: relᵢ X X
H: Equivalenceᵢ R
S: relᵢ Y Y
H0: Equivalenceᵢ S
i: I
x, y, z: (X +ᵢ Y) i
H1: sumᵣ R S i x y
H2: sumᵣ R S i y z

sumᵣ R S i x z
dependent destruction H1; + dependent destruction H2; econstructor; etransitivity; eauto. +Qed. + +Definition seqᵢ {I} {X Y Z : psh I} (R0 : relᵢ X Y) (R1 : relᵢ Y Z) : relᵢ X Z := + fun i x z => exists y, R0 i x y /\ R1 i y z. +#[global] Infix "⨟" := (seqᵢ) (at level 120). +#[global] Notation "u ⨟⨟ v" := (ex_intro _ _ (conj u v)) (at level 70). +#[global] Hint Unfold seqᵢ : core. + +
I: Type
X, Y, Z: psh I

Proper (leq ==> leq ==> leq) seqᵢ
+
I: Type
X, Y, Z: psh I

Proper (leq ==> leq ==> leq) seqᵢ
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

(y ⨟ y0) a a0 a1
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

y a a0 z /\ y0 a z a1
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

y a a0 z
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1
y0 a z a1
I: Type
X, Y, Z: psh I
x, y: relᵢ X Y
H1: x <= y
x0, y0: relᵢ Y Z
H2: x0 <= y0
a: I
a0: X a
a1: Z a
z: Y a
H: x a a0 z
H0: x0 a z a1

y0 a z a1
now apply H2. Qed. + +Definition squareᵢ {I} {X : psh I} : mon (relᵢ X X) := + {| body R := R ⨟ R ; Hbody _ _ H := seq_mon _ _ H _ _ H |}. + +Definition revᵢ {I} {X Y : psh I} (R : relᵢ X Y) : relᵢ Y X := fun i x y => R i y x. +#[global] Hint Unfold revᵢ : core. + +
I: Type
X, Y: psh I

Proper (leq ==> leq) revᵢ
+
I: Type
X, Y: psh I

Proper (leq ==> leq) revᵢ
firstorder. Qed. + +Definition converseᵢ {I} {X : psh I} : mon (relᵢ X X) := + {| body := revᵢ ; Hbody := rev_mon |}. + +Definition orᵢ {I} {X Y : psh I} (R S : relᵢ X Y) : relᵢ X Y := fun i x y => R i x y \/ S i x y. +#[global] Infix "∨ᵢ" := (orᵢ) (at level 70). +
I: Type
X, Y: psh I

Proper (leq ==> leq ==> leq) orᵢ
+
I: Type
X, Y: psh I

Proper (leq ==> leq ==> leq) orᵢ
firstorder. Qed. + +
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> Reflexiveᵢ R
+
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> Reflexiveᵢ R
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
i: I
x: X i

R i x x
now apply H. Qed. + +
I: Type
X: psh I
R: relᵢ X X
H: Reflexiveᵢ R

eqᵢ X <= R
+
I: Type
X: psh I
R: relᵢ X X
H: Reflexiveᵢ R

eqᵢ X <= R
intros ? ? ? ->; now reflexivity. Qed. + +
I: Type
X: psh I
R: relᵢ X X

converseᵢ R <= R -> Symmetricᵢ R
+
I: Type
X: psh I
R: relᵢ X X

converseᵢ R <= R -> Symmetricᵢ R
I: Type
X: psh I
R: relᵢ X X
H: converseᵢ R <= R
i: I
x, y: X i
H0: R i x y

R i y x
now apply H. Qed. + +
I: Type
X: psh I
R: relᵢ X X
H: Symmetricᵢ R

converseᵢ R <= R
+
I: Type
X: psh I
R: relᵢ X X
H: Symmetricᵢ R

converseᵢ R <= R
intros ? ? ? ?; now symmetry. Qed. + +
I: Type
X: psh I
R: relᵢ X X

squareᵢ R <= R -> Transitiveᵢ R
+
I: Type
X: psh I
R: relᵢ X X

squareᵢ R <= R -> Transitiveᵢ R
I: Type
X: psh I
R: relᵢ X X
H: squareᵢ R <= R
i: I
x, y, z: X i
r: R i x y
s: R i y z

R i x z
apply H; now exists y. Qed. + +
I: Type
X: psh I
R: relᵢ X X
H: Transitiveᵢ R

squareᵢ R <= R
+
I: Type
X: psh I
R: relᵢ X X
H: Transitiveᵢ R

squareᵢ R <= R
I: Type
X: psh I
R: relᵢ X X
H: Transitiveᵢ R
a: I
a0, a1, y: X a
H0: R a a0 y
H1: R a y a1

R a a0 a1
now transitivity y. Qed. + +
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> +converseᵢ R <= R -> squareᵢ R <= R -> Equivalenceᵢ R
+
I: Type
X: psh I
R: relᵢ X X

eqᵢ X <= R -> +converseᵢ R <= R -> squareᵢ R <= R -> Equivalenceᵢ R
+
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I

Reflexive (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I
Symmetric (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I
Transitive (R i)
+
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I

Symmetric (R i)
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I
Transitive (R i)
+
I: Type
X: psh I
R: relᵢ X X
H: eqᵢ X <= R
H0: converseᵢ R <= R
H1: squareᵢ R <= R
i: I

Transitive (R i)
+
now apply build_transitive. +Qed.
+
+
+ diff --git a/docs/Renaming.html b/docs/Renaming.html new file mode 100644 index 0000000..340a849 --- /dev/null +++ b/docs/Renaming.html @@ -0,0 +1,429 @@ + + + + + + +Renamings + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Renamings

+ +

As explained in the abstract theory, renamings are a particular kind +of assignements, where variables are mapped to variables.

+

In this file we define renamings for a given abstract context structure and provide +all their properties that we will use throughout the development.

+
+

Definition

+

Context inclusion, or renaming is defined as an assignment of variables in Γ to +variables in Δ.

+
  Notation "Γ ⊆ Δ" := (@assignment T C CC c_var Γ%ctx Δ%ctx).

The identity inclusion, whose renaming is the identity.

+
  Definition r_id {Γ} : Γ ⊆ Γ := fun _ i => i .
+  #[global] Arguments r_id _ _ /.

Renaming assignments on the left by precomposition

+
  Definition a_ren_l {F Γ1 Γ2 Γ3} : Γ1 ⊆ Γ2 -> Γ2 =[F]> Γ3 -> Γ1 =[F]> Γ3 := a_map.
+  #[global] Arguments a_ren_l _ _ _ _ _ _ _ /.
+  Notation "r ᵣ⊛ u" := (a_ren_l r u) : asgn_scope.
+
+  
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3: C

Proper + (asgn_eq Γ1 Γ2 ==> asgn_eq Γ2 Γ3 ==> asgn_eq Γ1 Γ3) + a_ren_l
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3: C

Proper + (asgn_eq Γ1 Γ2 ==> asgn_eq Γ2 Γ3 ==> asgn_eq Γ1 Γ3) + a_ren_l
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3: C
x, y: Γ1 ⊆ Γ2
H1: x ≡ₐ y
x0, y0: Γ2 =[ F ]> Γ3
H2: x0 ≡ₐ y0
a: T
a0: Γ1 ∋ a

x0 a (x a a0) = y0 a (y a a0)
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3: C
x, y: Γ1 ⊆ Γ2
H1: x ≡ₐ y
x0, y0: Γ2 =[ F ]> Γ3
H2: x0 ≡ₐ y0
a: T
a0: Γ1 ∋ a

y0 a (x a a0) = y0 a (y a a0)
+
f_equal; apply H1. + Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2: C
a: Γ1 =[ F ]> Γ2

r_id ᵣ⊛ a ≡ₐ a
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2: C
a: Γ1 =[ F ]> Γ2

r_id ᵣ⊛ a ≡ₐ a
reflexivity. Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Γ4: C
u: Γ1 ⊆ Γ2
v: Γ2 ⊆ Γ3
w: Γ3 =[ F ]> Γ4

(u ᵣ⊛ v) ᵣ⊛ w ≡ₐ u ᵣ⊛ (v ᵣ⊛ w)
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Γ4: C
u: Γ1 ⊆ Γ2
v: Γ2 ⊆ Γ3
w: Γ3 =[ F ]> Γ4

(u ᵣ⊛ v) ᵣ⊛ w ≡ₐ u ᵣ⊛ (v ᵣ⊛ w)
reflexivity. Qed.

The fiber of the inclusion c_var (Γ +▶ Δ) ↪ c_var Γ + c_var Δ is a subsingleton.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C
x: T
i: Γ1 +▶ Γ2 ∋ x
a, b: c_cat_view Γ1 Γ2 x i

a = b
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C
x: T
i: Γ1 +▶ Γ2 ∋ x
a, b: c_cat_view Γ1 Γ2 x i

a = b
+
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
i, i0: Γ1 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_l i0)
x1: r_cat_l i = r_cat_l i0
x: Vcat_l i ~= b0

Vcat_l i0 = b0
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
j: Γ2 ∋ x0
i0: Γ1 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_l i0)
x1: r_cat_r j = r_cat_l i0
x: Vcat_r j ~= b0
Vcat_l i0 = b0
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
i: Γ1 ∋ x0
j: Γ2 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_r j)
x1: r_cat_l i = r_cat_r j
x: Vcat_l i ~= b0
Vcat_r j = b0
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
j0, j: Γ2 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_r j)
x1: r_cat_r j0 = r_cat_r j
x: Vcat_r j0 ~= b0
Vcat_r j = b0
+
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
i, i0: Γ1 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_l i0)
x1: r_cat_l i = r_cat_l i0
x: Vcat_l i ~= b0

Vcat_l i0 = b0
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
i, i0: Γ1 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_l i0)
x1: i = i0
x: Vcat_l i ~= b0

Vcat_l i0 = b0
+
now rewrite x1 in x |-; rewrite x. +
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
j: Γ2 ∋ x0
i0: Γ1 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_l i0)
x1: r_cat_r j = r_cat_l i0
x: Vcat_r j ~= b0

Vcat_l i0 = b0
symmetry in x1; destruct (r_cat_disj _ _ x1). +
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
i: Γ1 ∋ x0
j: Γ2 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_r j)
x1: r_cat_l i = r_cat_r j
x: Vcat_l i ~= b0

Vcat_r j = b0
destruct (r_cat_disj _ _ x1). +
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
j0, j: Γ2 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_r j)
x1: r_cat_r j0 = r_cat_r j
x: Vcat_r j0 ~= b0

Vcat_r j = b0
T, C: Type
CC: context T C
Γ1, Γ2: C
x0: T
CL: context_laws T C
j0, j: Γ2 ∋ x0
b0: c_cat_view Γ1 Γ2 x0 (r_cat_r j)
x1: j0 = j
x: Vcat_r j0 ~= b0

Vcat_r j = b0
+
now rewrite x1 in x |-; rewrite x. + Qed.

Simplifications of the embedding.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C
x: T
i: Γ1 ∋ x

c_view_cat (r_cat_l i) = +(Vcat_l i : c_cat_view Γ1 Γ2 x (r_cat_l i))
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C
x: T
i: Γ1 ∋ x

c_view_cat (r_cat_l i) = +(Vcat_l i : c_cat_view Γ1 Γ2 x (r_cat_l i))
apply view_cat_irr. Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C
x: T
i: Γ2 ∋ x

c_view_cat (r_cat_r i) = +(Vcat_r i : c_cat_view Γ1 Γ2 x (r_cat_r i))
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C
x: T
i: Γ2 ∋ x

c_view_cat (r_cat_r i) = +(Vcat_r i : c_cat_view Γ1 Γ2 x (r_cat_r i))
apply view_cat_irr. Qed.

Simplifying copairing.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ

r_cat_l ᵣ⊛ [u, v] ≡ₐ u
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ

r_cat_l ᵣ⊛ [u, v] ≡ₐ u
intros ? i; cbn; now rewrite c_view_cat_simpl_l. Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ

r_cat_r ᵣ⊛ [u, v] ≡ₐ v
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ

r_cat_r ᵣ⊛ [u, v] ≡ₐ v
intros ? i; cbv; now rewrite c_view_cat_simpl_r. Qed.

Universal property of copairing.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: (Γ1 +▶ Γ2) =[ F ]> Δ
H1: u ≡ₐ r_cat_l ᵣ⊛ w
H2: v ≡ₐ r_cat_r ᵣ⊛ w

[u, v] ≡ₐ w
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: (Γ1 +▶ Γ2) =[ F ]> Δ
H1: u ≡ₐ r_cat_l ᵣ⊛ w
H2: v ≡ₐ r_cat_r ᵣ⊛ w

[u, v] ≡ₐ w
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: (Γ1 +▶ Γ2) =[ F ]> Δ
H1: u ≡ₐ r_cat_l ᵣ⊛ w
H2: v ≡ₐ r_cat_r ᵣ⊛ w
a: T
i: Γ1 +▶ Γ2 ∋ a

match c_view_cat i with +| Vcat_l i => u a i +| Vcat_r j => v a j +end = w a i
+
destruct (c_view_cat i); [ exact (H1 _ i) | exact (H2 _ j) ]. + Qed.

Identity copairing.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C

[r_cat_l, r_cat_r] ≡ₐ r_id
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2: C

[r_cat_l, r_cat_r] ≡ₐ r_id
now apply a_cat_uniq. Qed.

Action of concatenation on maps.

+
  Definition r_cat₂ {Γ1 Γ2 Δ1 Δ2} (r1 : Γ1 ⊆ Δ1) (r2 : Γ2 ⊆ Δ2)
+    : (Γ1 +▶ Γ2) ⊆ (Δ1 +▶ Δ2)
+    := [ r1 ᵣ⊛ r_cat_l , r2 ᵣ⊛ r_cat_r ] .
+  #[global] Arguments r_cat₂ _ _ _ _ _ _ _ _ /.

Shifting renamings on the right.

+
  Definition r_shift {Γ Δ} R (r : Γ ⊆ Δ) : (Γ +▶ R) ⊆ (Δ +▶ R)
+    := [ r ᵣ⊛ r_cat_l , r_cat_r ] .
+  #[global] Arguments r_shift _ _ _ _ _ _ /.
+
+  
T, C: Type
CC: context T C
CL: context_laws T C
Γ, R: C

r_shift R r_id ≡ₐ r_id
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ, R: C

r_shift R r_id ≡ₐ r_id
now apply a_cat_uniq. Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3, R: C
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3

r_shift R (r1 ᵣ⊛ r2) ≡ₐ r_shift R r1 ᵣ⊛ r_shift R r2
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3, R: C
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3

r_shift R (r1 ᵣ⊛ r2) ≡ₐ r_shift R r1 ᵣ⊛ r_shift R r2
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3, R: C
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3
a: T
i: Γ1 ∋ a

r_cat_l (r2 a (r1 a i)) = +match c_view_cat (r_cat_l (r1 a i)) with +| Vcat_l i => r_cat_l (r2 a i) +| Vcat_r j => r_cat_r j +end
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3, R: C
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3
a: T
j: R ∋ a
r_cat_r j = +match c_view_cat (r_cat_r j) with +| Vcat_l i => r_cat_l (r2 a i) +| Vcat_r j => r_cat_r j +end
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3, R: C
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3
a: T
i: Γ1 ∋ a

r_cat_l (r2 a (r1 a i)) = +match c_view_cat (r_cat_l (r1 a i)) with +| Vcat_l i => r_cat_l (r2 a i) +| Vcat_r j => r_cat_r j +end
remember (r1 _ i) as j; now rewrite c_view_cat_simpl_l. +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3, R: C
r1: Γ1 ⊆ Γ2
r2: Γ2 ⊆ Γ3
a: T
j: R ∋ a

r_cat_r j = +match c_view_cat (r_cat_r j) with +| Vcat_l i => r_cat_l (r2 a i) +| Vcat_r j => r_cat_r j +end
now rewrite c_view_cat_simpl_r. + Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
Γ, Δ, R: C

Proper + (asgn_eq Γ Δ ==> asgn_eq (Γ +▶ R)%ctx (Δ +▶ R)%ctx) + (r_shift R)
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ, Δ, R: C

Proper + (asgn_eq Γ Δ ==> asgn_eq (Γ +▶ R)%ctx (Δ +▶ R)%ctx) + (r_shift R)
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ, Δ, R: C
x, y: Γ ⊆ Δ
H: x ≡ₐ y
a: T
i: Γ ∋ a

r_cat_l (x a i) = r_cat_l (y a i)
+
now rewrite H. + Qed.

A bunch of shorthands for useful renamings.

+
  Definition r_cat_rr {Γ1 Γ2 Γ3} : Γ3 ⊆ (Γ1 +▶ (Γ2 +▶ Γ3)) :=
+    r_cat_r ᵣ⊛ r_cat_r .
+
+  Definition r_cat3_1 {Γ1 Γ2 Γ3} : (Γ1 +▶ Γ2) ⊆ (Γ1 +▶ (Γ2 +▶ Γ3)) :=
+    [ r_cat_l , r_cat_l ᵣ⊛ r_cat_r ].
+
+  Definition r_cat3_2 {Γ1 Γ2 Γ3} : (Γ1 +▶ Γ3) ⊆ (Γ1 +▶ (Γ2 +▶ Γ3)) :=
+    [ r_cat_l , r_cat_r ᵣ⊛ r_cat_r ].
+
+  Definition r_cat3_3 {Γ1 Γ2 Γ3} : (Γ2 +▶ Γ3) ⊆ ((Γ1 +▶ Γ2) +▶ Γ3) :=
+    [ r_cat_r ᵣ⊛ r_cat_l , r_cat_r ].
+
+  Definition r_assoc_r {Γ1 Γ2 Γ3} : ((Γ1 +▶ Γ2) +▶ Γ3) ⊆ (Γ1 +▶ (Γ2 +▶ Γ3))
+    := [ r_cat3_1 , r_cat_r ᵣ⊛ r_cat_r ].
+
+  Definition r_assoc_l {Γ1 Γ2 Γ3} : (Γ1 +▶ (Γ2 +▶ Γ3)) ⊆ ((Γ1 +▶ Γ2) +▶ Γ3)
+    := [ r_cat_l ᵣ⊛ r_cat_l , r_cat3_3 ] .

Misc. laws.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ

r_cat3_1 ᵣ⊛ [u, [v, w]] ≡ₐ [u, v]
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ

r_cat3_1 ᵣ⊛ [u, [v, w]] ≡ₐ [u, v]
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l i) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = u a i
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
j: Γ2 ∋ a
match c_view_cat (r_cat_r (r_cat_l j)) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = v a j
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l i) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = u a i
now rewrite c_view_cat_simpl_l. +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
j: Γ2 ∋ a

match c_view_cat (r_cat_r (r_cat_l j)) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = v a j
now rewrite c_view_cat_simpl_r, c_view_cat_simpl_l. + Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ

r_cat3_2 ᵣ⊛ [u, [v, w]] ≡ₐ [u, w]
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ

r_cat3_2 ᵣ⊛ [u, [v, w]] ≡ₐ [u, w]
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l i) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = u a i
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
j: Γ3 ∋ a
match c_view_cat (r_cat_r (r_cat_r j)) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = w a j
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l i) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = u a i
now rewrite c_view_cat_simpl_l. +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
j: Γ3 ∋ a

match c_view_cat (r_cat_r (r_cat_r j)) with +| Vcat_l i => u a i +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => v a i + | Vcat_r j0 => w a j0 + end +end = w a j
now rewrite 2 c_view_cat_simpl_r. + Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ

r_cat3_3 ᵣ⊛ [[u, v], w] ≡ₐ [v, w]
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ

r_cat3_3 ᵣ⊛ [[u, v], w] ≡ₐ [v, w]
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
i: Γ2 ∋ a

match c_view_cat (r_cat_l (r_cat_r i)) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => u a i0 + | Vcat_r j => v a j + end +| Vcat_r j => w a j +end = v a i
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
j: Γ3 ∋ a
match c_view_cat (r_cat_r j) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => u a i0 + | Vcat_r j => v a j + end +| Vcat_r j => w a j +end = w a j
+
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
i: Γ2 ∋ a

match c_view_cat (r_cat_l (r_cat_r i)) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => u a i0 + | Vcat_r j => v a j + end +| Vcat_r j => w a j +end = v a i
now rewrite c_view_cat_simpl_l, c_view_cat_simpl_r. +
T, C: Type
CC: context T C
CL: context_laws T C
F: Fam₁ T C
Γ1, Γ2, Γ3, Δ: C
u: Γ1 =[ F ]> Δ
v: Γ2 =[ F ]> Δ
w: Γ3 =[ F ]> Δ
a: T
j: Γ3 ∋ a

match c_view_cat (r_cat_r j) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => u a i0 + | Vcat_r j => v a j + end +| Vcat_r j => w a j +end = w a j
now rewrite c_view_cat_simpl_r. + Qed.

These last two are pretty interesting, they are the proofs witnessing the associativity +isomorphism Γ₁ +▶ (Γ₂ +▶ Γ₃) ≈ (Γ₁ +▶ Γ₂) +▶ Γ₃. Here isomorphism means isomorphism +of the set of variables.

+
  
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C

r_assoc_l ᵣ⊛ r_assoc_r ≡ₐ r_id
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C

r_assoc_l ᵣ⊛ r_assoc_r ≡ₐ r_id
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l (r_cat_l i)) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_l i
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ2 +▶ Γ3 ∋ a
match + c_view_cat + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j => r_cat_r j + end +with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_r j
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l (r_cat_l i)) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_l i
now rewrite 2 c_view_cat_simpl_l. +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ2 +▶ Γ3 ∋ a

match + c_view_cat + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j => r_cat_r j + end +with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_r j
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ2 ∋ a

match c_view_cat (r_cat_l (r_cat_r i)) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_r (r_cat_l i)
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ3 ∋ a
match c_view_cat (r_cat_r j) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_r (r_cat_r j)
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ2 ∋ a

match c_view_cat (r_cat_l (r_cat_r i)) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_r (r_cat_l i)
now rewrite c_view_cat_simpl_l, c_view_cat_simpl_r. +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ3 ∋ a

match c_view_cat (r_cat_r j) with +| Vcat_l i => + match c_view_cat i with + | Vcat_l i0 => r_cat_l i0 + | Vcat_r j => r_cat_r (r_cat_l j) + end +| Vcat_r j => r_cat_r (r_cat_r j) +end = r_cat_r (r_cat_r j)
now rewrite c_view_cat_simpl_r. + Qed. + +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C

r_assoc_r ᵣ⊛ r_assoc_l ≡ₐ r_id
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C

r_assoc_r ᵣ⊛ r_assoc_l ≡ₐ r_id
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ1 +▶ Γ2 ∋ a

match + c_view_cat + match c_view_cat i with + | Vcat_l i => r_cat_l i + | Vcat_r j => r_cat_r (r_cat_l j) + end +with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_l i
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ3 ∋ a
match c_view_cat (r_cat_r (r_cat_r j)) with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_r j
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ1 +▶ Γ2 ∋ a

match + c_view_cat + match c_view_cat i with + | Vcat_l i => r_cat_l i + | Vcat_r j => r_cat_r (r_cat_l j) + end +with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_l i
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l i) with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_l (r_cat_l i)
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ2 ∋ a
match c_view_cat (r_cat_r (r_cat_l j)) with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_l (r_cat_r j)
+
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
i: Γ1 ∋ a

match c_view_cat (r_cat_l i) with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_l (r_cat_l i)
now rewrite c_view_cat_simpl_l. +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ2 ∋ a

match c_view_cat (r_cat_r (r_cat_l j)) with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_l (r_cat_r j)
now rewrite c_view_cat_simpl_r, c_view_cat_simpl_l. +
T, C: Type
CC: context T C
CL: context_laws T C
Γ1, Γ2, Γ3: C
a: T
j: Γ3 ∋ a

match c_view_cat (r_cat_r (r_cat_r j)) with +| Vcat_l i => r_cat_l (r_cat_l i) +| Vcat_r j => + match c_view_cat j with + | Vcat_l i => r_cat_l (r_cat_r i) + | Vcat_r j0 => r_cat_r j0 + end +end = r_cat_r j
now rewrite 2 c_view_cat_simpl_r. + Qed. +End with_param.

Misc.

+
Ltac asgn_unfold :=
+  repeat unfold a_empty, a_cat, a_map, r_id, a_ren_l, a_cat, r_cat₂, r_shift, r_cat3_1,
+    r_cat3_2, r_cat3_3, r_assoc_r, r_assoc_l.
+
+#[global] Notation "Γ ⊆ Δ" := (assignment c_var Γ%ctx Δ%ctx).
+#[global] Notation "r ᵣ⊛ u" := (a_ren_l r u) : asgn_scope.
+
+
+ diff --git a/docs/STLC_CBV.html b/docs/STLC_CBV.html new file mode 100644 index 0000000..fbff5e1 --- /dev/null +++ b/docs/STLC_CBV.html @@ -0,0 +1,877 @@ + + + + + + +A Minimal Example: Call-by-Value Simply Typed Lambda Calculus + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

A Minimal Example: Call-by-Value Simply Typed Lambda Calculus

+ +

We demonstrate how to instantiate our framework to define the OGS associated +to the CBV λ-calculus. With the instance comes the proof that bisimilarity of +the OGS entails substitution equivalence, which coincides with +CIU-equivalence.

+
+

Note

+

This example is designed to be minimal, hiding by nature some +difficulties. In particular it has no positive types, which simplifies the +development a lot.

+
+
+

Syntax

+
+

Types

+

As discussed in the paper, our framework applies not really to a language but +more to an abstract machine. In order to ease this instanciation, we will +focus directly on a CBV machine and define evaluation contexts early on. +Working with intrinsically typed syntax, we need to give types to these +contexts: we will type them by the "formal negation" of the type of their +hole. In order to do so we first define the usual types ty0 of STLC with +functions and a ground type.

+
Declare Scope ty_scope .
+Inductive ty0 : Type :=
+| ι : ty0
+| Arr : ty0 -> ty0 -> ty0
+.
+Notation "A → B" := (Arr A B) (at level 40) : ty_scope .

We then define "tagged types", where t+ a will be the type of terms of type +a, and t- a the type of evaluation contexts of hole a.

+
Variant ty : Type :=
+| VTy : ty0 -> ty
+| KTy : ty0 -> ty
+.
+Notation "+ t" := (VTy t) (at level 5) : ty_scope .
+Notation "¬ t" := (KTy t) (at level 5) : ty_scope .
+Coercion VTy : ty0 >-> ty .
+
+

Typing Contexts

+

Typing contexts are now simply defined as lists of tagged types. This is +perhaps the slightly surprising part: contexts will now contain "continuation +variables". Rest assured terms will make no use of them. These are solely +needed for evaluation contexts: as they are only typed with their hole, we are +missing the type of their outside. We fix this problem by naming the outside +and make evaluation contexts end with a continuation variable.

+
+

Note

+

Our choices make a bit more sense if we realize that what we are +writing is exactly the subset of λμ-calculus that is the image of the CBV +translation from λ-calculus.

+
+ +
The reference ctx was not found in the current +environment.
+
+

Terms and Values and ...

+

We now have all that is needed to define terms, which we define mutually with +values. As discussed above, they are are indexed by a list of tagged types (of +which they only care about the non-negated elements) and by an untagged type.

+

The only fanciness is the recursive lambda abstraction, which we include to +safeguard ourselves from accidentally using the fact that the language is +strongly normalizing.

+
Inductive term (Γ : t_ctx) : ty0 -> Type :=
+| Val {a} : val Γ a -> term Γ a
+| App {a b} : term Γ (a → b) -> term Γ a -> term Γ b
+with val (Γ : t_ctx) : ty0 -> Type :=
+| Var {a} : Γ ∋ + a -> val Γ a
+| TT : val Γ ι
+| Lam {a b} : term (Γ ▶ₓ (a → b) ▶ₓ a) b -> val Γ (a → b)
+.

Evaluation contexts follow. As discussed, there is a "covariable" case, to +"end" the context. The other cases are usual: evaluating the argument of an +application and evaluating the function.

+
Inductive ev_ctx (Γ : t_ctx) : ty0 -> Type :=
+| K0 {a} : Γ ∋ ¬ a -> ev_ctx Γ a
+| K1 {a b} : term Γ (a → b) -> ev_ctx Γ b -> ev_ctx Γ a
+| K2 {a b} : val Γ a -> ev_ctx Γ b -> ev_ctx Γ (a → b)
+.

Next are the machine states. They consist of an explicit cut and represent +a term in the process of being executed in some context. Notice how states +they are only indexed by a typing context: these are proper "diverging +programs".

+
Definition state := term ∥ₛ ev_ctx.

Finally the last of syntactic categories: "machine values". This category is +typed with a tagged type and encompasses both values (for non-negated types) +and evaluation contexts (for negated types). The primary use-case for this +category is to denote "things by which we can substitute (tagged) variables".

+

In fact when working with intrinsically-typed syntax, substitution is modelled +as a monoidal multiplication (see [AACMM21] and [FS22]). We will prove later +that val_m Γ is indeed a monoid relative to has Γ and that contexts and +assignments form a category.

+
Equations val_m : t_ctx -> ty -> Type :=
+  val_m Γ (+ a) := val Γ a ;
+  val_m Γ (¬ a) := ev_ctx Γ a .

Together with machine values we define a smart constructor for "machine var", +embedding tagged variables into these generalized values. It conveniently +serves as the identity assignment, a fact we use to give it this mysterious +point-free style type, which desugars to forall a, Γ a -> val_m Γ a.

+
Equations a_id {Γ} : Γ =[val_m]> Γ :=
+  a_id (+ _) i := Var i ;
+  a_id (¬ _) i := K0 i .
+
+
+

Substitution and Renaming

+

In order to define substitution we first need to dance the intrinsically-typed +dance and define renamings, from which we will derive weakenings and then only +define substitution.

+
+

Renaming

+

Lets write intrinsically-typed parallel renaming for all of our syntactic +categories! If you have never seen such intrinsically-typed definitions you +might be surprised by the absence of error-prone de-bruijn index manipulation. +Enjoy this beautiful syntax traversal!

+
Equations t_rename {Γ Δ} : Γ ⊆ Δ -> term Γ ⇒ᵢ term Δ :=
+  t_rename f _ (Val v)     := Val (v_rename f _ v) ;
+  t_rename f _ (App t1 t2) := App (t_rename f _ t1) (t_rename f _ t2) ;
+with v_rename {Γ Δ} : Γ ⊆ Δ -> val Γ ⇒ᵢ val Δ :=
+  v_rename f _ (Var i)    := Var (f _ i) ;
+  v_rename f _ (TT)       := TT ;
+  v_rename f _ (Lam t) := Lam (t_rename (r_shift2 f) _ t) .
+
+Equations e_rename {Γ Δ} : Γ ⊆ Δ -> ev_ctx Γ ⇒ᵢ ev_ctx Δ :=
+  e_rename f _ (K0 i)   := K0 (f _ i) ;
+  e_rename f _ (K1 t π) := K1 (t_rename f _ t) (e_rename f _ π) ;
+  e_rename f _ (K2 v π) := K2 (v_rename f _ v) (e_rename f _ π) .
+
+Equations s_rename {Γ Δ} : Γ ⊆ Δ -> state Γ -> state Δ :=
+  s_rename f (Cut t π) := Cut (t_rename f _ t) (e_rename f _ π).
+
+Equations m_rename {Γ Δ} : Γ ⊆ Δ -> val_m Γ ⇒ᵢ val_m Δ :=
+  m_rename f (+ _) v := v_rename f _ v ;
+  m_rename f (¬ _) π := e_rename f _ π .
+
+#[global] Arguments s_rename _ _ _ /.
+#[global] Arguments m_rename _ _ _ /.

We can recast m_rename as an operator on assigments, more precisely as +renaming an assigment on the left.

+
Definition a_ren {Γ1 Γ2 Γ3} : Γ2 ⊆ Γ3 -> Γ1 =[val_m]> Γ2 -> Γ1 =[val_m]> Γ3 :=
+  fun f g _ i => m_rename f _ (g _ i) .

The following bunch of notations will help us to keep the code readable:

+
Notation "t ₜ⊛ᵣ r" := (t_rename r%asgn _ t) (at level 14).
+Notation "v ᵥ⊛ᵣ r" := (v_rename r%asgn _ v) (at level 14).
+Notation "π ₑ⊛ᵣ r" := (e_rename r%asgn _ π) (at level 14).
+Notation "v ₘ⊛ᵣ r" := (m_rename r%asgn _ v) (at level 14).
+Notation "s ₛ⊛ᵣ r" := (s_rename r%asgn s) (at level 14).
+Notation "a ⊛ᵣ r" := (a_ren r%asgn a) (at level 14) : asgn_scope.

As discussed above, we can now obtain our precious weakenings. Here are the +three we will need.

+
Definition t_shift {Γ a} := @t_rename Γ (Γ ▶ₓ a) r_pop.
+Definition m_shift2 {Γ a b} := @m_rename Γ (Γ ▶ₓ a ▶ₓ b) (r_pop ᵣ⊛ r_pop).
+Definition a_shift2 {Γ Δ a b} (f : Γ =[val_m]> Δ)
+  : (Γ ▶ₓ a ▶ₓ b) =[val_m]> (Δ ▶ₓ a ▶ₓ b)
+  := [ [ a_map f m_shift2 ,ₓ a_id a (pop top) ] ,ₓ a_id b top ].
+
+

Substitutions

+

With weakenings in place we are now equipped to define substitutions. This +goes pretty much like renaming. We have abstained from defining generic syntax +traversal tools like Allais et al's "Kits" to keep our example minimal... And +incidentally showcase the intrinsically-typed style with Matthieu Sozeau's +Equations.

+
Equations t_subst {Γ Δ} : Γ =[val_m]> Δ -> term Γ ⇒ᵢ term Δ :=
+  t_subst f _ (Val v)     := Val (v_subst f _ v) ;
+  t_subst f _ (App t1 t2) := App (t_subst f _ t1) (t_subst f _ t2) ;
+with v_subst {Γ Δ} : Γ =[val_m]> Δ -> val Γ ⇒ᵢ val Δ :=
+  v_subst f _ (Var i)    := f _ i ;
+  v_subst f _ (TT)       := TT ;
+  v_subst f _ (Lam t) := Lam (t_subst (a_shift2 f) _ t) .
+
+Equations e_subst {Γ Δ} : Γ =[val_m]> Δ -> ev_ctx Γ ⇒ᵢ ev_ctx Δ :=
+  e_subst f _ (K0 i)   := f _ i ;
+  e_subst f _ (K1 t π) := K1 (t_subst f _ t) (e_subst f _ π) ;
+  e_subst f _ (K2 v π) := K2 (v_subst f _ v) (e_subst f _ π) .

These notations will make everything shine.

+
Notation "t `ₜ⊛ a" := (t_subst a%asgn _ t) (at level 30).
+Notation "v `ᵥ⊛ a" := (v_subst a%asgn _ v) (at level 30).
+Notation "π `ₑ⊛ a" := (e_subst a%asgn _ π) (at level 30).

These two last substitutions, for states and generalized values, are the ones +we will give to the abstract interface. For categorical abstraction reasons, +the abstract interface has the argument reversed for substitutions: first +the state or value, then the assignment as second argument. To ease instanciation +we will hence do so too. The type is given with tricky combinators but expands to:

+
+

m_subst Γ a : val_m Γ a -> forall Δ, Γ =[val_m]> Δ -> val_m Δ a

+
Equations m_subst : val_m ⇒ ⟦ val_m , val_m ⟧ :=
+  m_subst _ (+ _) v _ f := v `ᵥ⊛ f ;
+  m_subst _ (¬ _) π _ f := π `ₑ⊛ f .
+
+Definition s_subst : state ⇒ ⟦ val_m , state ⟧ :=
+  fun _ s _ f => (s.(cut_l) `ₜ⊛ f) ⋅ (s.(cut_r) `ₑ⊛ f).
+#[global] Arguments s_subst _ _ /.
+

We can now instanciate the substitution monoid and module structures.

+
#[global] Instance val_m_monoid : subst_monoid val_m :=
+  {| v_var := @a_id ; v_sub := m_subst |} .
+#[global] Instance state_module : subst_module val_m state :=
+  {| c_sub := s_subst |} .

Finally we define a more usual substitution function which only substitutes +the top two variables instead of doing parallel substitution.

+
Definition assign2 {Γ a b} v1 v2
+  : (Γ ▶ₓ a ▶ₓ b) =[val_m]> Γ
+  := [ [ a_id ,ₓ v1 ] ,ₓ v2 ] .
+Definition t_subst2 {Γ a b c} (t : term _ c) v1 v2 := t `ₜ⊛ @assign2 Γ a b v1 v2.
+Notation "t /[ v1 , v2 ]" := (t_subst2 t v1 v2) (at level 50, left associativity).
+
+
+

An Evaluator

+

As motivated earlier, the evaluator will be a defined as a state-machine, the +core definition being a state-transition function. To stick to the intrinsic +style, we wish that this state-machine stops only at evidently normal forms, +instead of stoping at states which happen to be in normal form. Perhaps more +simply said, we want to type the transition function as state Γ (state +Γ + nf Γ), where returning in the right component means stoping and outputing +a normal form.

+

In order to do this we first need to define normal forms! But instead of +defining an inductive definition of normal forms as is customary, we will take +an other route more tailored to OGS based on ultimate patterns.

+
+

Patterns and Observations

+

As discussed in the paper, a central aspect of OGS is to circumvent the +problem of naive trace semantics for higher-order languages by mean of +a notion of "abstract values", or more commonly ultimate patterns, which +define the "shareable part" of a value. For clarity reasons, instead of +patterns we here take the dual point of view of "observations", which can be +seen as patterns at the dual type (dual in the sense of swapping the tag). For +our basic λ-calculus, all types are negative -- that is, unsheareble -- hence +the observations are pretty simple:

+
    +
  • Observing a continuation of type ¬ a means returning a (hidden) value to +it. In terms of pattern this corresponds to the "fresh variable" pattern +Var x.

    +
  • +
  • Observing a function of type a b means giving it a hidden value and +a hidden continuation. In terms of patterns this corresponds to the +"application" co-pattern K2 (Var x) (K0 y).

    +
    Variant obs : ty -> Type :=
    +| ORet {a} : obs (¬ a)
    +| OApp {a b} : obs (a → b)
    +.
  • +
+

As observations correspond to a subset of (machine) values where all the +variables are "fresh", these variables have no counter-part in de-bruijn +notation (there is no meaningful notion of freshness). As such we have not +indexed obs by any typing context, but to complete the definition we now +need to define a projection into typing contexts denoting the "domain", +"support" or more accurately "set of nameless fresh variables" of an +observation.

+
Equations obs_dom {a} : obs a -> t_ctx :=
+  obs_dom (@ORet a)   := ∅ ▶ₓ + a ;
+  obs_dom (@OApp a b) := ∅ ▶ₓ + a ▶ₓ ¬ b .

These two definitions together form an operator.

+
Definition obs_op : Oper ty t_ctx :=
+  {| o_op := obs ; o_dom := @obs_dom |} .
+Notation ORet' := (ORet : o_op obs_op _).
+Notation OApp' := (OApp : o_op obs_op _).

Given a value, an observation on its type and a value for each fresh variable +of the observation, we can "refold" everything and form a new state which will +indeed observe this value.

+
Equations obs_app {Γ a} (v : val_m Γ a) (p : obs a) (γ : obs_dom p =[val_m]> Γ) : state Γ :=
+  obs_app v OApp γ := Val v ⋅ K2 (γ _ (pop top)) (γ _ top) ;
+  obs_app π ORet γ := Val (γ _ top) ⋅ (π : ev_ctx _ _) .
+
+

Normal forms

+

Normal forms for CBV λ-calculus can be characterized as either a value v or +a stuck application in evaluation context E[x v] (see "eager-normal forms" +in [L05]). Now it doesn't take much squinting to see that in our setting, +this corresponds respectively to states of the form v | K0 x and Var +x | K2 v π . Squinting a bit more, we can reap the benefits of our unified +treatment of terms and contexts and see that both of these cases work in the +same way: normal states are states given by a variable facing an observation +whose fresh variables have been substituted with values.

+

Having already defined observation and their set of fresh variables, an +observation stuffed with values in typing context Γ can be represented +simply by a formal substitution of an observation o and an assigment +obs_dom o =[val]> Γ. This "split" definition of normal forms is the one we +will take.

+
Definition nf := c_var ∥ₛ (obs_op # val_m).
+
+

The CBV Machine

+

Everything is now in place to define our state transition function. The +reduction rules should come to no surprise:

+
    +
  1. t1 t2 | π t2 | t1 1 π
  2. +
  3. v | x normal
  4. +
  5. v | t 1 π t | v 2 π
  6. +
  7. x | v 2 π normal
  8. +
  9. λfx.t | v 2 π t[fλfx.t; xv] | π
  10. +
+

Rules 1,3,5 step to a new configuration, while cases 2,4 are stuck on normal +forms.

+
Equations eval_step {Γ : t_ctx} : state Γ -> sum (state Γ) (nf Γ) :=
+  eval_step (Cut (App t1 t2)      (π))      := inl (Cut t2 (K1 t1 π)) ;
+  eval_step (Cut (Val v)          (K0 i))   := inr (i ⋅ ORet' ⦇ [ ! ,ₓ v ] ⦈) ;
+  eval_step (Cut (Val v)          (K1 t π)) := inl (Cut t (K2 v π)) ;
+  eval_step (Cut (Val (Var i))    (K2 v π)) := inr (i ⋅ OApp' ⦇ [ [ ! ,ₓ v ] ,ₓ π ] ⦈) ;
+  eval_step (Cut (Val (Lam t)) (K2 v π)) := inl (Cut (t /[ Lam t , v ]) π) .

Having defined the transition function, we can now iterate it inside the delay +monad. This constructs a possibly non-terminating computation ending with +a normal form.

+
Definition stlc_eval {Γ : t_ctx} : state Γ -> delay (nf Γ)
+  := iter_delay (ret_delay ∘ eval_step).
+
+
+

Properties

+

We have now finished all the computational parts of the instanciation, but all +the proofs are left to be done. Before attacking the OGS-specific hypotheses, +we will need to prove the usual standard lemmata on renaming and substitution.

+

There will be a stack of lemmata which will all pretty much be simple +inductions on the syntax, so we start by introducing some helpers for this. In +fact it is not completely direct to do since terms and values are mutually +defined: we will need to derive a mutual induction principle.

+
Scheme term_mut := Induction for term Sort Prop
+   with val_mut := Induction for val Sort Prop .

Annoyingly, Coq treats this mutual induction principle as two separate +induction principles. They both have the exact same premises but differ in +their conclusion. Thus we define a datatype for these premises, to avoid +duplicating the proofs. Additionally, evaluation contexts are not defined +mutually with terms and values, but it doesn't hurt to prove their properties +simultaneously too, so syn_ind_args is in fact closer to the premises of +a three-way mutual induction principle between terms, values and evaluation +contexts.

+
Record syn_ind_args (P_t : forall Γ A, term Γ A -> Prop)
+                    (P_v : forall Γ A, val Γ A -> Prop)
+                    (P_e : forall Γ A, ev_ctx Γ A -> Prop) :=
+  {
+    ind_val {Γ a} v (_ : P_v Γ a v) : P_t Γ a (Val v) ;
+    ind_app {Γ a b} t1 (_ : P_t Γ (a → b) t1) t2 (_ : P_t Γ a t2) : P_t Γ b (App t1 t2) ;
+    ind_var {Γ a} i : P_v Γ a (Var i) ;
+    ind_tt {Γ} : P_v Γ (ι) (TT) ;
+    ind_lamrec {Γ a b} t (_ : P_t _ b t) : P_v Γ (a → b) (Lam t) ;
+    ind_kvar {Γ a} i : P_e Γ a (K0 i) ;
+    ind_kfun {Γ a b} t (_ : P_t Γ (a → b) t) π (_ : P_e Γ b π) : P_e Γ a (K1 t π) ;
+    ind_karg {Γ a b} v (_ : P_v Γ a v) π (_ : P_e Γ b π) : P_e Γ (a → b) (K2 v π)
+  } .
+
+Lemma term_ind_mut P_t P_v P_e (H : syn_ind_args P_t P_v P_e) Γ a t : P_t Γ a t .
+  destruct H; now apply (term_mut P_t P_v).
+Qed.
+
+Lemma val_ind_mut P_t P_v P_e (H : syn_ind_args P_t P_v P_e) Γ a v : P_v Γ a v .
+  destruct H; now apply (val_mut P_t P_v).
+Qed.
+
+Lemma ctx_ind_mut P_t P_v P_e (H : syn_ind_args P_t P_v P_e) Γ a π : P_e Γ a π .
+  induction π.
+  - apply (ind_kvar _ _ _ H).
+  - apply (ind_kfun _ _ _ H); auto; apply (term_ind_mut _ _ _ H).
+  - apply (ind_karg _ _ _ H); auto; apply (val_ind_mut _ _ _ H).
+Qed.

Now equipped we can start with the first lemma: renaming respects pointwise +equality of assignments. As discussed, we will prove this by mutual induction +on our three "base" syntactic categories of terms, values and evaluation +contexts, and then we will also deduce it for the three "derived" notions of +machine values, states and assigments. Sometimes some of the derived notions +will be omitted if it is not needed later on.

+

This proof, like all the following ones will follow a simple pattern: +a simplification; an application of congruence; a fixup for the two-time +shifted assigment in the case of λ; finally a call to the induction +hypothesis.

+
+

Note

+

Here is definitely where the generic syntax traversal kit of +Guillaume Allais et al would shine. Indeed the proof pattern i outlined can +really be formalized into a generic proof.

+
+ +
Definition t_ren_proper_P Γ a (t : term Γ a) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> t ₜ⊛ᵣ f1 = t ₜ⊛ᵣ f2 .
+Definition v_ren_proper_P Γ a (v : val Γ a) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> v ᵥ⊛ᵣ f1 = v ᵥ⊛ᵣ f2 .
+Definition e_ren_proper_P Γ a (π : ev_ctx Γ a) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> π ₑ⊛ᵣ f1 = π ₑ⊛ᵣ f2 .
+Lemma ren_proper_prf : syn_ind_args t_ren_proper_P v_ren_proper_P e_ren_proper_P.
+  econstructor.
+  all: unfold t_ren_proper_P, v_ren_proper_P, e_ren_proper_P.
+  all: intros; cbn; f_equal; eauto.
+  all: eapply H; now apply r_shift2_eq.
+Qed.
+
+#[global] Instance t_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@t_rename Γ Δ).
+  intros f1 f2 H1 a x y ->; now apply (term_ind_mut _ _ _ ren_proper_prf).
+Qed.
+#[global] Instance v_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@v_rename Γ Δ).
+  intros f1 f2 H1 a x y ->; now apply (val_ind_mut _ _ _ ren_proper_prf).
+Qed.
+#[global] Instance e_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@e_rename Γ Δ).
+  intros f1 f2 H1 a x y ->; now apply (ctx_ind_mut _ _ _ ren_proper_prf).
+Qed.
+#[global] Instance m_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@m_rename Γ Δ).
+  intros ? ? H1 [] _ ? ->; cbn in *; now rewrite H1.
+Qed.
+#[global] Instance s_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@s_rename Γ Δ).
+  intros ? ? H1 _ x ->; destruct x; unfold s_rename; cbn; now rewrite H1.
+Qed.
+#[global] Instance a_ren_eq {Γ1 Γ2 Γ3}
+  : Proper (asgn_eq _ _ ==> asgn_eq _ _ ==> asgn_eq _ _) (@a_ren Γ1 Γ2 Γ3).
+  intros ? ? H1 ? ? H2 ? ?; apply (m_ren_eq _ _ H1), H2.
+Qed.
+#[global] Instance a_shift2_eq {Γ Δ x y} : Proper (asgn_eq _ _ ==> asgn_eq _ _) (@a_shift2 Γ Δ x y).
+  intros ? ? H ? v.
+  do 2 (dependent elimination v; cbn; auto).
+  now rewrite H.
+Qed.

Lemma 2: renaming-renaming assocativity. I say "associativity" because it +definitely looks like associativity if we disregard the subscripts. More +precisely it could be described as the composition law a right action.

+
Definition t_ren_ren_P Γ1 a (t : term Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2).
+Definition v_ren_ren_P Γ1 a (v : val Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (v ᵥ⊛ᵣ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ᵣ (f1 ᵣ⊛ f2).
+Definition e_ren_ren_P Γ1 a (π : ev_ctx Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (π ₑ⊛ᵣ f1) ₑ⊛ᵣ f2 = π ₑ⊛ᵣ (f1 ᵣ⊛ f2).
+
+Lemma ren_ren_prf : syn_ind_args t_ren_ren_P v_ren_ren_P e_ren_ren_P .
+  econstructor.
+  all: unfold t_ren_ren_P, v_ren_ren_P, e_ren_ren_P.
+  all: intros; cbn; f_equal; auto.
+  rewrite H; apply t_ren_eq; auto.
+  intros ? v; now do 2 (dependent elimination v; eauto).
+Qed.
+
+Lemma t_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) a (t : term Γ1 a) 
+    : (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2).
+  now apply (term_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma v_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) a (v : val Γ1 a) 
+    : (v ᵥ⊛ᵣ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ᵣ (f1 ᵣ⊛ f2).
+  now apply (val_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma e_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) a (π : ev_ctx Γ1 a) 
+    : (π ₑ⊛ᵣ f1) ₑ⊛ᵣ f2 = π ₑ⊛ᵣ (f1 ᵣ⊛ f2).
+  now apply (ctx_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma m_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) a (v : val_m Γ1 a) 
+    : (v ₘ⊛ᵣ f1) ₘ⊛ᵣ f2 = v ₘ⊛ᵣ (f1 ᵣ⊛ f2).
+  destruct a; [ now apply v_ren_ren | now apply e_ren_ren ].
+Qed.
+Lemma s_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1) 
+    : (s ₛ⊛ᵣ f1) ₛ⊛ᵣ f2 = s ₛ⊛ᵣ (f1 ᵣ⊛ f2).
+  destruct s; apply (f_equal2 Cut); [ now apply t_ren_ren | now apply e_ren_ren ].
+Qed.

Lemma 3: left identity law of renaming.

+
Definition t_ren_id_l_P Γ a (t : term Γ a) : Prop := t ₜ⊛ᵣ r_id = t .
+Definition v_ren_id_l_P Γ a (v : val Γ a) : Prop := v ᵥ⊛ᵣ r_id = v .
+Definition e_ren_id_l_P Γ a (π : ev_ctx Γ a) : Prop := π ₑ⊛ᵣ r_id = π.
+Lemma ren_id_l_prf : syn_ind_args t_ren_id_l_P v_ren_id_l_P e_ren_id_l_P .
+  econstructor.
+  all: unfold t_ren_id_l_P, v_ren_id_l_P, e_ren_id_l_P.
+  all: intros; cbn; f_equal; auto.
+  rewrite <- H at 2; apply t_ren_eq; auto.
+  intros ? v; now do 2 (dependent elimination v; eauto).
+Qed.
+
+Lemma t_ren_id_l {Γ} a (t : term Γ a) : t ₜ⊛ᵣ r_id = t .
+  now apply (term_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma v_ren_id_l {Γ} a (v : val Γ a) : v ᵥ⊛ᵣ r_id = v.
+  now apply (val_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma e_ren_id_l {Γ} a (π : ev_ctx Γ a) : π ₑ⊛ᵣ r_id = π .
+  now apply (ctx_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma m_ren_id_l {Γ} a (v : val_m Γ a) : v ₘ⊛ᵣ r_id = v .
+  destruct a; [ now apply v_ren_id_l | now apply e_ren_id_l ].
+Qed.
+Lemma s_ren_id_l {Γ} (s : state Γ) : s ₛ⊛ᵣ r_id = s.
+  destruct s; apply (f_equal2 Cut); [ now apply t_ren_id_l | now apply e_ren_id_l ].
+Qed.

Lemma 4: right identity law of renaming. This one basically holds +definitionally, it only needs a case split for some of the derived notions. We +will also prove a consequence on weakenings: identity law.

+
Lemma m_ren_id_r {Γ Δ} (f : Γ ⊆ Δ) {a} (i : Γ ∋ a) : a_id _ i ₘ⊛ᵣ f = a_id _ (f _ i) .
+  now destruct a.
+Qed.
+Lemma a_ren_id_r {Γ Δ} (f : Γ ⊆ Δ) : a_id ⊛ᵣ f ≡ₐ f ᵣ⊛ a_id .
+  intros ??; now apply m_ren_id_r.
+Qed.
+Lemma a_shift2_id {Γ x y} : @a_shift2 Γ Γ x y a_id ≡ₐ a_id.
+  intros ? v; do 2 (dependent elimination v; auto).
+  exact (m_ren_id_r _ _).
+Qed.

Lemma 5: shifting assigments commutes with left and right renaming.

+
Lemma a_shift2_s_ren {Γ1 Γ2 Γ3 a b} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3)
+  : @a_shift2 _ _ a b (f1 ᵣ⊛ f2) ≡ₐ r_shift2 f1 ᵣ⊛ a_shift2 f2 .
+  intros ? v; do 2 (dependent elimination v; auto).
+Qed.
+Lemma a_shift2_a_ren {Γ1 Γ2 Γ3 a b} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3)
+      : @a_shift2 _ _ a b (f1 ⊛ᵣ f2) ≡ₐ a_shift2 f1 ⊛ᵣ r_shift2 f2 .
+  intros ? v.
+  do 2 (dependent elimination v; cbn; [ symmetry; exact (a_ren_id_r _ _ _) | ]).
+  unfold a_ren; cbn - [ m_rename ]; unfold m_shift2; now rewrite 2 m_ren_ren.
+Qed.

Lemma 6: substitution respects pointwise equality of assigments.

+
Definition t_sub_proper_P Γ a (t : term Γ a) : Prop :=
+  forall Δ (f1 f2 : Γ =[val_m]> Δ), f1 ≡ₐ f2 -> t `ₜ⊛ f1 = t `ₜ⊛ f2 .
+Definition v_sub_proper_P Γ a (v : val Γ a) : Prop :=
+  forall Δ (f1 f2 : Γ =[val_m]> Δ), f1 ≡ₐ f2 -> v `ᵥ⊛ f1 = v `ᵥ⊛ f2 .
+Definition e_sub_proper_P Γ a (π : ev_ctx Γ a) : Prop :=
+  forall Δ (f1 f2 : Γ =[val_m]> Δ), f1 ≡ₐ f2 -> π `ₑ⊛ f1 = π `ₑ⊛ f2.
+Lemma sub_proper_prf : syn_ind_args t_sub_proper_P v_sub_proper_P e_sub_proper_P.
+  econstructor.
+  all: unfold t_sub_proper_P, v_sub_proper_P, e_sub_proper_P.
+  all: intros; cbn; f_equal; auto.
+  now apply H, a_shift2_eq.
+Qed.
+
+#[global] Instance t_sub_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@t_subst Γ Δ).
+  intros ? ? H1 a _ ? ->; now apply (term_ind_mut _ _ _ sub_proper_prf).
+Qed.
+#[global] Instance v_sub_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@v_subst Γ Δ).
+  intros ? ? H1 a _ ? ->; now apply (val_ind_mut _ _ _ sub_proper_prf).
+Qed.
+#[global] Instance e_sub_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@e_subst Γ Δ).
+  intros ? ? H1 a _ ? ->; now apply (ctx_ind_mut _ _ _ sub_proper_prf).
+Qed.
+#[global] Instance m_sub_eq
+  : Proper ( Γ,  _, eq ==>  Δ, asgn_eq Γ Δ ==> eq) m_subst.
+  intros ? [] ?? -> ??? H1; cbn in *; now rewrite H1.
+Qed.
+#[global] Instance s_sub_eq
+  : Proper ( Γ, eq ==>  Δ, asgn_eq Γ Δ ==> eq) s_subst.
+  intros ??[] -> ??? H1; cbn; now rewrite H1.
+Qed.
+(*
+#[global] Instance a_comp_eq {Γ1 Γ2 Γ3} : Proper (ass_eq _ _ ==> ass_eq _ _ ==> ass_eq _ _) (@a_comp Γ1 Γ2 Γ3).
+  intros ? ? H1 ? ? H2 ? ?; unfold a_comp, s_map; now rewrite H1, H2.
+Qed.
+*)

Lemma 7: renaming-substitution "associativity".

+
Definition t_ren_sub_P Γ1 a (t : term Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) ,
+    (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+Definition v_ren_sub_P Γ1 a (v : val Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) ,
+    (v `ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+Definition e_ren_sub_P Γ1 a (π : ev_ctx Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) ,
+    (π `ₑ⊛ f1) ₑ⊛ᵣ f2 = π `ₑ⊛ (f1 ⊛ᵣ f2) .
+Lemma ren_sub_prf : syn_ind_args t_ren_sub_P v_ren_sub_P e_ren_sub_P.
+  econstructor.
+  all: unfold t_ren_sub_P, v_ren_sub_P, e_ren_sub_P.
+  all: intros; cbn; f_equal.
+  all: try rewrite a_shift2_a_ren; auto.
+Qed.
+
+Lemma t_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) a (t : term Γ1 a)
+  : (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+  now apply (term_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma v_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) a (v : val Γ1 a)
+  : (v `ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+  now apply (val_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma e_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) a (π : ev_ctx Γ1 a)
+  : (π `ₑ⊛ f1) ₑ⊛ᵣ f2 = π `ₑ⊛ (f1 ⊛ᵣ f2) .
+  now apply (ctx_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma m_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) a (v : val_m Γ1 a)
+  : (v ᵥ⊛ f1) ₘ⊛ᵣ f2 = v ᵥ⊛ (f1 ⊛ᵣ f2) .
+  destruct a; [ now apply v_ren_sub | now apply e_ren_sub ].
+Qed.
+Lemma s_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1)
+  : (s ₜ⊛ f1) ₛ⊛ᵣ f2 = s ₜ⊛ (f1 ⊛ᵣ f2) .
+  destruct s; cbn; now rewrite t_ren_sub, e_ren_sub.
+Qed.

Lemma 8: substitution-renaming "associativity".

+
Definition t_sub_ren_P Γ1 a (t : term Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2) .
+Definition v_sub_ren_P Γ1 a (v : val Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  (v ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2) .
+Definition e_sub_ren_P Γ1 a (π : ev_ctx Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  (π ₑ⊛ᵣ f1) `ₑ⊛ f2 = π `ₑ⊛ (f1 ᵣ⊛ f2) .
+Lemma sub_ren_prf : syn_ind_args t_sub_ren_P v_sub_ren_P e_sub_ren_P.
+  econstructor.
+  all: unfold t_sub_ren_P, v_sub_ren_P, e_sub_ren_P.
+  all: intros; cbn; f_equal; auto.
+  now rewrite a_shift2_s_ren.
+Qed.
+
+Lemma t_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) a (t : term Γ1 a)
+  : (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2) .
+  now apply (term_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma v_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) a (v : val Γ1 a)
+  : (v ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2) .
+  now apply (val_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma e_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) a (π : ev_ctx Γ1 a)
+  : (π ₑ⊛ᵣ f1) `ₑ⊛ f2 = π `ₑ⊛ (f1 ᵣ⊛ f2) .
+  now apply (ctx_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma m_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) a (v : val_m Γ1 a)
+  : (v ₘ⊛ᵣ f1) ᵥ⊛ f2 = v ᵥ⊛ (f1 ᵣ⊛ f2) .
+  destruct a; [ now apply v_sub_ren | now apply e_sub_ren ].
+Qed.
+Lemma s_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) (s : state Γ1)
+  : (s ₛ⊛ᵣ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ᵣ⊛ f2) .
+  destruct s; cbn; now rewrite t_sub_ren, e_sub_ren.
+Qed.

Lemma 9: left identity law of substitution.

+
Definition t_sub_id_l_P Γ a (t : term Γ a) : Prop := t `ₜ⊛ a_id = t .
+Definition v_sub_id_l_P Γ a (v : val Γ a) : Prop := v `ᵥ⊛ a_id = v .
+Definition e_sub_id_l_P Γ a (π : ev_ctx Γ a) : Prop := π `ₑ⊛ a_id = π .
+Lemma sub_id_l_prf : syn_ind_args t_sub_id_l_P v_sub_id_l_P e_sub_id_l_P.
+  econstructor.
+  all: unfold t_sub_id_l_P, v_sub_id_l_P, e_sub_id_l_P.
+  all: intros; cbn; f_equal; auto.
+  now rewrite a_shift2_id.
+Qed.
+
+Lemma t_sub_id_l {Γ} a (t : term Γ a) : t `ₜ⊛ a_id = t .
+  now apply (term_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma v_sub_id_l {Γ} a (v : val Γ a) : v `ᵥ⊛ a_id = v .
+  now apply (val_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma e_sub_id_l {Γ} a (π : ev_ctx Γ a) : π `ₑ⊛ a_id = π .
+  now apply (ctx_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma m_sub_id_l {Γ} a (v : val_m Γ a) : v ᵥ⊛ a_id = v .
+  destruct a; [ now apply v_sub_id_l | now apply e_sub_id_l ].
+Qed.
+Lemma s_sub_id_l {Γ} (s : state Γ) : s ₜ⊛ a_id = s .
+  destruct s; cbn; now rewrite t_sub_id_l, e_sub_id_l.
+Qed.

Lemma 9: right identity law of substitution. As for renaming, this one is +mostly by definition.

+
Lemma m_sub_id_r {Γ1 Γ2} {a} (i : Γ1 ∋ a) (f : Γ1 =[val_m]> Γ2) : a_id a i ᵥ⊛ f = f a i.
+  now destruct a.
+Qed.

Lemma 10: shifting assigments respects composition.

+
Lemma a_shift2_comp {Γ1 Γ2 Γ3 a b} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) 
+  : @a_shift2 _ _ a b (f1 ⊛ f2) ≡ₐ a_shift2 f1 ⊛ a_shift2 f2 .
+  intros ? v. 
+  do 2 (dependent elimination v; [ symmetry; exact (m_sub_id_r _ _) | ]).
+  cbn; unfold m_shift2; now rewrite m_ren_sub, m_sub_ren.
+Qed.

Lemma 11: substitution-substitution associativity, ie composition law.

+
Definition t_sub_sub_P Γ1 a (t : term Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  t `ₜ⊛ (f1 ⊛ f2) = (t `ₜ⊛ f1) `ₜ⊛ f2 .
+Definition v_sub_sub_P Γ1 a (v : val Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  v `ᵥ⊛ (f1 ⊛ f2) = (v `ᵥ⊛ f1) `ᵥ⊛ f2 .
+Definition e_sub_sub_P Γ1 a (π : ev_ctx Γ1 a) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  π `ₑ⊛ (f1 ⊛ f2) = (π `ₑ⊛ f1) `ₑ⊛ f2 .
+Lemma sub_sub_prf : syn_ind_args t_sub_sub_P v_sub_sub_P e_sub_sub_P.
+  econstructor.
+  all: unfold t_sub_sub_P, v_sub_sub_P, e_sub_sub_P.
+  all: intros; cbn; f_equal; auto.
+  now rewrite a_shift2_comp.
+Qed.
+
+Lemma t_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) a (t : term Γ1 a)
+  : t `ₜ⊛ (f1 ⊛ f2) = (t `ₜ⊛ f1) `ₜ⊛ f2 .
+  now apply (term_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma v_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) a (v : val Γ1 a)
+  : v `ᵥ⊛ (f1 ⊛ f2) = (v `ᵥ⊛ f1) `ᵥ⊛ f2 .
+  now apply (val_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma e_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) a (π : ev_ctx Γ1 a)
+  : π `ₑ⊛ (f1 ⊛ f2) = (π `ₑ⊛ f1) `ₑ⊛ f2 .
+  now apply (ctx_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma m_sub_sub {Γ1 Γ2 Γ3} a (v : val_m Γ1 a) (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3)
+  : v ᵥ⊛ (f1 ⊛ f2) = (v ᵥ⊛ f1) ᵥ⊛ f2 .
+  destruct a; [ now apply v_sub_sub | now apply e_sub_sub ].
+Qed.
+Lemma s_sub_sub {Γ1 Γ2 Γ3} (s : state Γ1) (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) 
+  : s ₜ⊛ (f1 ⊛ f2) = (s ₜ⊛ f1) ₜ⊛ f2 .
+  destruct s; cbn; now rewrite t_sub_sub, e_sub_sub.
+Qed.
+Lemma a_sub2_sub {Γ Δ a b} (f : Γ =[val_m]> Δ) (v1 : val_m Γ a) (v2 : val_m Γ b)
+  : a_shift2 f ⊛ assign2 (v1 ᵥ⊛ f) (v2 ᵥ⊛ f) ≡ₐ (assign2 v1 v2) ⊛ f .
+  intros ? v.
+  do 2 (dependent elimination v; [ cbn; now rewrite m_sub_id_r | ]).
+  cbn; unfold m_shift2; rewrite m_sub_ren, m_sub_id_r.
+  now apply m_sub_id_l.
+Qed.
+Lemma t_sub2_sub {Γ Δ x y z} (f : Γ =[val_m]> Δ) (t : term (Γ ▶ₓ x ▶ₓ y) z) v1 v2
+  : (t `ₜ⊛ a_shift2 f) /[ v1 ᵥ⊛ f , v2 ᵥ⊛ f ] = (t /[ v1 , v2 ]) `ₜ⊛ f.
+  unfold t_subst2; now rewrite <- 2 t_sub_sub, a_sub2_sub.
+Qed.
+
+

The Actual Instance

+

Having proved all the basic syntactic properties of STLC, we are now ready to +instanciate our framework!

+

As we only have negative types, we instanciate the interaction specification +with types and observations. Beware that in more involved cases, the notion of +"types" we give to the OGS construction does not coincide with the +"language types": you should only give the negative types, or more intuitively, +"non-shareable" types.

+

As hinted at the beginning, we instanciate the abstract value notion with our +"machine values". They form a suitable monoid, which means we get a category +of assigments, for which we now provide the proof of the laws.

+
#[global] Instance stlc_val_laws : subst_monoid_laws val_m :=
+  {| v_sub_proper := @m_sub_eq ;
+     v_sub_var := @m_sub_id_r ;
+     v_var_sub := @m_sub_id_l ;
+     Subst.v_sub_sub := @m_sub_sub |} .

Configurations are instanciated with our states, and what we have proved +earlier amounts to showing they are a right-module on values.

+
#[global] Instance stlc_conf_laws : subst_module_laws val_m state :=
+  {| c_sub_proper := @s_sub_eq ;
+     c_var_sub := @s_sub_id_l ;
+     c_sub_sub := @s_sub_sub |} .

In our generic theorem, there is a finicky lemma that is the counter-part to +the exclusion of any "infinite chit-chat" that one finds in other accounts of +OGS and other game semantics. The way we have proved it requires a little bit +more structure on values. Specifically, we need to show that a_id is +injective and that its fibers are decidable and invert renamings. These +technicalities are easily shown by induction on values but help us to +distinguish conveniently between values which are variables and others.

+
#[global] Instance stlc_var_laws : var_assumptions val_m.
+  econstructor.
+  - intros ? [] ?? H; now dependent destruction H.
+  - intros ? [] []; try now apply Yes; exact (Vvar _).
+    all: apply No; intro H; dependent destruction H.
+  - intros ?? [] v r H; induction v; dependent destruction H; exact (Vvar _).
+Qed.

We now instanciate the machine with stlc_eval as the active step ("compute +the next observable action") and obs_app as the passive step ("resume from +a stuck state").

+
#[global] Instance stlc_machine : machine val_m state obs_op :=
+  {| eval := @stlc_eval ;
+     oapp := @obs_app |} .

All that is left is to prove our theorem-specific hypotheses. All but another +technical lemma for the chit-chat problem are again coherence conditions +between eval and app and the monoidal structure of values and +configurations.

+
#[global] Instance stlc_machine_law : machine_laws val_m state obs_op.
+  econstructor; cbn; intros.

The first one proves that obs_app respects pointwise equality of assigments.

+
  - intros ?? H1; dependent elimination o; cbn; repeat (f_equal; auto).

The second one proves a commutation law of obs_app with renamings.

+
  - destruct x; dependent elimination o; cbn; f_equal.

The meat of our abstract proof is this next one. We need to prove that our +evaluator respects substitution in a suitable sense: evaluating a substituted +configuration must be the same thing as evaluating the configuration, then +"substituting" the normal form and continuing the evaluation.

+

While potentially scary, the proof is direct and this actually amount to +checking that indeed, when unrolling our evaluator, this is what happens.

+
  - revert c a; unfold comp_eq, it_eq; coinduction R CIH; intros c e.
+    cbn; funelim (eval_step c); cbn.
+    + destruct (e ¬ a0 i); auto.
+      remember (v `ᵥ⊛ e) as v'; clear H v Heqv'.
+      dependent elimination v'; cbn; auto.
+    + econstructor; refold_eval; apply CIH.
+    + remember (e + (a2 → b0) i) as vv; clear H i Heqvv.
+      dependent elimination vv; cbn; auto.
+    + econstructor;
+       refold_eval;
+       change (Lam (t `ₜ⊛ _)) with (Lam t `ᵥ⊛ e);
+       change (?v `ᵥ⊛ ?a) with ((v : val_m _ (+ _)) ᵥ⊛ a).
+      rewrite t_sub2_sub.
+      apply CIH.
+    + econstructor; refold_eval; apply CIH.

Just like the above proof had the flavor of a composition law of module, this +one has the flavor of an identity law. It states that evaluating a normal form +is the identity computation.

+
  - destruct u as [ a i [ p γ ] ]; cbn.
+    dependent elimination p; cbn.
+    all: unfold comp_eq; apply it_eq_unstep; cbn; econstructor.
+    all: econstructor; intros ? v; do 3 (dependent elimination v; auto).

This last proof is the technical condition we hinted at. It is a proof of +well-foundedness of some relation, and what it amounts to is that if we +repeatedly instantiate the head variable of a normal form by a value which is +not a variable, after a finite number of times doing so we will eventually +reach something that is not a normal form.

+

For our calculus this number is at most 2, the pathological state being + x | y , which starts by being stuck on y, but when instanciating by +some non-variable π, x | π is still stuck, this time on x. After +another step it will definitely be unstuck and evaluation will be able to do +a reduction step.

+

It is slightly tedious to prove but amount again to a "proof by case +splitting".

+
  - intros [ x p ].
+    destruct x; dependent elimination p; econstructor.
+    * intros [ z p ] H.
+      dependent elimination p; dependent elimination H.
+      all: dependent elimination v; try now destruct (t0 (Vvar _)).
+      all: apply it_eq_step in i0; now inversion i0.
+    * intros [ z p ] H.
+      dependent elimination p; dependent elimination H; cbn in *.
+      dependent elimination v; try now destruct (t0 (Vvar _)).
+      + apply it_eq_step in i0; now inversion i0.
+      + remember (a1 _ Ctx.top) as vv; clear a1 Heqvv.
+        dependent elimination vv;
+          apply it_eq_step in i0; cbn in i0; dependent elimination i0.
+        inversion r_rel.
+      + econstructor; intros [ z p ] H.
+        dependent elimination p; dependent elimination H.
+        all: dependent elimination v0; try now destruct (t1 (Vvar _)).
+        all: apply it_eq_step in i2; now inversion i2.
+Qed.

At this point we have finished all the hard work! We already enjoy the generic +correctness theorem but don't know it yet! Lets define some shorthands for +some generic notions applied to our case, to make it a welcoming nest.

+

The whole semantic is parametrized by typing scope Δ of "final channels". +Typically this can be instanciated with the singleton [ ¬ ans ] for some +chosen type ans, which will correspond with the outside type of the +testing-contexts from CIU-equivalence. Usually this answer type is taken among +the positive (or shareable) types of our language, but in fact using our +observation machinery we can project the value of any type onto its "shareable +part". This is why our generic proof abstracts over this answer type and even +allows several of them at the same time (that is, Δ). In our case, as all +types in our language are unshareable, the positive part of any value is +pretty useless: it is always a singleton. Yet our notion of testing still +distinguishes terminating from non-terminating programs.

+

As discussed in the paper, the "native output" of the generic theorem is +correctness with respect to an equivalence we call "substitution equivalence". +We will recover a more standard CIU later on.

+
Definition subst_eq Δ {Γ} : relation (state Γ) :=
+  fun u v => forall σ : Γ =[val_m]> Δ, evalₒ (u ₜ⊛ σ) ≈ evalₒ (v ₜ⊛ σ) .
+Notation "x ≈S[ Δ ]≈ y" := (subst_eq Δ x y) (at level 10).

Our semantic objects live in what is defined in the generic construction as +ogs_act, that is active strategies for the OGS game. They come with their +own notion of equivalence, weak bisimilarity and we get to interpret states +into semantic objects.

+
Definition sem_act Δ Γ := ogs_act (obs := obs_op) Δ (∅ ▶ₓ Γ) .
+
+Definition ogs_weq_act Δ {Γ} : relation (sem_act Δ Γ) := fun u v => u ≈ v .
+Notation "u ≈[ Δ ]≈ v" := (ogs_weq_act Δ u v) (at level 40).
+
+Definition interp_act_s Δ {Γ} (c : state Γ) : sem_act Δ Γ :=
+  m_strat (∅ ▶ₓ Γ) (inj_init_act Δ c) .
+Notation "OGS⟦ t ⟧" := (interp_act_s _ t) .

We can now obtain our instance of the correctness result!

+
Theorem stlc_subst_correct Δ {Γ} (x y : state Γ)
+  : OGS⟦x⟧ ≈[Δ]≈ OGS⟦y⟧ -> x ≈S[Δ]≈ y .
+  exact (ogs_correction Δ x y).
+Qed.
+

Recovering CIU-equivalence

+

CIU-equivalence more usually defined as a relation on terms (and not some +states), and involves an evaluation context. In our formalism it amounts to +the following definition.

+
Definition ciu_eq Δ {Γ a} : relation (term Γ a) :=
+  fun u v => forall (σ : Γ =[val_m]> Δ) (π : ev_ctx Δ a),
+      evalₒ ((u `ₜ⊛ σ) ⋅ π) ≈ evalₒ ((v `ₜ⊛ σ) ⋅ π) .
+Notation "x ≈C[ Δ ]≈ y" := (ciu_eq Δ x y) (at level 10).

Now from a term we can always construct a state by naming it, that is, placing +the term opposite of a fresh context variable.

+
Definition c_init {Γ a} (t : term Γ a) : state (Γ ▶ₓ ¬ a)
+  := t_shift _ t ⋅ K0 Ctx.top .
+Notation "T⟦ t ⟧" := (OGS⟦ c_init t ⟧) .

Similarly, from an evaluation context and a substitution, we can form an +extended substitution. Without surprise these two constructions simplify well +in terms of substitution.

+
Definition a_of_sk {Γ Δ a} (σ : Γ =[val_m]> Δ) (π : ev_ctx Δ a)
+  : (Γ ▶ₓ ¬ a) =[val_m]> Δ := σ ▶ₐ (π : val_m _ (¬ _)) .
+
+Lemma sub_init {Γ Δ a} (t : term Γ a) (σ : Γ =[val_m]> Δ) (π : ev_ctx Δ a)
+  : (t `ₜ⊛ σ) ⋅ π = c_init t ₜ⊛ a_of_sk σ π  .
+  cbn; unfold t_shift; now rewrite t_sub_ren.
+Qed.

We can now obtain a correctness theorem with respect to standard +CIU-equivalence by embedding terms into states. Proving that CIU-equivalence +entails our substitution equivalence is left to the reader!

+
Theorem stlc_ciu_correct Δ {Γ a} (x y : term Γ a)
+  : T⟦ x ⟧ ≈[Δ]≈ T⟦ y ⟧ -> x ≈C[Δ]≈ y .
+  intros H σ k; rewrite 2 sub_init.
+  now apply stlc_subst_correct.
+Qed.
+ + + + +
[AACMM21]Guillaume Allais et al, "A type- and scope-safe universe of +syntaxes with binding: their semantics and proofs", 2021.
+ + + + + +
[FS22]Marcelo Fiore & Dmitrij Szamozvancev, "Formal Metatheory of +Second-Order Abstract Syntax", 2022.
+ + + + + +
[L05]Soren Lassen, "Eager Normal Form Bisimulation", 2005.
+
+
+
+
+ diff --git a/docs/Soundness.html b/docs/Soundness.html new file mode 100644 index 0000000..a4e6319 --- /dev/null +++ b/docs/Soundness.html @@ -0,0 +1,58 @@ + + + + + + +Soundness (Theorem 8) + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Soundness (Theorem 8)

+ +

Finally, all the pieces are in place to prove that bisimilarity of induced LTS is sound +w.r.t. substitution equivalence. Having worked hard to establish +adequacy and congruence +of weak bisimilarity for composition, very little remains to do here.

+

We consider a language abstractly captured as a machine satisfying an +appropriate axiomatization.

+
  Context {T C} {CC : context T C} {CL : context_laws T C}.
+  Context {val} {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {conf} {CM : subst_module val conf} {CML : subst_module_laws val conf}.
+  Context {obs : obs_struct T C} {M : machine val conf obs} {ML : machine_laws val conf obs}.
+  Context {VV : var_assumptions val}.

We define substitution equivalence of two language machine configurations (Def. 15).

+
  Definition substeq {Γ} Δ (a b : conf Γ) : Prop
+    := forall γ : Γ =[val]> Δ, evalₒ (a ₜ⊛ γ) ≈ evalₒ (b ₜ⊛ γ).
+  Notation "x ≈⟦sub Δ ⟧≈ y" := (substeq Δ x y) (at level 50).

Our main theorem: bisimilarity of induced OGS machine strategies is sound w.r.t. +substitution equivalence, by applying barbed equivalence soundness, swapping the naive +composition with the opaque one and then applying congruence.

+
  Theorem ogs_correction {Γ} Δ (x y : conf Γ) : x ≈⟦ogs Δ⟧≈ y -> x ≈⟦sub Δ⟧≈ y.
+  Proof.
+    intros H γ; unfold m_conf_eqv in H.
+    now rewrite 2 adequacy, H.
+  Qed.
+End with_param.

If you wish to double check these results you can run the following commands at +this point in the file:

+
ogs_correction not a defined object.
+
The reference ogs_correction was not found +in the current environment.

The first command will explicit the assumptions of the theorem, which we show how +to provide with several examples:

+ +

The second command will explicit if any axiom has been used to establish the +result. As stated in the prelude, we exclusively use +Eq_rect_eq.eq_rect_eq, ie Streicher's axiom K.

+
+
+ diff --git a/docs/Strategy.html b/docs/Strategy.html new file mode 100644 index 0000000..a5d88e7 --- /dev/null +++ b/docs/Strategy.html @@ -0,0 +1,244 @@ + + + + + + +Strategy.v + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+ + +
+

The Machine Strategy (§ 5.3)

+

Having defined the OGS game and axiomatized the +language machine, we are now ready to construct the machine strategy.

+

We consider a language abstractly captured as a machine.

+
  Context `{CC : context T C} {CL : context_laws T C}.
+  Context {val} {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {conf} {CM : subst_module val conf} {CML : subst_module_laws val conf}.
+  Context {obs : obs_struct T C} {M : machine val conf obs}.

We start off by defining active and passive OGS assignments (Def 5.16). This datastructure +will hold the memory part of a strategy state, remembering the values which we have +hidden from Opponent and given as fresh variables.

+
  Inductive ogs_env (Δ : C) : polarity -> ogs_ctx -> Type :=
+  | ENilA : ogs_env Δ Act ∅ₓ
+  | ENilP : ogs_env Δ Pas ∅ₓ
+  | EConA {Φ Γ} : ogs_env Δ Pas Φ -> ogs_env Δ Act (Φ ▶ₓ Γ)
+  | EConP {Φ Γ} : ogs_env Δ Act Φ -> Γ =[val]> (Δ +▶ ↓⁺Φ) -> ogs_env Δ Pas (Φ ▶ₓ Γ)
+  .
  Notation "'ε⁺'" := (ENilA).
+  Notation "'ε⁻'" := (ENilP).
+  Notation "u ;⁺" := (EConA u).
+  Notation "u ;⁻ e" := (EConP u e).

Next we define the collapsing function on OGS assignments (Def 5.18).

+
  Equations collapse {Δ p Φ} : ogs_env Δ p Φ -> ↓[p^]Φ =[val]> (Δ +▶ ↓[p]Φ) :=
+    collapse ε⁺       := ! ;
+    collapse ε⁻       := ! ;
+    collapse (u ;⁺)   := collapse u ⊛ᵣ r_cat3_1 ;
+    collapse (u ;⁻ e) := [ collapse u , e ] .
+  Notation "ₐ↓ γ" := (collapse γ).

We readily define the zipping function (Def 6.10).

+
  #[derive(eliminator=no)]
+  Equations bicollapse {Δ} Φ : ogs_env Δ Act Φ -> ogs_env Δ Pas Φ -> forall p, ↓[p]Φ =[val]> Δ :=
+    bicollapse ∅ₓ       (ε⁺)     (ε⁻)     Act   := ! ;
+    bicollapse ∅ₓ       (ε⁺)     (ε⁻)     Pas   := ! ;
+    bicollapse (Φ ▶ₓ _) (u ;⁺)   (v ;⁻ γ) Act :=
+          [ bicollapse Φ v u Pas , γ ⊛ [ a_id , bicollapse Φ v u Act ] ] ;
+    bicollapse (Φ ▶ₓ _) (v ;⁺)   (u ;⁻ e) Pas := bicollapse Φ u v Act .
+  #[global] Arguments bicollapse {Δ Φ} u v {p}.

And the fixpoint property linking collapsing and zipping (Prop 6.13).

+
  Lemma collapse_fix_aux {Δ Φ} (u : ogs_env Δ Act Φ) (v : ogs_env Δ Pas Φ)
+    :  ₐ↓u ⊛ [ a_id , bicollapse u v ] ≡ₐ bicollapse u v
+     /\ ₐ↓v ⊛ [ a_id , bicollapse u v ] ≡ₐ bicollapse u v .
+  Proof.
+    induction Φ; dependent destruction u; dependent destruction v.
+    - split; intros ? i; now destruct (c_view_emp i).
+    - split; cbn; simp collapse; simp bicollapse.
+      + intros ? i; cbn; rewrite <- v_sub_sub, a_ren_r_simpl, r_cat3_1_simpl.
+        now apply IHΦ.
+        exact _. (* wtf typeclass?? *)
+      + intros ? i; cbn; destruct (c_view_cat i); eauto.
+        now apply IHΦ.
+  Qed.
+
+  Lemma collapse_fix_act {Δ Φ} (u : ogs_env Δ Act Φ) (v : ogs_env Δ Pas Φ)
+    : ₐ↓u ⊛ [ a_id , bicollapse u v ] ≡ₐ bicollapse u v .
+  Proof. now apply collapse_fix_aux. Qed.
+
+  Lemma collapse_fix_pas {Δ Φ} (u : ogs_env Δ Act Φ) (v : ogs_env Δ Pas Φ)
+    : ₐ↓v ⊛ [ a_id , bicollapse u v ] ≡ₐ bicollapse u v .
+  Proof. now apply collapse_fix_aux. Qed.

Here we provide an alternative definition to the collapsing functions, using a more +precisely typed lookup function. This is more practical to use when reasoning about +the height of a variable, in the eventual guardedness proof.

+

First we compute actual useful subset of the context used by a particular variable.

+
  Equations ctx_dom Φ p {x} : ↓[p^]Φ ∋ x -> C :=
+    ctx_dom ∅ₓ       Act i with c_view_emp i := { | ! } ;
+    ctx_dom ∅ₓ       Pas i with c_view_emp i := { | ! } ;
+    ctx_dom (Φ ▶ₓ Γ) Act i := ctx_dom Φ Pas i ;
+    ctx_dom (Φ ▶ₓ Γ) Pas i with c_view_cat i := {
+      | Vcat_l j := ctx_dom Φ Act j ;
+      | Vcat_r j := ↓[Act]Φ } .
+  #[global] Arguments ctx_dom {Φ p x} i.

Next we provide a renaming from this precise domain to the actual current allowed context.

+
  Equations r_ctx_dom Φ p {x} (i : ↓[p^]Φ ∋ x) : ctx_dom i ⊆ ↓[p]Φ :=
+    r_ctx_dom ∅ₓ       Act i with c_view_emp i := { | ! } ;
+    r_ctx_dom ∅ₓ       Pas i with c_view_emp i := { | ! } ;
+    r_ctx_dom (Φ ▶ₓ Γ) Act i := r_ctx_dom Φ Pas i ᵣ⊛ r_cat_l ;
+    r_ctx_dom (Φ ▶ₓ Γ) Pas i with c_view_cat i := {
+      | Vcat_l j := r_ctx_dom Φ Act j ;
+      | Vcat_r j := r_id } .
+  #[global] Arguments r_ctx_dom {Φ p x} i.

We can write this more precise lookup function, returning a value in just the necessary +context.

+
  Equations lookup {Δ p Φ} (γ : ogs_env Δ p Φ) [x] (i : ↓[p^]Φ ∋ x)
+            : val (Δ +▶ ctx_dom i) x :=
+    lookup ε⁺       i with c_view_emp i := { | ! } ;
+    lookup ε⁻       i with c_view_emp i := { | ! } ;
+    lookup (γ ;⁺)   i := lookup γ i ;
+    lookup (γ ;⁻ e) i with c_view_cat i := {
+      | Vcat_l j := lookup γ j ;
+      | Vcat_r j := e _ j } .

We relate the precise lookup with the previously defined collapse.

+
  Lemma lookup_collapse {Δ p Φ} (γ : ogs_env Δ p Φ) :
+    collapse γ ≡ₐ (fun x i => lookup γ i ᵥ⊛ᵣ [ r_cat_l , r_ctx_dom i ᵣ⊛ r_cat_r ]).
+  Proof.
+    intros ? i; funelim (lookup γ i).
+    - cbn; rewrite H.
+      unfold v_ren; rewrite <- v_sub_sub.
+      apply v_sub_proper; eauto.
+      intros ? j; cbn; rewrite v_sub_var; cbn; f_equal.
+      unfold r_cat3_1; destruct (c_view_cat j); cbn.
+      + now rewrite c_view_cat_simpl_l.
+      + now rewrite c_view_cat_simpl_r.
+    - cbn; rewrite 2 c_view_cat_simpl_l; exact H.
+    - cbn; rewrite 2 c_view_cat_simpl_r.
+      cbn; rewrite a_ren_l_id, a_cat_id.
+      symmetry; apply v_var_sub.
+  Qed.
+
+

Machine Strategy (Def 5.19)

+

We define active and passive states of the machine strategy. Active states consist of +the pair of a language configuration and an active OGS assignement. Passive states consist +solely of a passive OGS assignement.

+
  Record m_strat_act Δ (Φ : ogs_ctx) : Type := MS {
+    ms_conf : conf (Δ +▶ ↓⁺Φ) ;
+    ms_env : ogs_env Δ Act Φ ;
+  }.
+  #[global] Arguments MS {Δ Φ}.
+  #[global] Arguments ms_conf {Δ Φ}.
+  #[global] Arguments ms_env {Δ Φ}.
+
+  Definition m_strat_pas Δ : psh ogs_ctx := ogs_env Δ Pas.

Next we define the action and reaction morphisms of the machine strategy. First +m_strat_wrap provides the active transition given an already evaluated normal form, +such that the action morphism m_strat_play only has to evaluate the active part +of the state. m_strat_resp mostly is a wrapper around oapp, our analogue to +the embedding from normal forms to language configurations present in the paper.

+
  Definition m_strat_wrap {Δ Φ} (γ : ogs_env Δ Act Φ)
+     : nf _ _ (Δ +▶ ↓⁺ Φ) -> (obs∙ Δ + h_actv ogs_hg (m_strat_pas Δ) Φ) :=
+      fun n =>
+        match c_view_cat (nf_var n) with
+        | Vcat_l i => inl (i ⋅ nf_obs n)
+        | Vcat_r j => inr ((j ⋅ nf_obs n) ,' (γ ;⁻ nf_args n))
+        end .
+
+  Definition m_strat_play {Δ Φ} (ms : m_strat_act Δ Φ)
+    : delay (obs∙ Δ + h_actv ogs_hg (m_strat_pas Δ) Φ)
+    := fmap_delay (m_strat_wrap ms.(ms_env)) (eval ms.(ms_conf)).
+
+  Definition m_strat_resp {Δ Φ} (γ : m_strat_pas Δ Φ)
+    : h_pasv ogs_hg (m_strat_act Δ) Φ
+    := fun m =>
+         {| ms_conf := (ₐ↓γ _ (m_var m) ᵥ⊛ᵣ r_cat3_1) ⊙ (m_obs m)⦗r_cat_rr ᵣ⊛ a_id⦘ ;
+            ms_env := γ ;⁺ |} .

These action and reaction morphisms define a coalgebra, which we now embed into the +final coalgebra by looping them coinductively. This constructs the indexed interaction +tree arising from starting the machine strategy at a given state.

+
   Definition m_strat {Δ} : m_strat_act Δ ⇒ᵢ ogs_act Δ :=
+    cofix _m_strat Φ e :=
+       subst_delay
+         (fun r => go match r with
+          | inl m        => RetF m
+          | inr (x ,' p) => VisF x (fun r : ogs_e.(e_rsp) _ => _m_strat _ (m_strat_resp p r))
+          end)
+         (m_strat_play e).

We also provide a wrapper for the passive version of the above map.

+
  Definition m_stratp {Δ} : m_strat_pas Δ ⇒ᵢ ogs_pas Δ :=
+    fun _ x m => m_strat _ (m_strat_resp x m).

We define the notion of equivalence on machine-strategy states given by the weak +bisimilarity of the induced infinite trees. There is an active version, and a passive +version, working pointwise.

+
  Definition m_strat_act_eqv {Δ} : relᵢ (m_strat_act Δ) (m_strat_act Δ) :=
+    fun i x y => m_strat i x ≈ m_strat i y.
+  Notation "x ≈ₐ y" := (m_strat_act_eqv _ x y).
+
+  Definition m_strat_pas_eqv {Δ} : relᵢ (m_strat_pas Δ) (m_strat_pas Δ) :=
+    fun i x y => forall m, m_strat_resp x m ≈ₐ m_strat_resp y m .
+  Notation "x ≈ₚ y" := (m_strat_pas_eqv _ x y).
+
+  #[global] Instance m_strat_act_eqv_refl {Δ} : Reflexiveᵢ (@m_strat_act_eqv Δ).
+  Proof. intros ??; unfold m_strat_act_eqv; reflexivity. Qed.
+  #[global] Instance m_strat_pas_eqv_refl {Δ} : Reflexiveᵢ (@m_strat_pas_eqv Δ).
+  Proof. intros ???; reflexivity. Qed.

A technical lemma explaining how the infinite strategy unfolds.

+
  Lemma unfold_mstrat {Δ a} (x : m_strat_act Δ a) :
+    m_strat a x
+    ≊ subst_delay
+         (fun r => go match r with
+          | inl m        => RetF m
+          | inr (x ,' p) => VisF x (fun r : ogs_e.(e_rsp) _ => m_strat _ (m_strat_resp p r))
+          end)
+         (m_strat_play x).
+  Proof.
+    apply it_eq_unstep; cbn.
+    destruct (_observe (eval (ms_conf x))); cbn.
+    - destruct (m_strat_wrap (ms_env x) r); cbn.
+      now econstructor.
+      destruct h; econstructor; intro.
+      apply it_eq_t_equiv.
+    - econstructor; apply (subst_delay_eq (RX := eq)).
+      intros ? ? <-; apply it_eq_unstep; cbn.
+      destruct x0; cbn.
+      + now econstructor.
+      + destruct s; econstructor; intro; now apply it_eq_t_equiv.
+      + now apply it_eq_t_equiv.
+    - destruct q.
+  Qed.

Next we construct the initial states. The active initial state is given by simply a +configuration from the language machine while a passive initial state is given by +an assignment into the final context Δ.

+
   Definition inj_init_act Δ {Γ} (c : conf Γ) : m_strat_act Δ (∅ₓ ▶ₓ Γ) :=
+    {| ms_conf := c ₜ⊛ᵣ (r_cat_r ᵣ⊛ r_cat_r) ; ms_env := ε⁻ ;⁺ |}.
+
+  Definition inj_init_pas {Δ Γ} (γ : Γ =[val]> Δ) : m_strat_pas Δ (∅ₓ ▶ₓ Γ) :=
+    ε⁺ ;⁻ (γ ⊛ᵣ r_cat_l).

This defines a notion of equivalence on the configurations of the language: bisimilarity +of the induced strategies.

+
  Definition m_conf_eqv Δ : relᵢ conf conf :=
+    fun Γ u v => inj_init_act Δ u ≈ₐ inj_init_act Δ v .

Finally we define composition of two matching machine-strategy states.

+
  Record reduce_t (Δ : C) : Type := RedT {
+    red_ctx : ogs_ctx ;
+    red_act : m_strat_act Δ red_ctx ;
+    red_pas : m_strat_pas Δ red_ctx
+  } .
+  #[global] Arguments RedT {Δ Φ} u v : rename.
+  #[global] Arguments red_ctx {Δ}.
+  #[global] Arguments red_act {Δ}.
+  #[global] Arguments red_pas {Δ}.

First the composition equation.

+
  Definition compo_body {Δ} (x : reduce_t Δ)
+    : delay (reduce_t Δ + obs∙ Δ)
+    := fmap_delay (fun r => match r with
+                  | inl r => inr r
+                  | inr e => inl (RedT (m_strat_resp x.(red_pas) (projT1 e)) (projT2 e))
+                  end)
+                  (m_strat_play x.(red_act)).

Then its naive fixpoint.

+
  Definition compo {Δ a} (u : m_strat_act Δ a) (v : m_strat_pas Δ a)
+    : delay (obs∙ Δ)
+    := iter_delay compo_body (RedT u v).
+End with_param.

Finally we expose a bunch of notations to make everything more readable.

+
#[global] Notation "'ε⁺'" := (ENilA).
+#[global] Notation "'ε⁻'" := (ENilP).
+#[global] Notation "u ;⁺" := (EConA u).
+#[global] Notation "u ;⁻ e" := (EConP u e).
+#[global] Notation "ₐ↓ γ" := (collapse γ).
+#[global] Notation "u ∥ v" := (compo u v).
+#[global] Notation "x ≈ₐ y" := (m_strat_act_eqv _ x y).
+#[global] Notation "x ≈ₚ y" := (m_strat_pas_eqv _ x y).
+#[global] Notation "x ≈⟦ogs Δ ⟧≈ y" := (m_conf_eqv Δ _ x y).
+
+
+ diff --git a/docs/Structure.html b/docs/Structure.html new file mode 100644 index 0000000..004b8db --- /dev/null +++ b/docs/Structure.html @@ -0,0 +1,59 @@ + + + + + + +Interaction Trees: Structure + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Interaction Trees: Structure

+ +

ITrees form an iterative monad. The iter combinator provided here iterates over +arbitrary sets of equations. The file ITree/Guarded.v provides a +finer iterator, restricted to notions of guarded equations, enjoying an additional +uniqueness property.

+
Section monad.
+  Context {I} {E : event I I}.

Functorial action on maps.

+
  Definition fmap {X Y} (f : X ⇒ᵢ Y) : itree E X ⇒ᵢ itree E Y :=
+    cofix _fmap _ u :=
+      go match u.(_observe) with
+         | RetF r => RetF (f _ r)
+         | TauF t => TauF (_fmap _ t)
+         | VisF e k => VisF e (fun r => _fmap _ (k r))
+         end.

Monadic bind.

+
  Definition subst {X Y} (f : X ⇒ᵢ itree E Y) : itree E X ⇒ᵢ itree E Y :=
+    cofix _subst _ u :=
+      go match u.(_observe) with
+         | RetF r => (f _ r).(_observe)
+         | TauF t => TauF (_subst _ t)
+         | VisF e k => VisF e (fun r => _subst _ (k r))
+         end.
+
+  Definition bind {X Y i} x f := @subst X Y f i x.
+
+  Definition kcomp {X Y Z} (f : X ⇒ᵢ itree E Y) (g : Y ⇒ᵢ itree E Z) : X ⇒ᵢ itree E Z :=
+    fun i x => bind (f i x) g.

Iteration operator (Def. 31).

+
  Definition iter {X Y} (f : X ⇒ᵢ itree E (X +ᵢ Y)) : X ⇒ᵢ itree E Y :=
+    cofix _iter _ x :=
+      bind (f _ x) (fun _ r => go match r with
+                              | inl x => TauF (_iter _ x)
+                              | inr y => RetF y
+                              end) .
+End monad.
+
+#[global] Notation "f <$> x" := (fmap f _ x) (at level 30).
+#[global] Notation "x >>= f" := (bind x f) (at level 30).
+#[global] Notation "f =<< x" := (subst f _ x) (at level 30).
+#[global] Notation "f >=> g" := (kcomp f g) (at level 30).
+
+
+ diff --git a/docs/Subset.html b/docs/Subset.html new file mode 100644 index 0000000..35100ae --- /dev/null +++ b/docs/Subset.html @@ -0,0 +1,103 @@ + + + + + + +Sub-context structure + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Sub-context structure

+ +

As motivated in Ctx/DirectSum.v, we sometimes have exotic calculi +which need specific kinds of contexts. Another such case is when there is a particular +subset of types, represented by a predicate, and we wish to talk about contexts containing +only these kind of types. Once again, we could do this using concrete lists, by taking +the set of types to be elements of the predicate P : T → SProp: ctx (sigS P). The +problem is once again that DeBruijn indices on this structure is not the right notion of +variables. The set of contexts of some subset of the types is a subset of the set of contexts +over that type! In other words, we should rather take sigS (ctx T) (allS P). As such the +notion of variable should be the same.

+

We assume given a notion of context and a strict predicate on types.

+
Section with_param.
+  Context {T C} {CC : context T C} {CL : context_laws T C} {P : T -> SProp}.

We define the strict predicate on context stating that all elements verify P.

+
  Definition allS (Γ : C) : SProp := forall x, Γ ∋ x -> P x.
+  Definition ctxS : Type := sigS allS.
+  Definition coe_ctxS : ctxS -> C := sub_elt.

A variable in the refined context is just a variable in the underlying context.

+
  Definition varS (Γ : ctxS) (x : T) := Γ.(sub_elt) ∋ x.

Nil and concatenation respect allS.

+
  Program Definition nilS : ctxS := {| sub_elt := ∅ |}.
+  
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

allS ∅
intros ? i; destruct (c_view_emp i). Qed. + + Program Definition catS (Γ Δ : ctxS) : ctxS := + {| sub_elt := Γ.(sub_elt) +▶ Δ.(sub_elt) |}. +
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
Γ, Δ: ctxS

allS (sub_elt Γ +▶ sub_elt Δ)
+
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
Γ, Δ: ctxS
x: T
i: sub_elt Γ ∋ x

P x
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
Γ, Δ: ctxS
x: T
j: sub_elt Δ ∋ x
P x
+
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
Γ, Δ: ctxS
x: T
j: sub_elt Δ ∋ x

P x
+
now apply Δ.(sub_prf). + Qed.

We now construct the instance.

+
  #[global] Instance subset_context : context T ctxS :=
+    {| c_emp := nilS ;
+       c_cat := catS ;
+       c_var := varS |}.
+
+  #[global] Instance subset_context_cat_wkn : context_cat_wkn T ctxS :=
+    {| r_cat_l Γ Δ t i := @r_cat_l T C _ _ Γ.(sub_elt) Δ.(sub_elt) t i ;
+       r_cat_r Γ Δ t i := @r_cat_r T C _ _ Γ.(sub_elt) Δ.(sub_elt) t i |} .
+
+  
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

context_laws T ctxS
+
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

context_laws T ctxS
+
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

forall (t : T) (i : varS nilS t), c_emp_view t i
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
forall (Γ Δ : ctxS) (t : T) (i : varS (catS Γ Δ) t), +c_cat_view Γ Δ t i
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
forall (Γ Δ : ctxS) (t : T), +injective (fun i : varS Γ t => r_cat_l i)
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
forall (Γ Δ : ctxS) (t : T), +injective (fun i : varS Δ t => r_cat_r i)
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
forall (Γ Δ : ctxS) (t : T) (i : varS Γ t) + (j : varS Δ t), ¬ (r_cat_l i = r_cat_r j)
+
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

forall (t : T) (i : varS nilS t), c_emp_view t i
intros ? i; destruct (c_view_emp i). +
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

forall (Γ Δ : ctxS) (t : T) (i : varS (catS Γ Δ) t), +c_cat_view Γ Δ t i
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
Γ, Δ: ctxS
t: T
i: sub_elt Γ ∋ t

c_cat_view Γ Δ t (r_cat_l i)
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
Γ, Δ: ctxS
t: T
j: sub_elt Δ ∋ t
c_cat_view Γ Δ t (r_cat_r j)
+
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T
Γ, Δ: ctxS
t: T
j: sub_elt Δ ∋ t

c_cat_view Γ Δ t (r_cat_r j)
+
refine (Vcat_r _). +
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

forall (Γ Δ : ctxS) (t : T), +injective (fun i : varS Γ t => r_cat_l i)
intros ????? H; exact (r_cat_l_inj _ _ H). +
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

forall (Γ Δ : ctxS) (t : T), +injective (fun i : varS Δ t => r_cat_r i)
intros ????? H; exact (r_cat_r_inj _ _ H). +
T, C: Type
CC: context T C
CL: context_laws T C
P: psh T

forall (Γ Δ : ctxS) (t : T) (i : varS Γ t) + (j : varS Δ t), ¬ (r_cat_l i = r_cat_r j)
intros ????? H; exact (r_cat_disj _ _ H). + Qed.

A couple helpers for manipulating the new variables.

+
  Definition s_prf {Γ : ctxS} {x} (i : Γ.(sub_elt) ∋ x) : P x := Γ.(sub_prf) x i .
+
+  Definition s_elt_upg {Γ : ctxS} {x} (i : Γ.(sub_elt) ∋ x) : sigS P :=
+    {| sub_prf := Γ.(sub_prf) x i |}.
+
+  Definition s_var_upg {Γ : ctxS} {x : T} (i : Γ.(sub_elt) ∋ x)
+    : Γ ∋ (s_elt_upg i).(sub_elt) := i.
+End with_param.

In the case of sub-contexts over concrete contexts we provide a wrapper for the +"append" operation.

+
From OGS.Ctx Require Import Ctx Covering.
+Section with_param.
+  Context {T} {P : T -> SProp}.
+
+  Program Definition conS (Γ : ctxS T (ctx T) P) (x : sigS P) : ctxS T (ctx T) P :=
+    {| sub_elt := Γ.(sub_elt) ▶ₓ x.(sub_elt) |}.
+  
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P

allS P (sub_elt Γ ▶ₓ sub_elt x)
+
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
i: cvar (sub_elt Γ ▶ₓ sub_elt x) x0

P x0
+
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
c: ctx T
Heqc: NoConfusion c (sub_elt Γ ▶ₓ sub_elt x)
i: cvar c x0

P x0
+
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
Γ0: ctx T
Heqc: NoConfusion (Γ0 ▶ₓ x0) (sub_elt Γ ▶ₓ sub_elt x)

P x0
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
Γ0: ctx T
y: T
Heqc: NoConfusion (Γ0 ▶ₓ y) (sub_elt Γ ▶ₓ sub_elt x)
i: var x0 Γ0
P x0
+
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
Γ0: ctx T
Heqc: NoConfusion (Γ0 ▶ₓ x0) (sub_elt Γ ▶ₓ sub_elt x)

P x0
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
Γ0: ctx T
Heqc: NoConfusion (Γ0 ▶ₓ x0) (sub_elt Γ ▶ₓ sub_elt x)
H: x0 = sub_elt x

P x0
+
rewrite H; now apply x.(sub_prf). +
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
Γ0: ctx T
y: T
Heqc: NoConfusion (Γ0 ▶ₓ y) (sub_elt Γ ▶ₓ sub_elt x)
i: var x0 Γ0

P x0
T: Type
P: psh T
Γ: ctxS T (ctx T) P
x: sigS P
x0: T
Γ0: ctx T
y: T
Heqc: NoConfusion (Γ0 ▶ₓ y) (sub_elt Γ ▶ₓ sub_elt x)
i: var x0 Γ0
H: Γ0 = sub_elt Γ

P x0
+
rewrite H in i; now apply Γ.(sub_prf). + Qed. +End with_param. + +#[global] Notation "Γ ▶ₛ x" := (conS Γ x) : ctx_scope.
+
+
+ diff --git a/docs/Subst.html b/docs/Subst.html new file mode 100644 index 0000000..d96b5a5 --- /dev/null +++ b/docs/Subst.html @@ -0,0 +1,215 @@ + + + + + + +Substitution structures (§ 4.1) + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Substitution structures (§ 4.1)

+ +

In this file we axiomatize what it means for a family to support substitution.

+
+

Substitution Monoid (Def. 7)

+

The specification of an evaluator will be separated in several steps. First we will ask +for a family of values, i.e. objects that can be substituted for variables. We formalize +well-typed well-scoped substitutions in the monoidal style of Fiore et al and Allais et al. +Here we are generic over a notion of context, treating lists and DeBruijn indices in the +usual well-typed well-scoped style, but also other similar notions. See +Ctx/Abstract.v for more background on notions of variables and contexts +and for the categorical presentation of substitution.

+
Class subst_monoid `{CC : context T C} (val : Fam₁ T C) := {
+  v_var : c_var ⇒ val ;
+  v_sub : val ⇒ ⟦ val , val ⟧ ;
+}.
#[global] Notation "v ᵥ⊛ a" := (v_sub v a%asgn) (at level 30).
+Notation a_id := v_var.

By pointwise lifting of substitution we can define composition of assignments.

+
Definition a_comp `{subst_monoid T C val} {Γ1 Γ2 Γ3}
+  : Γ1 =[val]> Γ2 -> Γ2 =[val]> Γ3 -> Γ1 =[val]> Γ3
+  := fun u v _ i => u _ i ᵥ⊛ v.
+#[global] Infix "⊛" := a_comp (at level 14) : asgn_scope.

The laws for monoids and modules are pretty straightforward. A specificity is that +assignments are represented by functions from variables to values, as such their +well-behaved equality is pointwise equality and we require substitution to respect it.

+
Class subst_monoid_laws `{CC : context T C} (val : Fam₁ T C) {VM : subst_monoid val} := {
+  v_sub_proper :: Proper ( Γ,  _, eq ==>  Δ, asgn_eq Γ Δ ==> eq) v_sub ;
+  v_sub_var {Γ1 Γ2 x} (i : Γ1 ∋ x) (p : Γ1 =[val]> Γ2)
+    : v_var i ᵥ⊛ p = p _ i ;
+  v_var_sub {Γ x} (v : val Γ x)
+    : v ᵥ⊛ a_id = v ;
+  v_sub_sub {Γ1 Γ2 Γ3 x} (v : val Γ1 x) (a : Γ1 =[val]> Γ2) (b : Γ2 =[val]> Γ3)
+   : v ᵥ⊛ (a ⊛ b) = (v ᵥ⊛ a) ᵥ⊛ b ;
+} .
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
H: subst_monoid_laws val
Γ1, Γ2: C
x: T
v: val Γ1 x

Proper (asgn_eq Γ1 Γ2 ==> eq) (v_sub v)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
H: subst_monoid_laws val
Γ1, Γ2: C
x: T
v: val Γ1 x

Proper (asgn_eq Γ1 Γ2 ==> eq) (v_sub v)
now apply v_sub_proper. Qed.
+
+

Substitution Module (Def. 8)

+

Next, we ask for a module over the monoid of values, to represent the configurations +of the machine.

+
Class subst_module `{CC : context T C} (val : Fam₁ T C) (conf : Fam₀ T C) := {
+  c_sub : conf ⇒ ⟦ val , conf ⟧ ;
+}.
#[global] Notation "c ₜ⊛ a" := (c_sub c a%asgn) (at level 30).

Again the laws should not be surprising.

+
Class subst_module_laws `{CC : context T C} (val : Fam₁ T C) (conf : Fam₀ T C)
+      {VM : subst_monoid val} {CM : subst_module val conf} := {
+  c_sub_proper :: Proper ( Γ, eq ==>  Δ, asgn_eq Γ Δ ==> eq) c_sub ;
+  c_var_sub {Γ} (c : conf Γ) : c ₜ⊛ a_id = c ;
+  c_sub_sub {Γ1 Γ2 Γ3} (c : conf Γ1) (a : Γ1 =[val]> Γ2) (b : Γ2 =[val]> Γ3)
+    : c ₜ⊛ (a ⊛ b) = (c ₜ⊛ a) ₜ⊛ b ;
+} .
+
+
T, C: Type
CC: context T C
val: Fam₁ T C
conf: Fam₀ T C
VM: subst_monoid val
CM: subst_module val conf
H: subst_module_laws val conf
Γ1, Γ2: C
c: conf Γ1

Proper (asgn_eq Γ1 Γ2 ==> eq) (c_sub c)
+
T, C: Type
CC: context T C
val: Fam₁ T C
conf: Fam₀ T C
VM: subst_monoid val
CM: subst_module val conf
H: subst_module_laws val conf
Γ1, Γ2: C
c: conf Γ1

Proper (asgn_eq Γ1 Γ2 ==> eq) (c_sub c)
now apply c_sub_proper. Qed.

Now that we know that our families have a substitution operation and variables, we +can readily derive a renaming operation. While we could have axiomatized it, together with +its compatibility with substitution, allowing for possibly more efficient implementations, +we prefer simplicity and work with this generic implementation in terms of substitution.

+
Section renaming.
+  Context `{CC : context T C} {val : Fam₁ T C} {conf : Fam₀ T C}.
+  Context {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {CM : subst_module val conf} {CML : subst_module_laws val conf}.

By post-composing with the substitution identity, we can embed renamings into assignments.

+
  Definition r_emb {Γ Δ} (r : Γ ⊆ Δ) : Γ =[val]> Δ
+    := fun _ i => v_var (r _ i).
+  #[global] Arguments r_emb {_ _} _ _ /.

Renaming is now simply a matter of substituting by the embedded renaming.

+
  Definition v_ren : val ⇒ ⟦ c_var , val ⟧
+    := fun _ _ v _ r => v ᵥ⊛ r_emb r.
+  Definition c_ren : conf ⇒ ⟦ c_var , conf ⟧
+    := fun _ c _ r => c ₜ⊛ r_emb r.
+  #[global] Arguments v_ren [Γ x] v [Δ] r /.
+  #[global] Arguments c_ren [Γ] v [Δ] r /.

Finally we can rename assignments on the right.

+
  Definition a_ren_r {Γ1 Γ2 Γ3} : Γ1 =[val]> Γ2 -> Γ2 ⊆ Γ3 -> Γ1 =[val]> Γ3
+    := fun a r => (a ⊛ (r_emb r))%asgn.
+  #[global] Arguments a_ren_r _ _ _ _ _ _ /.
+End renaming.
+#[global] Notation "v ᵥ⊛ᵣ r" := (v_ren v r%asgn) (at level 14).
+#[global] Notation "c ₜ⊛ᵣ r" := (c_ren c r%asgn) (at level 14).
+#[global] Notation "a ⊛ᵣ r" := (a_ren_r a r) (at level 14) : asgn_scope.

Something which we have absolutely pushed under the rug in the paper is a couple more +mild technical hypotheses on the substitution monoid of values: since in the +eventual guardedness proof we need to case split on whether +or not a value is a variable, we need to ask for that to be possible! As such, +we need the following additional assumptions:

+
    +
  • v_var has decidable fibers
  • +
  • v_var is injective
  • +
  • the fibers of v_var pull back along renamings
  • +
+

These assumptions are named "clear-cut" in the paper (Def. 27).

+

We first define the fibers of v_var.

+
Variant is_var `{VM : subst_monoid T C val} {Γ x} : val Γ x -> Type :=
+| Vvar (i : Γ ∋ x) : is_var (v_var i)
+.
+
+Equations is_var_get `{VM : subst_monoid T C val} {Γ x} {v : val Γ x} : is_var v -> Γ ∋ x :=
+  is_var_get (Vvar i) := i .

Which are obviously stable under renamings.

+
T, C: Type
CC: context T C
val: Fam₁ T C
VM0: subst_monoid val
VM: subst_monoid_laws val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
v: val Γ1 x

is_var v -> is_var (v ᵥ⊛ᵣ r)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM0: subst_monoid val
VM: subst_monoid_laws val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
v: val Γ1 x

is_var v -> is_var (v ᵥ⊛ᵣ r)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM0: subst_monoid val
VM: subst_monoid_laws val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
i: Γ1 ∋ x

is_var (a_id i ᵥ⊛ᵣ r)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM0: subst_monoid val
VM: subst_monoid_laws val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
i: Γ1 ∋ x

is_var (r_emb r x i)
+
econstructor. +Qed.

At last we define our last assumptions on variables (Def. 28).

+
Class var_assumptions `{CC : context T C} (val : Fam₁ T C) {VM : subst_monoid val} := {
+  v_var_inj {Γ x} : injective (@v_var _ _ _ _ _ Γ x) ;
+  is_var_dec {Γ x} (v : val Γ x) : decidable (is_var v) ;
+  is_var_ren {Γ1 Γ2 x} (v : val Γ1 x) (r : Γ1 ⊆ Γ2) : is_var (v ᵥ⊛ᵣ r) -> is_var v ;
+}.

Here we derive a couple helpers around these new assumptions.

+
Section variables.
+  Context `{CC : context T C} {val : Fam₁ T C}.
+  Context {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+  Context {VA : var_assumptions val}.
+
+  
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
v: val Γ x
p, q: is_var v

p = q
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
v: val Γ x
p, q: is_var v

p = q
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
v: val Γ x
p, q0: is_var v
i: Γ ∋ x
w: val Γ x
H: w = a_id i
q: is_var w

Vvar i = rew [is_var] H in q
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
v: val Γ x
p, q0: is_var v
i, i0: Γ ∋ x
H: a_id i0 = a_id i

Vvar i = rew [is_var] H in Vvar i0
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
v: val Γ x
p, q0: is_var v
i, i0: Γ ∋ x
H: a_id i0 = a_id i
H': i0 = i

Vvar i = rew [is_var] H in Vvar i0
+
now dependent elimination H'; dependent elimination H. + Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
i: Γ ∋ x
p: is_var (a_id i)

p = Vvar i
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
i: Γ ∋ x
p: is_var (a_id i)

p = Vvar i
apply is_var_irr. Qed. + + Variant is_var_ren_view {Γ1 Γ2 x} + (v : val Γ1 x) (r : Γ1 ⊆ Γ2) : is_var (v ᵥ⊛ᵣ r) -> Type := + | Vvren (H : is_var v) : is_var_ren_view v r (ren_is_var r H) . + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ1, Γ2: C
x: T
v: val Γ1 x
r: Γ1 ⊆ Γ2
H: is_var (v ᵥ⊛ᵣ r)

is_var_ren_view v r H
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ1, Γ2: C
x: T
v: val Γ1 x
r: Γ1 ⊆ Γ2
H: is_var (v ᵥ⊛ᵣ r)

is_var_ren_view v r H
+
rewrite (is_var_irr H (ren_is_var r (is_var_ren v r H))); econstructor. + Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
v: val Γ1 x
H: is_var v

is_var_get (ren_is_var r H) = r x (is_var_get H)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
v: val Γ1 x
H: is_var v

is_var_get (ren_is_var r H) = r x (is_var_get H)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
i: Γ1 ∋ x

is_var_get (ren_is_var r (Vvar i)) = r x i
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
i: Γ1 ∋ x

forall i0 : is_var (a_id i ᵥ⊛ᵣ r), +is_var_get i0 = r x i
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ1, Γ2: C
r: Γ1 ⊆ Γ2
x: T
i: Γ1 ∋ x
H: is_var (a_id (r x i))

is_var_get H = r x i
+
now rewrite (is_var_irr H (Vvar (r _ i))). + Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
v: val Γ x
H: is_var v

v = a_id (is_var_get H)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
VA: var_assumptions val
Γ: C
x: T
v: val Γ x
H: is_var v

v = a_id (is_var_get H)
now destruct H. Qed. +End variables.

Finally we end with a couple derived property on assignments.

+
Section properties.
+  Context {T C} {CC : context T C} (val : Fam₁ T C).
+  Context {VM : subst_monoid val} {VML : subst_monoid_laws val}.
+
+  
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3: C

Proper + (asgn_eq Γ1 Γ2 ==> asgn_eq Γ2 Γ3 ==> asgn_eq Γ1 Γ3) + a_comp
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3: C

Proper + (asgn_eq Γ1 Γ2 ==> asgn_eq Γ2 Γ3 ==> asgn_eq Γ1 Γ3) + a_comp
intros ?? H1 ?? H2 ??; cbn; now rewrite H1, H2. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2: C

Proper (asgn_eq Γ1 Γ2 ==> asgn_eq Γ1 Γ2) r_emb
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2: C

Proper (asgn_eq Γ1 Γ2 ==> asgn_eq Γ1 Γ2) r_emb
intros ?? H ??; cbn; now rewrite H. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3: C

Proper + (asgn_eq Γ1 Γ2 ==> asgn_eq Γ2 Γ3 ==> asgn_eq Γ1 Γ3) + a_ren_r
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3: C

Proper + (asgn_eq Γ1 Γ2 ==> asgn_eq Γ2 Γ3 ==> asgn_eq Γ1 Γ3) + a_ren_r
intros ?? H1 ?? H2 ??; cbn; now rewrite H1, H2. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3: C
r: Γ1 ⊆ Γ2
a: Γ2 =[ val ]> Γ3

r_emb r ⊛ a ≡ₐ r ᵣ⊛ a
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3: C
r: Γ1 ⊆ Γ2
a: Γ2 =[ val ]> Γ3

r_emb r ⊛ a ≡ₐ r ᵣ⊛ a
intros ??; cbn; now rewrite v_sub_var. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ: C

r_emb r_id ≡ₐ a_id
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ: C

r_emb r_id ≡ₐ a_id
reflexivity. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3, Γ4: C
a: Γ1 =[ val ]> Γ2
b: Γ2 =[ val ]> Γ3
r: Γ3 ⊆ Γ4

(a ⊛ b) ⊛ᵣ r ≡ₐ a ⊛ (b ⊛ᵣ r)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3, Γ4: C
a: Γ1 =[ val ]> Γ2
b: Γ2 =[ val ]> Γ3
r: Γ3 ⊆ Γ4

(a ⊛ b) ⊛ᵣ r ≡ₐ a ⊛ (b ⊛ᵣ r)
intros ??; cbn; now rewrite <-v_sub_sub. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3, Γ4: C
a: Γ1 =[ val ]> Γ2
r: Γ2 ⊆ Γ3
b: Γ3 =[ val ]> Γ4

(a ⊛ᵣ r) ⊛ b ≡ₐ a ⊛ (r ᵣ⊛ b)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3, Γ4: C
a: Γ1 =[ val ]> Γ2
r: Γ2 ⊆ Γ3
b: Γ3 =[ val ]> Γ4

(a ⊛ᵣ r) ⊛ b ≡ₐ a ⊛ (r ᵣ⊛ b)
intros ??; cbn; now rewrite <-v_sub_sub, a_ren_r_simpl. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3, Γ4: C
a: Γ1 =[ val ]> Γ2
b: Γ2 =[ val ]> Γ3
c: Γ3 =[ val ]> Γ4

(a ⊛ b) ⊛ c ≡ₐ a ⊛ (b ⊛ c)
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2, Γ3, Γ4: C
a: Γ1 =[ val ]> Γ2
b: Γ2 =[ val ]> Γ3
c: Γ3 =[ val ]> Γ4

(a ⊛ b) ⊛ c ≡ₐ a ⊛ (b ⊛ c)
intros ??; cbn; now rewrite v_sub_sub. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2: C
a: Γ1 =[ val ]> Γ2

a ⊛ a_id ≡ₐ a
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2: C
a: Γ1 =[ val ]> Γ2

a ⊛ a_id ≡ₐ a
intros ??; cbn; now rewrite v_var_sub. Qed. + +
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2: C
a: Γ1 =[ val ]> Γ2

a_id ⊛ a ≡ₐ a
+
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2: C
a: Γ1 =[ val ]> Γ2

a_id ⊛ a ≡ₐ a
T, C: Type
CC: context T C
val: Fam₁ T C
VM: subst_monoid val
VML: subst_monoid_laws val
Γ1, Γ2: C
a: Γ1 =[ val ]> Γ2
a0: T
a1: Γ1 ∋ a0

a_id a1 ᵥ⊛ a = a a0 a1
now rewrite v_sub_var. Qed. +End properties.
+
+
+ diff --git a/docs/SystemD.html b/docs/SystemD.html new file mode 100644 index 0000000..0d14389 --- /dev/null +++ b/docs/SystemD.html @@ -0,0 +1,1416 @@ + + + + + + +SystemD.v + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+ + +
From OGS Require Import Prelude.
+From OGS.Utils Require Import Psh Rel.
+From OGS.Ctx Require Import All Ctx Covering Subset Subst.
+From OGS.ITree Require Import Event ITree Eq Delay Structure Properties.
+From OGS.OGS Require Import Soundness. 

In this file we instanciate our OGS construction with the fully-dual polarized mu-mu-tilde +calculus 'System D' from P. Downen & Z. Ariola. The presentation may be slightly unusual +as we go for one-sided sequent. The only real divergence from the original calculus +is the addition of a restricted form of recursion, making the language non-normalizing.

+
+

Types

+

Type have polarities, basically whether their values are CBV-biased +or CBN-biased

+
Variant pol : Type := pos | neg .

Syntax of types. We have a fully dual type system with:

+
    +
  • 0, positive void (no constructor),
  • +
  • , negative unit (no destructor),
  • +
  • , negative void (one trivial destructor),
  • +
  • 1, positive unit (one trivial constructor),
  • +
  • A B, positive product (pairs with pattern-matching),
  • +
  • A B, negative sum (one binary destructor),
  • +
  • A B, positive sum (usual coproduct with injections),
  • +
  • A & B, negative product (usual product with projections),
  • +
  • A, positive shift (thunking),
  • +
  • A, negative shift ('returners'),
  • +
  • A, positive negation (approximately continuations accepting an A),
  • +
  • ¬ A, negative negation (approximately refutations of A).
  • +
+

We opt for an explicit treatment of polarity, by indexing the family of types.

+
Inductive pre_ty : pol -> Type :=
+| Zer : pre_ty pos
+| Top : pre_ty neg
+| One : pre_ty pos
+| Bot : pre_ty neg
+| Tens : pre_ty pos -> pre_ty pos -> pre_ty pos
+| Par : pre_ty neg -> pre_ty neg -> pre_ty neg
+| Or : pre_ty pos -> pre_ty pos -> pre_ty pos
+| And : pre_ty neg -> pre_ty neg -> pre_ty neg
+| ShiftP : pre_ty neg -> pre_ty pos
+| ShiftN : pre_ty pos -> pre_ty neg
+| NegP : pre_ty neg -> pre_ty pos
+| NegN : pre_ty pos -> pre_ty neg
+.
Notation "0" := (Zer) : ty_scope .
+Notation "1" := (One) : ty_scope .
+Notation "⊤" := (Top) : ty_scope .
+Notation "⊥" := (Bot) : ty_scope .
+Notation "A ⊗ B" := (Tens A B) (at level 40) : ty_scope.
+Notation "A ⅋ B" := (Par A B) (at level 40) : ty_scope .
+Notation "A ⊕ B" := (Or A B) (at level 40) : ty_scope.
+Notation "A & B" := (And A B) (at level 40) : ty_scope.
+Notation "↓ A" := (ShiftP A) (at level 40) : ty_scope.
+Notation "↑ A" := (ShiftN A) (at level 40) : ty_scope.
+Notation "⊖ A" := (NegP A) (at level 5) : ty_scope .
+Notation "¬ A" := (NegN A) (at level 5) : ty_scope .

As hinted above, we go for one-sided sequents. This enables to have only one context +instead of two, simplifying the theory of substitution. On the flip-side, as we still +need two kinds of variables, the 'normal' ones and the co-variables, our contexts will +not contain bare types but side-annotated types. A variable of type A will thus be +stored as \`-A in the context while a co-variable of type A will be stored as \`-A.

+
Variant ty : Type :=
+| LTy {p} : pre_ty p -> ty
+| RTy {p} : pre_ty p -> ty
+.
Notation "'`+' t" := (LTy t) (at level 5) : ty_scope .
+Notation "'`-' t" := (RTy t) (at level 5) : ty_scope .
+
+Equations t_neg : ty -> ty :=
+  t_neg `+a := `-a ;
+  t_neg `-a := `+a .
+Notation "a †" := (t_neg a) (at level 5) : ty_scope.

Finally we define contexts as backward lists of side-annotated types.

+
The reference Ctx.ctx was not found in the current +environment.
+
+

Terms

+

We define the well-typed syntax of the language with 3 mutually defined syntactic +categories: terms, weak head-normal forms and states ('language configurations' in +the paper).

+

Nothing should be too surprising. A first notable point is that by choosing to have an +explicit notion of 'side' of a variable, we can have a single construct +for both mu and mu-tilde. A second notable point is our new slightly exotic RecL and +RecR constructions. They allow arbitrary recursion at co-terms of positive types and +at terms of negative types. These polarity restrictions allow us to have minimal +disruption of the evaluation rules.

+
Inductive term : t_ctx -> ty -> Type :=
+| Mu {Γ A} : state (Γ ▶ₓ A†) -> term Γ A
+| RecL {Γ} {A : pre_ty pos} : term (Γ ▶ₓ `-A) `-A -> term Γ `-A
+| RecR {Γ} {A : pre_ty neg} : term (Γ ▶ₓ `+A) `+A -> term Γ `+A
+| Whn {Γ A} : whn Γ A -> term Γ A
+with whn : t_ctx -> ty -> Type :=
+| Var {Γ A} : Γ ∋ A -> whn Γ A
+| ZerL {Γ} : whn Γ `-0
+| TopR {Γ} : whn Γ `+⊤
+| OneR {Γ} : whn Γ `+1
+| OneL {Γ} : state Γ -> whn Γ `-1
+| BotR {Γ} : state Γ -> whn Γ `+⊥
+| BotL {Γ} : whn Γ `-⊥
+| TenR {Γ A B} : whn Γ `+A -> whn Γ `+B -> whn Γ `+(A ⊗ B)
+| TenL {Γ A B} : state (Γ ▶ₓ `+A ▶ₓ `+B) -> whn Γ `-(A ⊗ B)
+| ParR {Γ A B} : state (Γ ▶ₓ `-A ▶ₓ `-B) -> whn Γ `+(A ⅋ B)
+| ParL {Γ A B} : whn Γ `-A -> whn Γ `-B -> whn Γ `-(A ⅋ B)
+| OrR1 {Γ A B} : whn Γ `+A -> whn Γ `+(A ⊕ B)
+| OrR2 {Γ A B} : whn Γ `+B -> whn Γ `+(A ⊕ B)
+| OrL {Γ A B} : state (Γ ▶ₓ `+A) -> state (Γ ▶ₓ `+B) -> whn Γ `-(A ⊕ B)
+| AndR {Γ A B} : state (Γ ▶ₓ `-A) -> state (Γ ▶ₓ `-B) -> whn Γ `+(A & B)
+| AndL1 {Γ A B} : whn Γ `-A -> whn Γ `-(A & B)
+| AndL2 {Γ A B} : whn Γ `-B -> whn Γ `-(A & B)
+| ShiftPR {Γ A} : term Γ `+A -> whn Γ `+(↓ A)
+| ShiftPL {Γ A} : state (Γ ▶ₓ `+A) -> whn Γ `-(↓ A)
+| ShiftNR {Γ A} : state (Γ ▶ₓ `-A) -> whn Γ `+(↑ A)
+| ShiftNL {Γ A} : term Γ `-A -> whn Γ `-(↑ A)
+| NegPR {Γ A} : whn Γ `-A -> whn Γ `+(⊖ A)
+| NegPL {Γ A} : state (Γ ▶ₓ `-A) -> whn Γ `-(⊖ A)
+| NegNR {Γ A} : state (Γ ▶ₓ `+A) -> whn Γ `+(¬ A)
+| NegNL {Γ A} : whn Γ `+A -> whn Γ `-(¬ A)
+with state : t_ctx -> Type :=
+| Cut {Γ} p {A : pre_ty p} : term Γ `+A -> term Γ `-A -> state Γ
+.
+
+Definition Cut' {Γ A} : term Γ A -> term Γ A† -> state Γ :=
+  match A with
+  | `+A => fun t1 t2 => Cut _ t1 t2
+  | `-A => fun t1 t2 => Cut _ t2 t1
+  end .

Values are not exactly weak head-normal forms, but depend on the polarity of the type. +As positive types have CBV evaluation, their values are weak head-normal forms, but their +co-values (evaluation contexts) are just any co-term (context) as they are delayed anyways. +Dually for negative types, values are delayed hence can be any term while co-values must +be weak head-normal form contexts.

+
Equations val : t_ctx -> ty -> Type :=
+  val Γ (@LTy pos A) := whn Γ `+A ;
+  val Γ (@RTy pos A) := term Γ `-A ;
+  val Γ (@LTy neg A) := term Γ `+A ;
+  val Γ (@RTy neg A) := whn Γ `-A .
+Arguments val _ _ /.

We provide a 'smart-constructor' for variables, embedding variables in values.

+
Equations var : c_var ⇒ val :=
+  var _ (@LTy pos _) i := Var i ;
+  var _ (@RTy pos _) i := Whn (Var i) ;
+  var _ (@LTy neg _) i := Whn (Var i) ;
+  var _ (@RTy neg _) i := Var i .
+#[global] Arguments var {Γ} [x] / i.
+
+

Renaming

+

Without surprise parallel renaming goes by a big mutual induction, shifting the renaming +apropriately while going under binders. Note the use of the internal substitution hom +to type it.

+
Equations t_rename : term ⇒ ⟦ c_var , term ⟧ :=
+  t_rename _ _ (Mu c)    _ f := Mu (s_rename _ c _ (r_shift1 f)) ;
+  t_rename _ _ (RecL t)  _ f := RecL (t_rename _ _ t _ (r_shift1 f)) ;
+  t_rename _ _ (RecR t)  _ f := RecR (t_rename _ _ t _ (r_shift1 f)) ;
+  t_rename _ _ (Whn v)   _ f := Whn (w_rename _ _ v _ f) ;
+with w_rename : whn ⇒ ⟦ c_var , whn ⟧ :=
+  w_rename _  _ (Var i)       _ f := Var (f _ i) ;
+  w_rename _  _ (ZerL)        _ f := ZerL ;
+  w_rename _  _ (TopR)        _ f := TopR ;
+  w_rename _  _ (OneR)        _ f := OneR ;
+  w_rename _  _ (OneL c)      _ f := OneL (s_rename _ c _ f) ;
+  w_rename _  _ (BotR c)      _ f := BotR (s_rename _ c _ f) ;
+  w_rename _  _ (BotL)        _ f := BotL ;
+  w_rename _  _ (TenR v1 v2)  _ f := TenR (w_rename _ _ v1 _ f) (w_rename _ _ v2 _ f) ;
+  w_rename _  _ (TenL c)      _ f := TenL (s_rename _ c _ (r_shift2 f)) ;
+  w_rename _  _ (ParR c)      _ f := ParR (s_rename _ c _ (r_shift2 f)) ;
+  w_rename _  _ (ParL k1 k2)  _ f := ParL (w_rename _ _ k1 _ f) (w_rename _ _ k2 _ f) ;
+  w_rename _  _ (OrR1 v)      _ f := OrR1 (w_rename _ _ v _ f) ;
+  w_rename _  _ (OrR2 v)      _ f := OrR2 (w_rename _ _ v _ f) ;
+  w_rename _  _ (OrL c1 c2)   _ f := OrL (s_rename _ c1 _ (r_shift1 f))
+                                         (s_rename _ c2 _ (r_shift1 f)) ;
+  w_rename _  _ (AndR c1 c2)  _ f := AndR (s_rename _ c1 _ (r_shift1 f))
+                                          (s_rename _ c2 _ (r_shift1 f)) ;
+  w_rename _  _ (AndL1 k)     _ f := AndL1 (w_rename _ _ k _ f) ;
+  w_rename _  _ (AndL2 k)     _ f := AndL2 (w_rename _ _ k _ f) ;
+  w_rename _  _ (ShiftPR t)   _ f := ShiftPR (t_rename _ _ t _ f) ;
+  w_rename _  _ (ShiftPL c)   _ f := ShiftPL (s_rename _ c _ (r_shift1 f)) ;
+  w_rename _  _ (ShiftNR c)   _ f := ShiftNR (s_rename _ c _ (r_shift1 f)) ;
+  w_rename _  _ (ShiftNL t)   _ f := ShiftNL (t_rename _ _ t _ f) ;
+  w_rename _  _ (NegPR k)     _ f := NegPR (w_rename _ _ k _ f) ;
+  w_rename _  _ (NegPL c)     _ f := NegPL (s_rename _ c _ (r_shift1 f)) ;
+  w_rename _  _ (NegNR c)     _ f := NegNR (s_rename _ c _ (r_shift1 f)) ;
+  w_rename _  _ (NegNL v)     _ f := NegNL (w_rename _ _ v _ f) ;
+with s_rename : state ⇒ ⟦ c_var , state ⟧ :=
+  s_rename _ (Cut _ v k) _ f := Cut _ (t_rename _ _ v _ f) (t_rename _ _ k _ f) .

We extend it to values...

+
Equations v_rename : val ⇒ ⟦ c_var , val ⟧ :=
+  v_rename _ (@LTy pos a) := w_rename _ _ ;
+  v_rename _ (@RTy pos a) := t_rename _ _ ;
+  v_rename _ (@LTy neg a) := t_rename _ _ ;
+  v_rename _ (@RTy neg a) := w_rename _ _ .

... provide a couple infix notations...

+
Notation "t ₜ⊛ᵣ r" := (t_rename _ _ t _ r%asgn) (at level 14).
+Notation "w `ᵥ⊛ᵣ r" := (w_rename _ _ w _ r%asgn) (at level 14).
+Notation "v ᵥ⊛ᵣ r" := (v_rename _ _ v _ r%asgn) (at level 14).
+Notation "s ₛ⊛ᵣ r" := (s_rename _ s _ r%asgn) (at level 14).

... and extend it to assignments.

+
Definition a_ren {Γ1 Γ2 Γ3} : Γ1 =[val]> Γ2 -> Γ2 ⊆ Γ3 -> Γ1 =[val]> Γ3 :=
+  fun f g _ i => v_rename _ _ (f _ i) _ g .
+Arguments a_ren {_ _ _} _ _ _ _ /.
+Notation "a ⊛ᵣ r" := (a_ren a r%asgn) (at level 14) : asgn_scope.

The following bunch of shifting functions will help us define parallel substitution.

+
Definition t_shift1 {Γ y} : term Γ ⇒ᵢ term (Γ ▶ₓ y)  := fun _ t => t ₜ⊛ᵣ r_pop.
+Definition w_shift1 {Γ y} : whn Γ ⇒ᵢ whn (Γ ▶ₓ y)    := fun _ w => w `ᵥ⊛ᵣ r_pop.
+Definition s_shift1 {Γ y} : state Γ -> state (Γ ▶ₓ y) := fun s => s ₛ⊛ᵣ r_pop.
+Definition v_shift1 {Γ y} : val Γ ⇒ᵢ val (Γ ▶ₓ y)    := fun _ v => v ᵥ⊛ᵣ r_pop.
+Definition v_shift2 {Γ y z} : val Γ ⇒ᵢ val (Γ ▶ₓ y ▶ₓ z) := fun _ v => v ᵥ⊛ᵣ (r_pop ᵣ⊛ r_pop).
+Definition a_shift1 {Γ Δ} [y] (a : Γ =[val]> Δ) : (Γ ▶ₓ y) =[val]> (Δ ▶ₓ y)
+  := [ fun _ i => v_shift1 _ (a _ i) ,ₓ var top ].
+Definition a_shift2 {Γ Δ} [y z] (a : Γ =[val]> Δ) : (Γ ▶ₓ y ▶ₓ z) =[val]> (Δ ▶ₓ y ▶ₓ z)
+  := [ [ fun _ i => v_shift2 _ (a _ i) ,ₓ var (pop top) ] ,ₓ var top ].

We also define two embeddings linking the various syntactical categories.

+
Equations v_of_w Γ A : whn Γ A -> val Γ A :=
+  v_of_w _ (@LTy pos _) v := v ;
+  v_of_w _ (@RTy pos _) u := Whn u ;
+  v_of_w _ (@LTy neg _) u := Whn u ;
+  v_of_w _ (@RTy neg _) k := k .
+Arguments v_of_w {Γ A} v.
+#[global] Coercion v_of_w : whn >-> val.
+
+Equations t_of_v Γ A : val Γ A -> term Γ A :=
+  t_of_v _ (@LTy pos _) v := Whn v ;
+  t_of_v _ (@RTy pos _) u := u ;
+  t_of_v _ (@LTy neg _) u := u ;
+  t_of_v _ (@RTy neg _) k := Whn k .
+Arguments t_of_v {Γ A} v.
+#[global] Coercion t_of_v : val >-> term.
+
+

Substitution

+

Having done with renaming, we reapply the same pattern to define parallel substitution. +Note that substituting a weak head-normal form with values may not yield a weak +head-normal form, but only a value!

+
Equations t_subst : term ⇒ ⟦ val , term ⟧ :=
+  t_subst _ _ (Mu c)    _ f := Mu (s_subst _ c _ (a_shift1 f)) ;
+  t_subst _ _ (RecL t)  _ f := RecL (t_subst _ _ t _ (a_shift1 f)) ;
+  t_subst _ _ (RecR t)  _ f := RecR (t_subst _ _ t _ (a_shift1 f)) ;
+  t_subst _ _ (Whn v)   _ f := w_subst _ _ v _ f ;
+with w_subst : whn ⇒ ⟦ val , val ⟧ :=
+  w_subst _  _ (Var i)      _ f := f _ i ;
+  w_subst _  _ (ZerL)       _ f := Whn ZerL ;
+  w_subst _  _ (TopR)       _ f := Whn TopR ;
+  w_subst _  _ (OneR)       _ f := OneR ;
+  w_subst _  _ (OneL c)     _ f := Whn (OneL (s_subst _ c _ f)) ;
+  w_subst _  _ (BotR c)     _ f := Whn (BotR (s_subst _ c _ f)) ;
+  w_subst _  _ (BotL)       _ f := BotL ;
+  w_subst _  _ (TenR v1 v2) _ f := TenR (w_subst _ _ v1 _ f) (w_subst _ _ v2 _ f) ;
+  w_subst _  _ (TenL c)     _ f := Whn (TenL (s_subst _ c _ (a_shift2 f))) ;
+  w_subst _  _ (ParR c)     _ f := Whn (ParR (s_subst _ c _ (a_shift2 f))) ;
+  w_subst _  _ (ParL k1 k2) _ f := ParL (w_subst _ _ k1 _ f) (w_subst _ _ k2 _ f) ;
+  w_subst _  _ (OrR1 v)     _ f := OrR1 (w_subst _ _ v _ f) ;
+  w_subst _  _ (OrR2 v)     _ f := OrR2 (w_subst _ _ v _ f) ;
+  w_subst _  _ (OrL c1 c2)  _ f := Whn (OrL (s_subst _ c1 _ (a_shift1 f))
+                                            (s_subst _ c2 _ (a_shift1 f))) ;
+  w_subst _  _ (AndR c1 c2) _ f := Whn (AndR (s_subst _ c1 _ (a_shift1 f))
+                                             (s_subst _ c2 _ (a_shift1 f))) ;
+  w_subst _  _ (AndL1 k)    _ f := AndL1 (w_subst _ _ k _ f) ;
+  w_subst _  _ (AndL2 k)    _ f := AndL2 (w_subst _ _ k _ f) ;
+  w_subst _  _ (ShiftPR t)  _ f := ShiftPR (t_subst _ _ t _ f) ;
+  w_subst _  _ (ShiftPL c)  _ f := Whn (ShiftPL (s_subst _ c _ (a_shift1 f))) ;
+  w_subst _  _ (ShiftNR c)  _ f := Whn (ShiftNR (s_subst _ c _ (a_shift1 f))) ;
+  w_subst _  _ (ShiftNL t)  _ f := ShiftNL (t_subst _ _ t _ f) ;
+  w_subst _  _ (NegPR k)    _ f := NegPR (w_subst _ _ k _ f) ;
+  w_subst _  _ (NegPL c)    _ f := Whn (NegPL (s_subst _ c _ (a_shift1 f))) ;
+  w_subst _  _ (NegNR c)    _ f := Whn (NegNR (s_subst _ c _ (a_shift1 f))) ;
+  w_subst _  _ (NegNL v)    _ f := NegNL (w_subst _ _ v _ f) ;
+with s_subst : state ⇒ ⟦ val , state ⟧ :=
+   s_subst _ (Cut p v k) _ f := Cut p (t_subst _ _ v _ f) (t_subst _ _ k _ f) .
+
+Notation "t `ₜ⊛ a" := (t_subst _ _ t _ a%asgn) (at level 30).
+Notation "w `ᵥ⊛ a" := (w_subst _ _ w _ a%asgn) (at level 30).
+
+Equations v_subst : val ⇒ ⟦ val , val ⟧ :=
+  v_subst _ (@LTy pos a) v _ f := v `ᵥ⊛ f ;
+  v_subst _ (@RTy pos a) t _ f := t `ₜ⊛ f ;
+  v_subst _ (@LTy neg a) t _ f := t `ₜ⊛ f ;
+  v_subst _ (@RTy neg a) k _ f := k `ᵥ⊛ f .

With this in hand we can instanciate the relevant part of substitution monoid and module +structures for values and states. This will provide us with the missing infix notations.

+
#[global] Instance val_m_monoid : subst_monoid val :=
+  {| v_var := @var ; v_sub := v_subst |} .
+#[global] Instance state_module : subst_module val state :=
+  {| c_sub := s_subst |} .

We now define helpers for substituting the top one or top two variables from a context.

+
Definition asgn1 {Γ a} (v : val Γ a) : (Γ ▶ₓ a) =[val]> Γ := [ var ,ₓ v ] .
+Definition asgn2 {Γ a b} (v1 : val Γ a) (v2 : val Γ b) : (Γ ▶ₓ a ▶ₓ b) =[val]> Γ
+  := [ [ var ,ₓ v1 ] ,ₓ v2 ].
+
+Arguments asgn1 {_ _} & _.
+Arguments asgn2 {_ _ _} & _ _.
+
+Notation "₁[ v ]" := (asgn1 v).
+Notation "₂[ v1 , v2 ]" := (asgn2 v1 v2).
+
+

Observations

+

When defining (co-)patterns, we will enforce a form of focalisation, where no negative +variables are introduced. In this context, 'negative' is a new notion applying to +side-annotated types, mixing both type polarity and side annotation: a side-annotated +variable is positive iff it is a positive variable or a negative co-variable.

+
Equations is_neg : ty -> SProp :=
+  is_neg (@LTy pos a) := sEmpty ;
+  is_neg (@RTy pos a) := sUnit ;
+  is_neg (@LTy neg a) := sUnit ;
+  is_neg (@RTy neg a) := sEmpty .

We define negative types as a subset of types, and negative contexts as a subset of +contexts. Our generic infrastructure for contexts and variables really shines here as +the type of variables in a negative context is convertible to the type of variables in +the underlying context. See Ctx/Subset.v.

+
Definition neg_ty : Type := sigS is_neg.
+Definition neg_coe : neg_ty -> ty := sub_elt.
+Global Coercion neg_coe : neg_ty >-> ty.
+
+Definition neg_ctx : Type := ctxS ty t_ctx is_neg.
+Definition neg_c_coe : neg_ctx -> ctx ty := sub_elt.
+Global Coercion neg_c_coe : neg_ctx >-> ctx.

We can now define patterns...

+
Inductive pat : ty -> Type :=
+| PVarP (A : pre_ty neg) : pat `+A
+| PVarN (A : pre_ty pos) : pat `-A
+| POne : pat `+1
+| PBot : pat `-⊥
+| PTen {A B} : pat `+A -> pat `+B -> pat `+(A ⊗ B)
+| PPar {A B} : pat `-A -> pat `-B -> pat `-(A ⅋ B)
+| POr1 {A B} : pat `+A -> pat `+(A ⊕ B)
+| POr2 {A B} : pat `+B -> pat `+(A ⊕ B)
+| PAnd1 {A B} : pat `-A -> pat `-(A & B)
+| PAnd2 {A B} : pat `-B -> pat `-(A & B)
+| PShiftP A : pat `+(↓ A)
+| PShiftN A : pat `-(↑ A)
+| PNegP {A} : pat `-A -> pat `+(⊖ A)
+| PNegN {A} : pat `+A -> pat `-(¬ A)
+.

... and their domain, i.e. the context they bind.

+
Equations p_dom {t} : pat t -> neg_ctx :=
+  p_dom (PVarP A)    := ∅ₛ ▶ₛ {| sub_elt := `+A ; sub_prf := stt |} ;
+  p_dom (PVarN A)    := ∅ₛ ▶ₛ {| sub_elt := `-A ; sub_prf := stt |} ;
+  p_dom (POne)       := ∅ₛ ;
+  p_dom (PBot)       := ∅ₛ ;
+  p_dom (PTen p1 p2) := p_dom p1 +▶ₛ p_dom p2 ;
+  p_dom (PPar p1 p2) := p_dom p1 +▶ₛ p_dom p2 ;
+  p_dom (POr1 p)     := p_dom p ;
+  p_dom (POr2 p)     := p_dom p ;
+  p_dom (PAnd1 p)    := p_dom p ;
+  p_dom (PAnd2 p)    := p_dom p ;
+  p_dom (PShiftP A)  := ∅ₛ ▶ₛ {| sub_elt := `+A ; sub_prf := stt |} ;
+  p_dom (PShiftN A)  := ∅ₛ ▶ₛ {| sub_elt := `-A ; sub_prf := stt |} ;
+  p_dom (PNegP p)    := p_dom p ;
+  p_dom (PNegN p)    := p_dom p .

We finally instanciate the observation structure. Note that our generic formalization +mostly cares about 'observations', that is co-patterns. As such we instanciate observations +by patterns at the dual type.

+
Definition obs_op : Oper ty neg_ctx :=
+  {| o_op A := pat A† ; o_dom _ p := p_dom p |} .

Now come a rather tedious set of embeddings between syntactic categories related to +patterns. We start by embedding patterns into weak head-normal forms.

+
Equations w_of_p {a} (p : pat a) : whn (p_dom p) a :=
+  w_of_p (PVarP _)    := Var top ;
+  w_of_p (PVarN _)    := Var top ;
+  w_of_p (POne)       := OneR ;
+  w_of_p (PBot)       := BotL ;
+  w_of_p (PTen p1 p2) := TenR (w_of_p p1 `ᵥ⊛ᵣ r_cat_l) (w_of_p p2 `ᵥ⊛ᵣ r_cat_r) ;
+  w_of_p (PPar p1 p2) := ParL (w_of_p p1 `ᵥ⊛ᵣ r_cat_l) (w_of_p p2 `ᵥ⊛ᵣ r_cat_r) ;
+  w_of_p (POr1 p)     := OrR1 (w_of_p p) ;
+  w_of_p (POr2 p)     := OrR2 (w_of_p p) ;
+  w_of_p (PAnd1 p)    := AndL1 (w_of_p p) ;
+  w_of_p (PAnd2 p)    := AndL2 (w_of_p p) ;
+  w_of_p (PShiftP _)  := ShiftPR (Whn (Var top)) ;
+  w_of_p (PShiftN _)  := ShiftNL (Whn (Var top)) ;
+  w_of_p (PNegP p)    := NegPR (w_of_p p) ;
+  w_of_p (PNegN p)    := NegNL (w_of_p p) .
+#[global] Coercion w_of_p : pat >-> whn.

Now we explain how to split (some) weak head-normal forms into a pattern filled with +values. I am sorry in advance for your CPU-cycles wasted to typechecking these quite +hard dependent pattern matchings. We start off by two helpers for refuting impossible +variables in negative context, which because of the use of SProp give trouble to +Equations for deriving functional elimination principles if inlined.

+
Definition elim_var_p {Γ : neg_ctx} {A : pre_ty pos} {X : Type} : Γ ∋ `+A -> X
+  := fun i => match s_prf i with end .
+
+Definition elim_var_n {Γ : neg_ctx} {A : pre_ty neg} {X : Type} : Γ ∋ `-A -> X
+  := fun i => match s_prf i with end .
+
+Equations p_of_w_0p {Γ : neg_ctx} (A : pre_ty pos) : whn Γ `+A -> pat `+A :=
+  p_of_w_0p (0)     (Var i)      := elim_var_p i ;
+  p_of_w_0p (1)     (Var i)      := elim_var_p i ;
+  p_of_w_0p (A ⊗ B) (Var i)      := elim_var_p i ;
+  p_of_w_0p (A ⊕ B) (Var i)      := elim_var_p i ;
+  p_of_w_0p (↓ A)   (Var i)      := elim_var_p i ;
+  p_of_w_0p (⊖ A)   (Var i)      := elim_var_p i ;
+  p_of_w_0p (1)     (OneR)       := POne ;
+  p_of_w_0p (A ⊗ B) (TenR v1 v2) := PTen (p_of_w_0p A v1) (p_of_w_0p B v2) ;
+  p_of_w_0p (A ⊕ B) (OrR1 v)     := POr1 (p_of_w_0p A v) ;
+  p_of_w_0p (A ⊕ B) (OrR2 v)     := POr2 (p_of_w_0p B v) ;
+  p_of_w_0p (↓ A)   (ShiftPR _)  := PShiftP A ;
+  p_of_w_0p (⊖ A)   (NegPR k)    := PNegP (p_of_w_0n A k) ;
+with p_of_w_0n {Γ : neg_ctx} (A : pre_ty neg) : whn Γ `-A -> pat `-A :=
+  p_of_w_0n (⊤)     (Var i)      := elim_var_n i ;
+  p_of_w_0n (⊥)     (Var i)      := elim_var_n i ;
+  p_of_w_0n (A ⅋ B) (Var i)      := elim_var_n i ;
+  p_of_w_0n (A & B) (Var i)      := elim_var_n i ;
+  p_of_w_0n (↑ A)   (Var i)      := elim_var_n i ;
+  p_of_w_0n (¬ A)   (Var i)      := elim_var_n i ;
+  p_of_w_0n (⊥)     (BotL)       := PBot ;
+  p_of_w_0n (A ⅋ B) (ParL k1 k2) := PPar (p_of_w_0n A k1) (p_of_w_0n B k2) ;
+  p_of_w_0n (A & B) (AndL1 k)    := PAnd1 (p_of_w_0n A k) ;
+  p_of_w_0n (A & B) (AndL2 k)    := PAnd2 (p_of_w_0n B k) ;
+  p_of_w_0n (↑ A)   (ShiftNL _)  := PShiftN A ;
+  p_of_w_0n (¬ A)   (NegNL v)    := PNegN (p_of_w_0p A v) .
+
+Equations p_dom_of_w_0p {Γ : neg_ctx} (A : pre_ty pos) (v : whn Γ `+A)
+          : p_dom (p_of_w_0p A v) =[val]> Γ by struct A :=
+  p_dom_of_w_0p (0)     (Var i)      := elim_var_p i ;
+  p_dom_of_w_0p (1)     (Var i)      := elim_var_p i ;
+  p_dom_of_w_0p (A ⊗ B) (Var i)      := elim_var_p i ;
+  p_dom_of_w_0p (A ⊕ B) (Var i)      := elim_var_p i ;
+  p_dom_of_w_0p (↓ A)   (Var i)      := elim_var_p i ;
+  p_dom_of_w_0p (⊖ A)   (Var i)      := elim_var_p i ;
+  p_dom_of_w_0p (1)     (OneR)       := a_empty ;
+  p_dom_of_w_0p (A ⊗ B) (TenR v1 v2) := [ p_dom_of_w_0p A v1 , p_dom_of_w_0p B v2 ] ;
+  p_dom_of_w_0p (A ⊕ B) (OrR1 v)     := p_dom_of_w_0p A v ;
+  p_dom_of_w_0p (A ⊕ B) (OrR2 v)     := p_dom_of_w_0p B v ;
+  p_dom_of_w_0p (↓ A)   (ShiftPR x)  := a_append a_empty x ;
+  p_dom_of_w_0p (⊖ A)   (NegPR k)    := p_dom_of_w_0n A k ;
+     with p_dom_of_w_0n {Γ : neg_ctx} (A : pre_ty neg) (k : whn Γ `-A)
+          : p_dom (p_of_w_0n A k) =[val]> Γ by struct A :=
+  p_dom_of_w_0n (⊤)     (Var i)      := elim_var_n i ;
+  p_dom_of_w_0n (⊥)     (Var i)      := elim_var_n i ;
+  p_dom_of_w_0n (A ⅋ B) (Var i)      := elim_var_n i ;
+  p_dom_of_w_0n (A & B) (Var i)      := elim_var_n i ;
+  p_dom_of_w_0n (↑ A)   (Var i)      := elim_var_n i ;
+  p_dom_of_w_0n (¬ A)   (Var i)      := elim_var_n i ;
+  p_dom_of_w_0n (⊥)     (BotL)       := a_empty ;
+  p_dom_of_w_0n (A ⅋ B) (ParL k1 k2) := [ p_dom_of_w_0n A k1 , p_dom_of_w_0n B k2 ] ;
+  p_dom_of_w_0n (A & B) (AndL1 k)    := p_dom_of_w_0n A k ;
+  p_dom_of_w_0n (A & B) (AndL2 k)    := p_dom_of_w_0n B k ;
+  p_dom_of_w_0n (↑ A)   (ShiftNL x)  := a_append a_empty x ;
+  p_dom_of_w_0n (¬ A)   (NegNL v)    := p_dom_of_w_0p A v .

We can now package up all these auxiliary functions into the following ones, abstracting +polarity and side-annotation.

+
Equations p_of_v {Γ : neg_ctx} A : val Γ A -> pat A :=
+  p_of_v (@LTy pos A) v := p_of_w_0p A v ;
+  p_of_v (@RTy pos A) _ := PVarN A ;
+  p_of_v (@LTy neg A) _ := PVarP A ;
+  p_of_v (@RTy neg A) k := p_of_w_0n A k .
+
+Equations p_dom_of_v {Γ : neg_ctx} A (v : val Γ A) : p_dom (p_of_v A v) =[val]> Γ :=
+  p_dom_of_v (@LTy pos A) v := p_dom_of_w_0p A v ;
+  p_dom_of_v (@RTy pos A) x := [ ! ,ₓ x ] ;
+  p_dom_of_v (@LTy neg A) x := [ ! ,ₓ x ] ;
+  p_dom_of_v (@RTy neg A) k := p_dom_of_w_0n A k .
+
+Definition v_split_p {Γ : neg_ctx} {A} (v : whn Γ `+A) : (obs_op # val) Γ `-A
+  := (p_of_w_0p A v : o_op obs_op `-A) ⦇ p_dom_of_w_0p A v ⦈.
+
+Definition v_split_n {Γ : neg_ctx} {A} (v : whn Γ `-A) : (obs_op # val) Γ `+A
+  := (p_of_w_0n A v : o_op obs_op `+_) ⦇ p_dom_of_w_0n A v ⦈.
+
+

Evaluation

+

With patterns and observations now in hand we prepare for the definition of evaluation +and define a shorthand for normal forms. 'Normal forms' are here understood---as in the +paper---in our slightly non-standard presentation of triplets of a variable, an +observation and an assignment.

+
Definition nf : Fam₀ ty neg_ctx := c_var ∥ₛ (obs_op # val).

Now the bulk of evaluation: the step function. Once again we are greatful for +Equations providing us with a justification for the fact that this complex +dependent pattern-matching is indeed total.

+
Equations eval_aux {Γ : neg_ctx} : state Γ -> (state Γ + nf Γ) :=
+  eval_aux (Cut pos (Mu c)  (x))    := inl (c ₜ⊛ [ x ]) ;
+  eval_aux (Cut neg (x)     (Mu c)) := inl (c ₜ⊛ [ x ]) ;
+
+  eval_aux (Cut pos (Whn v) (Mu c))  := inl (c ₜ⊛ [ v ]) ;
+  eval_aux (Cut neg (Mu c)  (Whn k)) := inl (c ₜ⊛ [ k ]) ;
+
+  eval_aux (Cut pos (Whn v)  (RecL k)) := inl (Cut pos (Whn v) (k `ₜ⊛ [ RecL k ])) ;
+  eval_aux (Cut neg (RecR t) (Whn k))  := inl (Cut neg (t `ₜ⊛ [ RecR t ]) (Whn k)) ;
+
+  eval_aux (Cut pos (Whn v)       (Whn (Var i))) := inr (s_var_upg i ⋅ v_split_p v) ;
+  eval_aux (Cut neg (Whn (Var i)) (Whn k))       := inr (s_var_upg i ⋅ v_split_n k) ;
+
+  eval_aux (Cut pos (Whn (Var i)) (Whn _))       := elim_var_p i ;
+  eval_aux (Cut neg (Whn _)       (Whn (Var i))) := elim_var_n i ;
+
+  eval_aux (Cut pos (Whn (OneR))       (Whn (OneL c)))     := inl c ;
+  eval_aux (Cut neg (Whn (BotR c))     (Whn (BotL)))       := inl c ;
+  eval_aux (Cut pos (Whn (TenR v1 v2)) (Whn (TenL c)))     := inl (c ₜ⊛ [ v1 , v2 ]) ;
+  eval_aux (Cut neg (Whn (ParR c))     (Whn (ParL k1 k2))) := inl (c ₜ⊛ [ k1 , k2 ]) ;
+  eval_aux (Cut pos (Whn (OrR1 v))     (Whn (OrL c1 c2)))  := inl (c1 ₜ⊛ [ v ]) ;
+  eval_aux (Cut pos (Whn (OrR2 v))     (Whn (OrL c1 c2)))  := inl (c2 ₜ⊛ [ v ]) ;
+  eval_aux (Cut neg (Whn (AndR c1 c2)) (Whn (AndL1 k)))    := inl (c1 ₜ⊛ [ k ]) ;
+  eval_aux (Cut neg (Whn (AndR c1 c2)) (Whn (AndL2 k)))    := inl (c2 ₜ⊛ [ k ]) ;
+  eval_aux (Cut pos (Whn (ShiftPR x))  (Whn (ShiftPL c)))  := inl (c ₜ⊛ [ x ]) ;
+  eval_aux (Cut neg (Whn (ShiftNR c))  (Whn (ShiftNL x)))  := inl (c ₜ⊛ [ x ]) ;
+  eval_aux (Cut pos (Whn (NegPR k))    (Whn (NegPL c)))    := inl (c ₜ⊛ [ k ]) ;
+  eval_aux (Cut neg (Whn (NegNR c))    (Whn (NegNL v)))    := inl (c ₜ⊛ [ v ]) .

Finally we define evaluation as the iteration of the step function in the Delay monad, +and also define application of an observation with arguments to a value.

+
Definition eval {Γ : neg_ctx} : state Γ -> delay (nf Γ)
+  := iter_delay (fun c => Ret' (eval_aux c)).
+
+Definition p_app {Γ A} (v : val Γ A) (m : pat A†) (e : p_dom m =[val]> Γ) : state Γ :=
+  Cut' v (m `ᵥ⊛ e) .
+
+

Metatheory

+

Now comes a rather ugly part: the metatheory of our syntax. Comments will be rather more +sparse. For a thorough explaination of its structure, see Examples/Lambda/CBLTyped.v. +We will here be concerned with extensional equality preservation, identity and composition +laws for renaming and substitution, and also refolding lemmas for splitting and embedding +patterns. You are encouraged to just skip until line ~1300.

+
Scheme term_mut := Induction for term Sort Prop
+  with whn_mut := Induction for whn Sort Prop
+  with state_mut := Induction for state Sort Prop.
+
+Record syn_ind_args
+  (P_t : forall Γ A, term Γ A -> Prop)
+  (P_w : forall Γ A, whn Γ A -> Prop)
+  (P_s : forall Γ, state Γ -> Prop) :=
+{
+  ind_mu : forall Γ A s (H : P_s _ s), P_t Γ A (Mu s) ;
+  ind_recp : forall Γ A t (H : P_t _ _ t), P_t Γ `-A (RecL t) ;
+  ind_recn : forall Γ A t (H : P_t _ _ t), P_t Γ `+A (RecR t) ;
+  ind_whn : forall Γ A w (H : P_w _ _ w), P_t Γ A (Whn w) ;
+  ind_var : forall Γ A h, P_w Γ A (Var h) ;
+  ind_zerl : forall Γ, P_w Γ `-0 ZerL ;
+  ind_topr : forall Γ, P_w Γ `+⊤ TopR ;
+  ind_oner : forall Γ, P_w Γ `+1 OneR ;
+  ind_onel : forall Γ s, P_s Γ s -> P_w Γ `-1 (OneL s) ;
+  ind_botr : forall Γ s, P_s Γ s -> P_w Γ `+⊥ (BotR s) ;
+  ind_botl : forall Γ, P_w Γ `-⊥ BotL ;
+  ind_tenr : forall Γ A B w1 (H1 : P_w _ _ w1) w2 (H2 : P_w _ _ w2), P_w Γ `+(A ⊗ B) (TenR w1 w2) ;
+  ind_tenl : forall Γ A B s (H : P_s _ s), P_w Γ `-(A ⊗ B) (TenL s) ;
+  ind_parr : forall Γ A B s (H : P_s _ s), P_w Γ `+(A ⅋ B) (ParR s) ;
+  ind_parl : forall Γ A B w1 (H1 : P_w _ _ w1) w2 (H2 : P_w Γ `-B w2), P_w Γ `-(A ⅋ B) (ParL w1 w2) ;
+  ind_orr1 : forall Γ A B w (H : P_w _ _ w), P_w Γ `+(A ⊕ B) (OrR1 w) ;
+  ind_orr2 : forall Γ A B w (H : P_w _ _ w), P_w Γ `+(A ⊕ B) (OrR2 w) ;
+  ind_orl : forall Γ A B s1 (H1 : P_s _ s1) s2 (H2 : P_s _ s2), P_w Γ `-(A ⊕ B) (OrL s1 s2) ;
+  ind_andr : forall Γ A B s1 (H1 : P_s _ s1) s2 (H2 : P_s _ s2), P_w Γ `+(A & B) (AndR s1 s2) ;
+  ind_andl1 : forall Γ A B w (H : P_w _ _ w), P_w Γ `-(A & B) (AndL1 w) ;
+  ind_andl2 : forall Γ A B w (H : P_w _ _ w), P_w Γ `-(A & B) (AndL2 w) ;
+  ind_shiftpr : forall Γ A t (H : P_t _ _ t), P_w Γ `+(↓ A) (ShiftPR t) ;
+  ind_shiftpl : forall Γ A s (H : P_s _ s), P_w Γ `-(↓ A) (ShiftPL s) ;
+  ind_shiftnr : forall Γ A s (H : P_s _ s), P_w Γ `+(↑ A) (ShiftNR s) ;
+  ind_shiftnl : forall Γ A t (H : P_t _ _ t), P_w Γ `-(↑ A) (ShiftNL t) ;
+  ind_negpr : forall Γ A w (H : P_w _ _ w), P_w Γ `+(⊖ A) (NegPR w) ;
+  ind_negpl : forall Γ A s (H : P_s _ s), P_w Γ `-(⊖ A) (NegPL s) ;
+  ind_negnr : forall Γ A s (H : P_s _ s), P_w Γ `+(¬ A) (NegNR s) ;
+  ind_negnl : forall Γ A w (H : P_w _ _ w), P_w Γ `-(¬ A) (NegNL w) ;
+  ind_cut : forall Γ p A t1 (H1 : P_t _ _ t1) t2 (H2 : P_t _ _ t2), P_s Γ (@Cut _ p A t1 t2)
+} .
+
+Lemma term_ind_mut P_t P_w P_s (H : syn_ind_args P_t P_w P_s) Γ A t : P_t Γ A t .
+  destruct H; now apply (term_mut P_t P_w P_s).
+Qed.
+
+Lemma whn_ind_mut P_t P_w P_s (H : syn_ind_args P_t P_w P_s) Γ A w : P_w Γ A w .
+  destruct H; now apply (whn_mut P_t P_w P_s).
+Qed.
+
+Lemma state_ind_mut P_t P_w P_s (H : syn_ind_args P_t P_w P_s) Γ s : P_s Γ s .
+  destruct H; now apply (state_mut P_t P_w P_s).
+Qed.
+
+Definition t_ren_proper_P Γ A (t : term Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> t ₜ⊛ᵣ f1 = t ₜ⊛ᵣ f2 .
+Definition w_ren_proper_P Γ A (v : whn Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> v `ᵥ⊛ᵣ f1 = v `ᵥ⊛ᵣ f2 .
+Definition s_ren_proper_P Γ (s : state Γ) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> s ₛ⊛ᵣ f1 = s ₛ⊛ᵣ f2 .
+Lemma ren_proper_prf : syn_ind_args t_ren_proper_P w_ren_proper_P s_ren_proper_P.
+  econstructor.
+  all: unfold t_ren_proper_P, w_ren_proper_P, s_ren_proper_P.
+  all: intros; cbn; f_equal; eauto.
+  all: first [ apply H | apply H1 | apply H2 ]; auto.
+  all: first [ apply r_shift1_eq | apply r_shift2_eq ]; auto.
+Qed.
+
+#[global] Instance t_ren_eq {Γ a t Δ} : Proper (asgn_eq _ _ ==> eq) (t_rename Γ a t Δ).
+  intros f1 f2 H1; now apply (term_ind_mut _ _ _ ren_proper_prf).
+Qed.
+
+#[global] Instance w_ren_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (w_rename Γ a v Δ).
+  intros f1 f2 H1; now apply (whn_ind_mut _ _ _ ren_proper_prf).
+Qed.
+
+#[global] Instance s_ren_eq {Γ s Δ} : Proper (asgn_eq _ _ ==> eq) (s_rename Γ s Δ).
+  intros f1 f2 H1; now apply (state_ind_mut _ _ _ ren_proper_prf).
+Qed.
+
+#[global] Instance v_ren_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (v_rename Γ a v Δ).
+  destruct a as [ [] | [] ].
+  now apply w_ren_eq.
+  now apply t_ren_eq.
+  now apply t_ren_eq.
+  now apply w_ren_eq.
+Qed.
+
+#[global] Instance a_ren_eq {Γ1 Γ2 Γ3}
+  : Proper (asgn_eq _ _ ==> asgn_eq _ _ ==> asgn_eq _ _) (@a_ren Γ1 Γ2 Γ3).
+  intros r1 r2 H1 a1 a2 H2 ? i; cbn; now rewrite H1, (v_ren_eq _ _ H2).
+Qed.
+
+#[global] Instance a_shift1_eq {Γ Δ A} : Proper (asgn_eq _ _ ==> asgn_eq _ _) (@a_shift1 Γ Δ A).
+  intros ? ? H ? h.
+  dependent elimination h; auto; cbn; now rewrite H.
+Qed.
+
+#[global] Instance a_shift2_eq {Γ Δ A B} : Proper (asgn_eq _ _ ==> asgn_eq _ _) (@a_shift2 Γ Δ A B).
+  intros ? ? H ? v.
+  do 2 (dependent elimination v; auto).
+  cbn; now rewrite H.
+Qed.
+
+Definition t_ren_ren_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2) .
+Definition w_ren_ren_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (v `ᵥ⊛ᵣ f1) `ᵥ⊛ᵣ f2 = v `ᵥ⊛ᵣ (f1 ᵣ⊛ f2) .
+Definition s_ren_ren_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (s ₛ⊛ᵣ f1) ₛ⊛ᵣ f2 = s ₛ⊛ᵣ (f1 ᵣ⊛ f2) .
+
+Lemma ren_ren_prf : syn_ind_args t_ren_ren_P w_ren_ren_P s_ren_ren_P.
+  econstructor.
+  all: unfold t_ren_ren_P, w_ren_ren_P, s_ren_ren_P.
+  all: intros; cbn; f_equal; eauto.
+  all: first [ rewrite r_shift1_comp | rewrite r_shift2_comp ]; eauto.
+Qed.
+
+Lemma t_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) A (t : term Γ1 A)
+  : (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2) .
+  now apply (term_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma w_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ᵣ f1) `ᵥ⊛ᵣ f2 = v `ᵥ⊛ᵣ (f1 ᵣ⊛ f2) .
+  now apply (whn_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma s_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1)
+  : (s ₛ⊛ᵣ f1) ₛ⊛ᵣ f2 = s ₛ⊛ᵣ (f1 ᵣ⊛ f2) .
+  now apply (state_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma v_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ᵣ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ᵣ (f1 ᵣ⊛ f2) .
+  destruct A as [ [] | [] ].
+  now apply w_ren_ren.
+  now apply t_ren_ren.
+  now apply t_ren_ren.
+  now apply w_ren_ren.
+Qed.
+
+Definition t_ren_id_l_P Γ A (t : term Γ A) : Prop := t ₜ⊛ᵣ r_id = t.
+Definition w_ren_id_l_P Γ A (v : whn Γ A) : Prop := v `ᵥ⊛ᵣ r_id = v.
+Definition s_ren_id_l_P Γ (s : state Γ) : Prop := s ₛ⊛ᵣ r_id  = s.
+
+Lemma ren_id_l_prf : syn_ind_args t_ren_id_l_P w_ren_id_l_P s_ren_id_l_P.
+  econstructor.
+  all: unfold t_ren_id_l_P, w_ren_id_l_P, s_ren_id_l_P.
+  all: intros; cbn; f_equal; eauto.
+  all: first [ rewrite r_shift1_id | rewrite r_shift2_id ]; eauto.
+Qed.
+
+Lemma t_ren_id_l {Γ} A (t : term Γ A) : t ₜ⊛ᵣ r_id = t.
+  now apply (term_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma w_ren_id_l {Γ} A (v : whn Γ A) : v `ᵥ⊛ᵣ r_id = v.
+  now apply (whn_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma s_ren_id_l {Γ} (s : state Γ) : s ₛ⊛ᵣ r_id  = s.
+  now apply (state_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma v_ren_id_l {Γ} A (v : val Γ A) : v ᵥ⊛ᵣ r_id = v.
+  destruct A as [ [] | [] ].
+  now apply w_ren_id_l.
+  now apply t_ren_id_l.
+  now apply t_ren_id_l.
+  now apply w_ren_id_l.
+Qed.
+
+Lemma v_ren_id_r {Γ Δ} (f : Γ ⊆ Δ) A (i : Γ ∋ A) : (var i) ᵥ⊛ᵣ f = var (f _ i).
+  now destruct A as [ [] | [] ].
+Qed.
+
+Lemma a_shift1_id {Γ A} : @a_shift1 Γ Γ A var ≡ₐ var.
+  intros [ [] | [] ] i; dependent elimination i; auto.
+Qed.
+
+Lemma a_shift2_id {Γ A B} : @a_shift2 Γ Γ A B var ≡ₐ var.
+  intros ? v; cbn.
+  do 2 (dependent elimination v; cbn; auto).
+  now destruct a as [[]|[]].
+Qed.
+
+Arguments var : simpl never.
+Lemma a_shift1_ren_r {Γ1 Γ2 Γ3 y} (f1 : Γ1 =[ val ]> Γ2) (f2 : Γ2 ⊆ Γ3)
+      : a_shift1 (y:=y) (f1 ⊛ᵣ f2) ≡ₐ a_shift1 f1 ⊛ᵣ r_shift1 f2 .
+  intros ? h; dependent elimination h; cbn.
+  - now rewrite v_ren_id_r.
+  - now unfold v_shift1; rewrite 2 v_ren_ren.
+Qed.
+
+Lemma a_shift2_ren_r {Γ1 Γ2 Γ3 y z} (f1 : Γ1 =[ val ]> Γ2) (f2 : Γ2 ⊆ Γ3)
+      : a_shift2 (y:=y) (z:=z) (f1 ⊛ᵣ f2) ≡ₐ a_shift2 f1 ⊛ᵣ r_shift2 f2 .
+  intros ? v; do 2 (dependent elimination v; cbn; [ now rewrite v_ren_id_r | ]).
+  unfold v_shift2; now rewrite 2 v_ren_ren.
+Qed.
+
+Lemma a_shift1_ren_l {Γ1 Γ2 Γ3 y} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3)
+  : a_shift1 (y:=y) (f1 ᵣ⊛ f2) ≡ₐ r_shift1 f1 ᵣ⊛ a_shift1 f2 .
+  intros ? i; dependent elimination i; auto.
+Qed.
+
+Lemma a_shift2_ren_l {Γ1 Γ2 Γ3 y z} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3)
+      : a_shift2 (y:=y) (z:=z) (f1 ᵣ⊛ f2) ≡ₐ r_shift2 f1 ᵣ⊛ a_shift2 f2 .
+  intros ? v; do 2 (dependent elimination v; auto).
+Qed.
+
+Definition t_sub_proper_P Γ A (t : term Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ =[val]> Δ), f1 ≡ₐ f2 -> t `ₜ⊛ f1 = t `ₜ⊛ f2 .
+Definition w_sub_proper_P Γ A (v : whn Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ =[val]> Δ), f1 ≡ₐ f2 -> v `ᵥ⊛ f1 = v `ᵥ⊛ f2 .
+Definition s_sub_proper_P Γ (s : state Γ) : Prop :=
+  forall Δ (f1 f2 : Γ =[val]> Δ), f1 ≡ₐ f2 -> s ₜ⊛ f1 = s ₜ⊛ f2 .
+
+Lemma sub_proper_prf : syn_ind_args t_sub_proper_P w_sub_proper_P s_sub_proper_P.
+  econstructor.
+  all: unfold t_sub_proper_P, w_sub_proper_P, s_sub_proper_P.
+  all: intros; cbn.
+  all: match goal with
+       | |- Whn _ = Whn _ => do 2 f_equal
+       | _ => f_equal
+       end .
+  all: first [ apply H | apply H1 | apply H2 ]; auto.
+  all: first [ apply a_shift1_eq | apply a_shift2_eq ]; auto.
+Qed.
+
+#[global] Instance t_sub_eq {Γ a t Δ} : Proper (asgn_eq _ _ ==> eq) (t_subst Γ a t Δ).
+  intros f1 f2 H1; now apply (term_ind_mut _ _ _ sub_proper_prf).
+Qed.
+
+#[global] Instance w_sub_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (w_subst Γ a v Δ).
+  intros f1 f2 H1; now apply (whn_ind_mut _ _ _ sub_proper_prf).
+Qed.
+
+#[global] Instance s_sub_eq {Γ s Δ} : Proper (asgn_eq _ _ ==> eq) (s_subst Γ s Δ).
+  intros f1 f2 H1; now apply (state_ind_mut _ _ _ sub_proper_prf).
+Qed.
+
+#[global] Instance v_sub_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (v_subst Γ a v Δ).
+  destruct a as [[]|[]].
+  - now apply w_sub_eq.
+  - now apply t_sub_eq.
+  - now apply t_sub_eq.
+  - now apply w_sub_eq.
+Qed.
+
+#[global] Instance a_comp_eq {Γ1 Γ2 Γ3}
+  : Proper (asgn_eq _ _ ==> asgn_eq _ _ ==> asgn_eq _ _) (@a_comp _ _ _ _ _ Γ1 Γ2 Γ3).
+  intros ? ? H1 ? ? H2 ? ?; cbn; rewrite H1; now eapply v_sub_eq.
+Qed.
+
+Definition t_ren_sub_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3),
+    (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+Definition w_ren_sub_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3),
+    (v `ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+Definition s_ren_sub_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3),
+    (s ₜ⊛ f1) ₛ⊛ᵣ f2 = s ₜ⊛ (f1 ⊛ᵣ f2) .
+Lemma ren_sub_prf : syn_ind_args t_ren_sub_P w_ren_sub_P s_ren_sub_P.
+  econstructor.
+  all: unfold t_ren_sub_P, w_ren_sub_P, s_ren_sub_P.
+  all: intros; cbn.
+  4: destruct A as [ [] | [] ]; cbn.
+  all: match goal with
+       | |- Whn _ = Whn _ => do 2 f_equal
+       | _ => f_equal
+       end ; eauto.
+  all: first [ rewrite a_shift1_ren_r | rewrite a_shift2_ren_r ]; auto.
+Qed.
+
+Lemma t_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) A (t : term Γ1 A)
+  : (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+  now apply (term_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma w_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+  now apply (whn_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma s_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1)
+  : (s ₜ⊛ f1) ₛ⊛ᵣ f2 = s ₜ⊛ (f1 ⊛ᵣ f2) .
+  now apply (state_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma v_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ (f1 ⊛ᵣ f2) .
+  destruct A as [ [] | [] ]; cbn [ v_subst ].
+  - now apply w_ren_sub.
+  - now apply t_ren_sub.
+  - now apply t_ren_sub.
+  - now apply w_ren_sub.
+Qed.
+
+Definition t_sub_ren_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3),
+    (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2).
+Definition w_sub_ren_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3),
+    (v `ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2).
+Definition s_sub_ren_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3),
+    (s ₛ⊛ᵣ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ᵣ⊛ f2).
+
+Lemma sub_ren_prf : syn_ind_args t_sub_ren_P w_sub_ren_P s_sub_ren_P.
+  econstructor.
+  all: unfold t_sub_ren_P, w_sub_ren_P, s_sub_ren_P.
+  all: intros; cbn.
+  all: match goal with
+       | |- Whn _ = Whn _ => do 2 f_equal
+       | _ => f_equal
+       end ; eauto.
+  all: first [ rewrite a_shift1_ren_l | rewrite a_shift2_ren_l ]; auto.
+Qed.
+
+Lemma t_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) A (t : term Γ1 A)
+  : (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2).
+  now apply (term_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma w_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2).
+  now apply (whn_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma s_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) (s : state Γ1)
+  : (s ₛ⊛ᵣ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ᵣ⊛ f2).
+  now apply (state_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma v_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ᵣ f1) ᵥ⊛ f2 = v ᵥ⊛ (f1 ᵣ⊛ f2).
+  destruct A as [ [] | [] ].
+  - now apply w_sub_ren.
+  - now apply t_sub_ren.
+  - now apply t_sub_ren.
+  - now apply w_sub_ren.
+Qed.
+
+Lemma v_sub_id_r {Γ Δ} (f : Γ =[val]> Δ) A (i : Γ ∋ A) : var i ᵥ⊛ f = f A i.
+  destruct A as [ [] | [] ]; auto.
+Qed.
+
+Lemma a_shift1_comp {Γ1 Γ2 Γ3 A} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3)
+  : @a_shift1 _ _ A (f1 ⊛ f2) ≡ₐ a_shift1 f1 ⊛ a_shift1 f2 .
+  intros x i; dependent elimination i; cbn.
+  - now rewrite v_sub_id_r.
+  - now unfold v_shift1; rewrite v_ren_sub, v_sub_ren.
+Qed.
+
+Lemma a_shift2_comp {Γ1 Γ2 Γ3 A B} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3)
+  : @a_shift2 _ _ A B (f1 ⊛ f2) ≡ₐ a_shift2 f1 ⊛ a_shift2 f2 .
+  intros ? v; do 2 (dependent elimination v; cbn; [ now rewrite v_sub_id_r | ]).
+  now unfold v_shift2; rewrite v_ren_sub, v_sub_ren.
+Qed.
+
+Definition t_sub_sub_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3),
+    (t `ₜ⊛ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ⊛ f2) .
+Definition w_sub_sub_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3),
+    (v `ᵥ⊛ f1) ᵥ⊛ f2 = v `ᵥ⊛ (f1 ⊛ f2) .
+Definition s_sub_sub_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3),
+    (s ₜ⊛ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ⊛ f2) .
+
+Lemma sub_sub_prf : syn_ind_args t_sub_sub_P w_sub_sub_P s_sub_sub_P.
+  econstructor.
+  all: unfold t_sub_sub_P, w_sub_sub_P, s_sub_sub_P; intros; cbn.
+  4: destruct A as [ [] | [] ]; cbn.
+  all: match goal with
+       | |- Whn _ = Whn _ => do 2 f_equal
+       | _ => f_equal
+       end ; eauto.
+  all: first [ rewrite a_shift1_comp | rewrite a_shift2_comp ]; auto.
+Qed.
+
+Lemma t_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) A (t : term Γ1 A)
+  : (t `ₜ⊛ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ⊛ f2) .
+  now apply (term_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma w_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ f1) ᵥ⊛ f2 = v `ᵥ⊛ (f1 ⊛ f2) .
+  now apply (whn_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma s_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) (s : state Γ1)
+  : (s ₜ⊛ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ⊛ f2) .
+  now apply (state_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma v_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ f1) ᵥ⊛ f2 = v ᵥ⊛ (f1 ⊛ f2) .
+  destruct A as [ [] | [] ].
+  - now apply w_sub_sub.
+  - now apply t_sub_sub.
+  - now apply t_sub_sub.
+  - now apply w_sub_sub.
+Qed.
+
+Lemma a_comp_assoc {Γ1 Γ2 Γ3 Γ4} (u : Γ1 =[val]> Γ2) (v : Γ2 =[val]> Γ3) (w : Γ3 =[val]> Γ4)
+           : (u ⊛ v) ⊛ w ≡ₐ u ⊛ (v ⊛ w).
+  intros ? i; unfold a_comp; now apply v_sub_sub.
+Qed.
+
+Definition t_sub_id_l_P Γ A (t : term Γ A) : Prop := t `ₜ⊛ var = t.
+Definition w_sub_id_l_P Γ A (v : whn Γ A) : Prop := v `ᵥ⊛ var = v.
+Definition s_sub_id_l_P Γ (s : state Γ) : Prop := s ₜ⊛ var = s.
+
+Lemma sub_id_l_prf : syn_ind_args t_sub_id_l_P w_sub_id_l_P s_sub_id_l_P.
+  econstructor.
+  all: unfold t_sub_id_l_P, w_sub_id_l_P, s_sub_id_l_P; intros; cbn.
+  4,5: destruct A as [ [] | [] ]; cbn.
+  all: match goal with
+       | |- Whn _ = Whn _ => do 2 f_equal
+       | _ => f_equal
+       end; eauto.
+  all: first [ rewrite a_shift1_id | rewrite a_shift2_id ]; auto.
+Qed.
+
+Lemma t_sub_id_l {Γ} A (t : term Γ A) : t `ₜ⊛ var = t.
+  now apply (term_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma w_sub_id_l {Γ} A (v : whn Γ A) : v `ᵥ⊛ var = v.
+  now apply (whn_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma s_sub_id_l {Γ} (s : state Γ) : s ₜ⊛ var = s.
+  now apply (state_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma v_sub_id_l {Γ} A (v : val Γ A) : v ᵥ⊛ var = v.
+  destruct A as [ [] | [] ].
+  - now apply w_sub_id_l.
+  - now apply t_sub_id_l.
+  - now apply t_sub_id_l.
+  - now apply w_sub_id_l.
+Qed.
+
+Lemma sub1_sub {Γ Δ A} (f : Γ =[val]> Δ) (v : val Γ A) :
+  a_shift1 f ⊛ asgn1 (v ᵥ⊛ f) ≡ₐ asgn1 v ⊛ f.
+  intros ? h; dependent elimination h; cbn.
+  - now rewrite v_sub_id_r.
+  - unfold v_shift1; rewrite v_sub_ren, v_sub_id_r.
+    now apply v_sub_id_l.
+Qed.
+
+Lemma sub1_ren {Γ Δ A} (f : Γ ⊆ Δ) (v : val Γ A) :
+  r_shift1 f ᵣ⊛ asgn1 (v ᵥ⊛ᵣ f) ≡ₐ asgn1 v ⊛ᵣ f.
+  intros ? h; dependent elimination h; auto.
+  cbn; now rewrite v_ren_id_r.
+Qed.
+
+Lemma v_sub1_sub {Γ Δ A B} (f : Γ =[val]> Δ) (v : val Γ A) (w : val (Γ ▶ₓ A) B)
+  : (w ᵥ⊛ a_shift1 f) ᵥ⊛ [ v ᵥ⊛ f ] = (w ᵥ⊛ [ v ]) ᵥ⊛ f .
+  cbn; rewrite 2 v_sub_sub.
+  apply v_sub_eq; now rewrite sub1_sub.
+Qed.
+
+Lemma v_sub1_ren {Γ Δ A B} (f : Γ ⊆ Δ) (v : val Γ A) (w : val (Γ ▶ₓ A) B)
+  : (w ᵥ⊛ᵣ r_shift1 f) ᵥ⊛ [ v ᵥ⊛ᵣ f ] = (w ᵥ⊛ [ v ]) ᵥ⊛ᵣ f .
+  cbn; rewrite v_sub_ren, v_ren_sub.
+  apply v_sub_eq; now rewrite sub1_ren.
+Qed.
+
+Lemma s_sub1_sub {Γ Δ A} (f : Γ =[val]> Δ) (v : val Γ A) (s : state (Γ ▶ₓ A))
+  : (s ₜ⊛ a_shift1 f) ₜ⊛ [ v ᵥ⊛ f ] = (s ₜ⊛ [ v ]) ₜ⊛ f .
+  cbn; now rewrite 2 s_sub_sub, sub1_sub.
+Qed.
+
+Lemma s_sub2_sub {Γ Δ A B} (f : Γ =[val]> Δ) (s : state (Γ ▶ₓ A ▶ₓ B)) u v
+  : (s ₜ⊛ a_shift2 f) ₜ⊛ [ u ᵥ⊛ f , v ᵥ⊛ f ] = (s ₜ⊛ [ u, v ]) ₜ⊛ f .
+  cbn; rewrite 2 s_sub_sub; apply s_sub_eq.
+  intros ? v0; cbn.
+  do 2 (dependent elimination v0; cbn; [ now rewrite v_sub_id_r | ]).
+  unfold v_shift2; rewrite v_sub_ren, v_sub_id_r, <- v_sub_id_l.
+  now apply v_sub_eq.
+Qed.
+
+Lemma s_sub1_ren {Γ Δ A} (f : Γ ⊆ Δ) (v : val Γ A) (s : state (Γ ▶ₓ A))
+  : (s ₛ⊛ᵣ r_shift1 f) ₜ⊛ [ v ᵥ⊛ᵣ f ] = (s ₜ⊛ [ v ]) ₛ⊛ᵣ f .
+  cbn; now rewrite s_sub_ren, s_ren_sub, sub1_ren.
+Qed.
+
+Lemma t_sub1_sub {Γ Δ A B} (f : Γ =[val]> Δ) (v : val Γ A) (t : term (Γ ▶ₓ A) B)
+  : (t `ₜ⊛ a_shift1 f) `ₜ⊛ [ v ᵥ⊛ f ] = (t `ₜ⊛ [ v ]) `ₜ⊛ f .
+  cbn; rewrite 2 t_sub_sub.
+  apply t_sub_eq; now rewrite sub1_sub.
+Qed.
+
+Lemma t_sub1_ren {Γ Δ A B} (f : Γ ⊆ Δ) (v : val Γ A) (t : term (Γ ▶ₓ A) B)
+  : (t ₜ⊛ᵣ r_shift1 f) `ₜ⊛ [ v ᵥ⊛ᵣ f ] = (t `ₜ⊛ [ v ]) ₜ⊛ᵣ f .
+  cbn; rewrite t_sub_ren, t_ren_sub.
+  apply t_sub_eq; now rewrite sub1_ren.
+Qed.
+
+#[global] Instance p_app_eq {Γ A} (v : val Γ A) (m : pat (t_neg A))
+  : Proper (asgn_eq _ _ ==> eq) (p_app v m) .
+  intros u1 u2 H; destruct A as [ [] | []]; cbn; now rewrite (w_sub_eq u1 u2 H).
+Qed.
+
+Definition refold_id_aux_P (Γ : neg_ctx) p : pre_ty p -> Prop :=
+  match p with
+  | pos => fun A => forall (v : whn Γ `+A), p_of_w_0p _ v `ᵥ⊛ p_dom_of_w_0p _ v = v
+  | neg => fun A => forall (v : whn Γ `-A), p_of_w_0n _ v `ᵥ⊛ p_dom_of_w_0n _ v = v
+  end .
+
+Lemma refold_id_aux {Γ p} A : refold_id_aux_P Γ p A .
+  induction A; intros v.
+  - dependent elimination v; destruct (s_prf c).
+  - dependent elimination v; destruct (s_prf c).
+  - dependent elimination v; [ destruct (s_prf c) | ]; auto.
+  - dependent elimination v; [ destruct (s_prf c) | ]; auto.
+  - dependent elimination v; [ destruct (s_prf c) | ].
+    cbn; f_equal; rewrite w_sub_ren.
+    rewrite <- IHA1; apply w_sub_eq; exact (a_cat_proj_l _ _).
+    rewrite <- IHA2; apply w_sub_eq; exact (a_cat_proj_r _ _).
+  - dependent elimination v; [ destruct (s_prf c) | ].
+    cbn; f_equal; rewrite w_sub_ren.
+    rewrite <- IHA1; apply w_sub_eq; exact (a_cat_proj_l _ _).
+    rewrite <- IHA2; apply w_sub_eq; exact (a_cat_proj_r _ _).
+  - dependent elimination v; [ destruct (s_prf c) | | ];
+      cbn; f_equal; [ apply IHA1 | apply IHA2 ].
+  - dependent elimination v; [ destruct (s_prf c) | | ];
+      cbn; f_equal; [ apply IHA1 | apply IHA2 ].
+  - dependent elimination v; [ destruct (s_prf c) | ]; cbn; f_equal.
+  - dependent elimination v; [ destruct (s_prf c) | ]; cbn; f_equal.
+  - dependent elimination v; [ destruct (s_prf c) | ].
+    cbn; f_equal; apply IHA.
+  - dependent elimination v; [ destruct (s_prf c) | ].
+    cbn; f_equal; apply IHA.
+Qed.
+
+Lemma refold_id {Γ : neg_ctx} A (v : val Γ A)
+  : p_of_v A v `ᵥ⊛ p_dom_of_v A v = v.
+  destruct A as [ [] A | [] A ]; auto; exact (refold_id_aux A v).
+Qed.
+
+Equations p_of_w_eq_aux_p {Γ : neg_ctx} (A : pre_ty pos) (p : pat `+A) (e : p_dom p =[val]> Γ)
+          : p_of_w_0p A (p `ᵥ⊛ e) = p
+          by struct p :=
+  p_of_w_eq_aux_p (1)     (POne)       e := eq_refl ;
+  p_of_w_eq_aux_p (A ⊗ B) (PTen p1 p2) e := f_equal2 PTen
+        (eq_trans (f_equal _ (w_sub_ren _ _ _ _)) (p_of_w_eq_aux_p A p1 _))
+        (eq_trans (f_equal _ (w_sub_ren _ _ _ _)) (p_of_w_eq_aux_p B p2 _)) ;
+  p_of_w_eq_aux_p (A ⊕ B) (POr1 p)     e := f_equal POr1 (p_of_w_eq_aux_p A p e) ;
+  p_of_w_eq_aux_p (A ⊕ B) (POr2 p)     e := f_equal POr2 (p_of_w_eq_aux_p B p e) ;
+  p_of_w_eq_aux_p (↓ A)   (PShiftP _)  e := eq_refl ;
+  p_of_w_eq_aux_p (⊖ A)   (PNegP p)    e := f_equal PNegP (p_of_w_eq_aux_n A p e) ;
+
+with p_of_w_eq_aux_n {Γ : neg_ctx} (A : pre_ty neg) (p : pat `-A) (e : p_dom p =[val]> Γ)
+         : p_of_w_0n A (p `ᵥ⊛ e) = p
+         by struct p :=
+  p_of_w_eq_aux_n (⊥)     (PBot)       e := eq_refl ;
+  p_of_w_eq_aux_n (A ⅋ B) (PPar p1 p2) e := f_equal2 PPar
+        (eq_trans (f_equal _ (w_sub_ren _ _ _ _)) (p_of_w_eq_aux_n A p1 _))
+        (eq_trans (f_equal _ (w_sub_ren _ _ _ _)) (p_of_w_eq_aux_n B p2 _)) ;
+  p_of_w_eq_aux_n (A & B) (PAnd1 p)    e := f_equal PAnd1 (p_of_w_eq_aux_n A p e) ;
+  p_of_w_eq_aux_n (A & B) (PAnd2 p)    e := f_equal PAnd2 (p_of_w_eq_aux_n B p e) ;
+  p_of_w_eq_aux_n (↑ A)   (PShiftN _)  e := eq_refl ;
+  p_of_w_eq_aux_n (¬ A)   (PNegN p)    e := f_equal PNegN (p_of_w_eq_aux_p A p e) .
+
+Definition p_dom_of_w_eq_P (Γ : neg_ctx) p : pre_ty p -> Prop :=
+  match p with
+  | pos => fun A => forall (p : pat `+A) (e : p_dom p =[val]> Γ),
+      rew [fun p => p_dom p =[ val ]> Γ] p_of_w_eq_aux_p A p e in p_dom_of_w_0p A (p `ᵥ⊛ e) ≡ₐ e
+  | neg => fun A => forall (p : pat `-A) (e : p_dom p =[val]> Γ),
+      rew [fun p => p_dom p =[ val ]> Γ] p_of_w_eq_aux_n A p e in p_dom_of_w_0n A (p `ᵥ⊛ e) ≡ₐ e
+  end .
+
+Lemma p_dom_of_v_eq {Γ p} A : p_dom_of_w_eq_P Γ p A .
+  induction A; intros p e; dependent elimination p; cbn - [ r_cat_l r_cat_r ].
+  - intros ? h; repeat (dependent elimination h; auto).
+  - intros ? h; repeat (dependent elimination h; auto).
+  - pose (H1 := w_sub_ren r_cat_l e `+A3 (w_of_p p)) .
+    pose (H2 := w_sub_ren r_cat_r e `+B (w_of_p p0)) .
+    pose (x1 := w_of_p p `ᵥ⊛ᵣ r_cat_l `ᵥ⊛ e).
+    pose (x2 := w_of_p p0 `ᵥ⊛ᵣ r_cat_r `ᵥ⊛ e).
+    change (w_sub_ren r_cat_l e _ _) with H1.
+    change (w_sub_ren r_cat_r e _ _) with H2.
+    change (_ `ᵥ⊛ᵣ r_cat_l `ᵥ⊛ e) with x1 in H1 |- *.
+    change (_ `ᵥ⊛ᵣ r_cat_r `ᵥ⊛ e) with x2 in H2 |- *.
+    rewrite H1, H2; clear H1 H2 x1 x2; cbn - [ r_cat_l r_cat_r ].
+    pose (H1 := p_of_w_eq_aux_p A3 p (r_cat_l ᵣ⊛ e));
+      change (p_of_w_eq_aux_p A3 _ _) with H1 in IHA1 |- *.
+    pose (H2 := p_of_w_eq_aux_p B p0 (r_cat_r ᵣ⊛ e));
+      change (p_of_w_eq_aux_p B _ _) with H2 in IHA2 |- *.
+    transitivity ([ rew [fun p : pat `+A3 => p_dom p =[ val ]> Γ] H1
+                     in p_dom_of_w_0p A3 (w_of_p p `ᵥ⊛ r_cat_l ᵣ⊛ e) ,
+                    rew [fun p : pat `+B => p_dom p =[ val ]> Γ] H2
+                     in p_dom_of_w_0p B (w_of_p p0 `ᵥ⊛ r_cat_r ᵣ⊛ e) ])%asgn.
+    now rewrite <- H1, <- H2, eq_refl_map2_distr.
+    refine (a_cat_uniq _ _ _ _ _); [ apply IHA1 | apply IHA2 ] .
+  - pose (H1 := w_sub_ren r_cat_l e `-A4 (w_of_p p1)) .
+    pose (H2 := w_sub_ren r_cat_r e `-B0 (w_of_p p2)) .
+    pose (x1 := w_of_p p1 `ᵥ⊛ᵣ r_cat_l `ᵥ⊛ e).
+    pose (x2 := w_of_p p2 `ᵥ⊛ᵣ r_cat_r `ᵥ⊛ e).
+    change (w_sub_ren r_cat_l e _ _) with H1.
+    change (w_sub_ren r_cat_r e _ _) with H2.
+    change (_ `ᵥ⊛ᵣ r_cat_l `ᵥ⊛ e) with x1 in H1 |- *.
+    change (_ `ᵥ⊛ᵣ r_cat_r `ᵥ⊛ e) with x2 in H2 |- *.
+    rewrite H1, H2; clear H1 H2 x1 x2; cbn - [ r_cat_l r_cat_r ].
+    pose (H1 := p_of_w_eq_aux_n A4 p1 (r_cat_l ᵣ⊛ e));
+      change (p_of_w_eq_aux_n A4 _ _) with H1 in IHA1 |- *.
+    pose (H2 := p_of_w_eq_aux_n B0 p2 (r_cat_r ᵣ⊛ e));
+      change (p_of_w_eq_aux_n B0 _ _) with H2 in IHA2 |- *.
+    transitivity ([ rew [fun p : pat `-A4 => p_dom p =[ val ]> Γ] H1
+                     in p_dom_of_w_0n A4 (w_of_p p1 `ᵥ⊛ r_cat_l ᵣ⊛ e) ,
+                    rew [fun p : pat `-B0 => p_dom p =[ val ]> Γ] H2
+                     in p_dom_of_w_0n B0 (w_of_p p2 `ᵥ⊛ r_cat_r ᵣ⊛ e) ])%asgn.
+    now rewrite <- H1, <- H2, eq_refl_map2_distr.
+    refine (a_cat_uniq _ _ _ _ _); [ apply IHA1 | apply IHA2 ] .
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    rewrite (eq_trans Heqxx' (eq_sym (rew_map _ POr1 _ _))).
+    apply IHA1.
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    rewrite (eq_trans Heqxx' (eq_sym (rew_map _ POr2 _ _))).
+    apply IHA2.
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    rewrite (eq_trans Heqxx' (eq_sym (rew_map _ PAnd1 _ _))).
+    apply IHA1.
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    rewrite (eq_trans Heqxx' (eq_sym (rew_map _ PAnd2 _ _))).
+    apply IHA2.
+  - intros ? v; repeat (dependent elimination v; auto).
+  - intros ? v; repeat (dependent elimination v; auto).
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    rewrite (eq_trans Heqxx' (eq_sym (rew_map _ PNegP _ _))).
+    apply IHA.
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    rewrite (eq_trans Heqxx' (eq_sym (rew_map _ PNegN _ _))).
+    apply IHA.
+Qed.
+
+(* coq unification drives me crazy!! *)
+Definition upg_vp {Γ} {A : pre_ty pos} : whn Γ `+A  -> val Γ `+A := fun v => v.
+Definition upg_kp {Γ} {A : pre_ty pos} : term Γ `-A -> val Γ `-A := fun v => v.
+Definition upg_vn {Γ} {A : pre_ty neg} : term Γ `+A -> val Γ `+A := fun v => v.
+Definition upg_kn {Γ} {A : pre_ty neg} : whn Γ `-A  -> val Γ `-A := fun v => v.
+Definition dwn_vp {Γ} {A : pre_ty pos} : val Γ `+A -> whn Γ `+A  := fun v => v.
+Definition dwn_kp {Γ} {A : pre_ty pos} : val Γ `-A -> term Γ `-A := fun v => v.
+Definition dwn_vn {Γ} {A : pre_ty neg} : val Γ `+A -> term Γ `+A := fun v => v.
+Definition dwn_kn {Γ} {A : pre_ty neg} : val Γ `-A -> whn Γ `-A  := fun v => v.
+
+Lemma nf_eq_split_p {Γ : neg_ctx} {A : pre_ty pos} (i : Γ ∋ `-A) (p : pat `+A) γ
+  : nf_eq (i ⋅ v_split_p (dwn_vp (p `ᵥ⊛ γ)))
+          (i ⋅ (p : o_op obs_op `-A) ⦇ γ ⦈).
+  unfold v_split_p, dwn_vp; cbn.
+  pose proof (p_dom_of_v_eq A p γ).
+  pose (H' := p_of_w_eq_aux_p A p γ); fold H' in H.
+  pose (a := p_dom_of_w_0p A (w_of_p p `ᵥ⊛ γ)); fold a in H |- *.
+  remember a as a'; clear a Heqa'.
+  revert a' H; rewrite H'; intros; now econstructor.
+Qed.
+Lemma nf_eq_split_n {Γ : neg_ctx} {A : pre_ty neg} (i : Γ ∋ `+A) (p : pat `-A) γ
+  : nf_eq (i ⋅ v_split_n (dwn_kn (p `ᵥ⊛ γ)))
+          (i ⋅ (p : o_op obs_op `+A) ⦇ γ ⦈).
+  unfold v_split_n, dwn_kn; cbn.
+  pose proof (p_dom_of_v_eq A p γ).
+  pose (H' := p_of_w_eq_aux_n A p γ); fold H' in H.
+  pose (a := p_dom_of_w_0n A (w_of_p p `ᵥ⊛ γ)); fold a in H |- *.
+  remember a as a'; clear a Heqa'.
+  revert a' H; rewrite H'; intros; now econstructor.
+Qed.

Finally we can return to saner pursuits.

+
+
+

OGS Instanciation

+

The notion of values and configurations we will pass to the generic OGS construction +are our mu-mu-tilde values and states, but restricted to negative typing contexts. As +such, while we have proven all the metatheory for arbitrary typing contexts, we still +need a tiny bit of work to provide the laws in this special case. Once again, thanks to +our tricky notion of subset context (Ctx/Subset.v), there is no need to cross a +complex isomorphism (between contexts of negative types and contexts of types where +all types are negative). We start by instanciating the substitution structures and +their laws.

+
Notation val_n := (val ∘ neg_c_coe).
+Notation state_n := (state ∘ neg_c_coe).
+
+#[global] Instance val_n_monoid : subst_monoid val_n .
+  esplit.
+  - intros Γ x i; exact (var i).
+  - intros Γ x v Δ f; exact (v ᵥ⊛ f).
+Defined.
+
+#[global] Instance state_n_module : subst_module val_n state_n .
+  esplit; intros Γ s Δ f; exact (s ₜ⊛ (f : Γ =[val]> Δ)).
+Defined.
+
+#[global] Instance val_n_laws : subst_monoid_laws val_n .
+  esplit.
+  - intros ???? <- ????; now apply v_sub_eq.
+  - intros ?????; now apply v_sub_id_r.
+  - intros ???; now apply v_sub_id_l.
+  - intros ???????; symmetry; now apply v_sub_sub.
+Qed.
+
+#[global] Instance state_n_laws : subst_module_laws val_n state_n .
+  esplit.
+  - intros ??? <- ????; now apply s_sub_eq.
+  - intros ??; now apply s_sub_id_l.
+  - intros ??????; symmetry; now apply s_sub_sub.
+Qed.

Variable assumptions, that is, lemmata related to decidability of a value being a variable +are easily proven inline.

+
#[global] Instance var_laws : var_assumptions val_n.
+  esplit.
+  - intros ? [[]|[]] ?? H; now dependent destruction H.
+  - intros ? [[]|[]] v; dependent elimination v.
+    10,13: dependent elimination w.
+    all: try exact (Yes _ (Vvar _)).
+    all: apply No; intro H; dependent destruction H.
+  - intros ?? [[]|[]] ???; cbn in v; dependent induction v.
+    all: try now dependent destruction X; exact (Vvar _).
+    all: dependent induction w; dependent destruction X; exact (Vvar _).
+Qed.

And we conclude the easy part by instanciating the relevant part of the language +machine.

+
#[global] Instance sysd_machine : machine val_n state_n obs_op :=
+  {| Machine.eval := @eval ; oapp := @p_app |} .

It now suffices to prove the remaining assumptions on the language machine: that +evaluation respects substitution and that the 'bad-instanciation' relation has finite +chains. For this we pull in some tooling for coinductive reasoning.

+
From Coinduction Require Import coinduction lattice rel tactics.
+
+Ltac refold_eval :=
+  change (Structure.iter _ _ ?a) with (eval a);
+  change (Structure.subst (fun pat : T1 => let 'T1_0 := pat in ?f) T1_0 ?u)
+    with (bind_delay' u f).

Let's go.

+
#[global] Instance machine_law : machine_laws val_n state_n obs_op.

First we have easy lemmata on observation application.

+
  esplit.
+  - intros; apply p_app_eq.
+  - intros ?? [[]|[]] ????; cbn.
+    1,4: change (?a `ₜ⊛ ?b) with (a ᵥ⊛ b); now rewrite (w_sub_sub _ _ _ _).
+    all: change (?a `ᵥ⊛ ?b) with (a ᵥ⊛ b) at 1; now rewrite (w_sub_sub _ _ _ _).

Next we prove the core argument of OGS soundness: evaluating a substitution is like +evaluating the configuration, substituting the result and evaluating again. +While tedious the proof is basically direct, going by induction on the structure of +one-step evaluation.

+
  - cbn; intros Γ Δ; unfold comp_eq, it_eq; coinduction R CIH; intros c a.
+    cbn; funelim (eval_aux c); try now destruct (s_prf i).
+    + cbn; econstructor; refold_eval.
+      change (?t `ₜ⊛ ?a) with (upg_kp t ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?t `ᵥ⊛ ?a) with (upg_vp t ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (RecL (?t `ₜ⊛ a_shift1 ?a)) with (upg_kp (RecL t) ᵥ⊛ a); rewrite t_sub1_sub.
+      apply CIH.
+    + change (it_eqF _ ?RX ?RY _ _ _) with
+        (it_eq_map ∅ₑ RX RY T1_0
+           (eval (Cut _ (Whn (v `ᵥ⊛ a)) (a `- A i)))
+           (eval (Cut _
+              (Whn ((w_of_p (p_of_w_0p A v) `ᵥ⊛ nf_args (s_var_upg i ⋅ v_split_p v)) `ᵥ⊛ a))
+              (var (s_var_upg i) `ₜ⊛ a)))).
+      unfold nf_args, v_split_p, cut_r, fill_args.
+      now rewrite (refold_id_aux A v).
+    + cbn; econstructor; refold_eval; apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_vp v ᵥ⊛ a); rewrite s_sub2_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_vp v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_vp v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ₜ⊛ ?a) with (upg_vn v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_kn v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ₜ⊛ ?a) with (upg_vn v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_kn v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (RecR (?t `ₜ⊛ a_shift1 ?a)) with (upg_vn (RecR t) ᵥ⊛ a); rewrite t_sub1_sub.
+      apply CIH.
+    + change (it_eqF _ ?RX ?RY _ _ _) with
+        (it_eq_map ∅ₑ RX RY T1_0
+           (eval (Cut _ (a `+ A i) (Whn (k `ᵥ⊛ a))))
+           (eval (Cut _
+              (var (s_var_upg i) `ₜ⊛ a)
+              (Whn ((w_of_p (p_of_w_0n A k) `ᵥ⊛ nf_args (s_var_upg i ⋅ v_split_n k))
+                      `ᵥ⊛ a))))).
+      unfold nf_args, v_split_n, cut_r, fill_args.
+      now rewrite (refold_id_aux A k).
+    + cbn; econstructor; refold_eval; apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_kn v ᵥ⊛ a); rewrite s_sub2_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_kn v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_kn v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ₜ⊛ ?a) with (upg_kp v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_vp v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.

Next we prove that evaluating a normal form is just returning this normal form. This +goes by approximately induction on observations.

+
  - cbn; intros ? [ A i [ o γ ]]; cbn; unfold p_app, nf_args, cut_r, fill_args.
+    cbn in o; funelim (w_of_p o); simpl_depind; inversion eqargs.
+    all: match goal with
+         | H : _ = ?A† |- _ => destruct A; dependent destruction H
+         end.
+    1-2: unfold c_var in i; destruct (s_prf i).
+    all: dependent destruction eqargs; cbn.
+    all: apply it_eq_unstep; cbn -[w_of_p]; econstructor.
+    1-2: now econstructor.
+    all: match goal with
+         | γ : dom ?p =[val_n]> _ |- _ => first [ exact (nf_eq_split_p _ p γ)
+                                              | exact (nf_eq_split_n _ p γ) ]
+         end.

Finally we prove the finite chain property. The proof here is quite tedious again, with +numerous cases, but it is still by brutally walking through the structure of one-step +evaluation and finding the needed redex.

+
  - intros A; econstructor; intros [ B m ] H; dependent elimination H;
+      cbn [projT1 projT2] in i, i0.
+    destruct y as [ [] | [] ].
+    all: dependent elimination v; try now destruct (t0 (Vvar _)).
+    all: clear t0.
+    all: dependent elimination o; cbn in i0.
+    all: match goal with
+         | u : dom _ =[val_n]> _ |- _ =>
+             cbn in i0;
+             pose (vv := u _ Ctx.top); change (u _ Ctx.top) with vv in i0;
+             remember vv as v'; clear u vv Heqv'; cbn in v'
+         | _ => idtac
+       end.
+    7-18,25-36: apply it_eq_step in i0; now inversion i0.
+    1-9,19-24: match goal with
+       | t : term _ _ |- _ =>
+           dependent elimination t;
+           [ apply it_eq_step in i0; now inversion i0
+           | apply it_eq_step in i0; now inversion i0
+           | ]
+       | _ => idtac
+         end.
+    all: 
+      match goal with
+      | t : evalₒ (Cut _ (Whn ?w) _) ≊ _ |- _ =>
+          dependent elimination w;
+          [ | apply it_eq_step in i0; now inversion i0 ]
+      | t : evalₒ (Cut _ _ (Whn ?w)) ≊ _ |- _ =>
+          dependent elimination w;
+          [ | apply it_eq_step in i0; now inversion i0 ]
+      | _ => idtac
+      end.
+    all:
+      apply it_eq_step in i0; cbn in i0; dependent elimination i0; cbn in r_rel;
+      apply noConfusion_inv in r_rel; unfold v_split_n,v_split_p in r_rel;
+      cbn in r_rel; unfold NoConfusionHom_f_cut,s_var_upg in r_rel; cbn in r_rel;
+      pose proof (H := f_equal pr1 r_rel); cbn in H; dependent destruction H;
+      apply DepElim.pr2_uip in r_rel;
+      pose proof (H := f_equal pr1 r_rel); cbn in H; dependent destruction H;
+      apply DepElim.pr2_uip in r_rel; dependent destruction r_rel.
+    all:
+      econstructor; intros [ t o ] H; cbn in t,o; dependent elimination H;
+      dependent elimination v;
+      [ apply it_eq_step in i0; cbn in i0; now inversion i0
+      | apply it_eq_step in i0; cbn in i0; now inversion i0 
+      | ].
+    all:
+      match goal with
+      | H : is_var (Whn ?w) -> _ |- _ =>
+          dependent elimination w;
+          try now destruct (H (Vvar _))
+      end.
+    all: apply it_eq_step in i0; cbn in i0; dependent elimination i0.
+Qed.
+
+

Final theorem

+

We have finished instanciating our generic OGS construction on the System D calculus. For +good measure we give here the concrete instanciation of the soundness theorem, stating +that bisimilarity of the OGS strategies substitution equivalence.

+
Definition subst_eq (Δ : neg_ctx) {Γ} : relation (state Γ) :=
+  fun u v => forall (σ : Γ =[val]> Δ), evalₒ (u ₜ⊛ σ : state_n Δ) ≈ evalₒ (v ₜ⊛ σ : state_n Δ) .
+Notation "x ≈⟦sub Δ ⟧≈ y" := (subst_eq Δ x y) (at level 50).
+
+Theorem subst_correct (Δ : neg_ctx) {Γ : neg_ctx} (x y : state Γ)
+  : x ≈⟦ogs Δ ⟧≈ y -> x ≈⟦sub Δ ⟧≈ y.
+  exact (ogs_correction _ x y).
+Qed.

Finally it does not cost much to recover the more standard CIU equivalence, which we +derive here for the case of terms (not co-terms).

+
Definition c_of_t {Γ : neg_ctx} {A : pre_ty pos} (t : term Γ `+A)
+           : state_n (Γ ▶ₛ {| sub_elt := `-A ; sub_prf := stt |}) :=
+  Cut _ (t_shift1 _ t) (Whn (Var Ctx.top)) .
+Notation "'name⁺'" := c_of_t.
+
+Definition a_of_sk {Γ Δ : neg_ctx} {A : pre_ty pos} (s : Γ =[val]> Δ) (k : term Δ `-A)
+  : (Γ ▶ₛ {| sub_elt := `-A ; sub_prf := stt |}) =[val_n]> Δ :=
+  [ s ,ₓ k : val Δ `-A ].
+
+Lemma sub_csk {Γ Δ : neg_ctx} {A : pre_ty pos} (t : term Γ `+A) (s : Γ =[val]> Δ)
+  (k : term Δ `-A)
+  : Cut _ (t `ₜ⊛ s) k = c_of_t t ₜ⊛ a_of_sk s k.
+Proof.
+  cbn; f_equal; unfold t_shift1; rewrite t_sub_ren; now apply t_sub_eq.
+Qed.
+
+Definition ciu_eq (Δ : neg_ctx) {Γ} {A : pre_ty pos} : relation (term Γ `+A) :=
+  fun u v =>
+    forall (σ : Γ =[val]> Δ) (k : term Δ `-A),
+      evalₒ (Cut _ (u `ₜ⊛ σ) k : state_n Δ) ≈ evalₒ (Cut _ (v `ₜ⊛ σ) k : state_n Δ) .
+Notation "x ≈⟦ciu Δ ⟧⁺≈ y" := (ciu_eq Δ x y) (at level 50).
+
+Theorem ciu_correct (Δ : neg_ctx) {Γ : neg_ctx} {A} (x y : term Γ `+A)
+  : (name⁺ x) ≈⟦ogs Δ ⟧≈ (name⁺ y) -> x ≈⟦ciu Δ ⟧⁺≈ y.
+  intros H σ k; rewrite 2 sub_csk.
+  now apply subst_correct.
+Qed.
+
+
+ diff --git a/docs/SystemL_CBV.html b/docs/SystemL_CBV.html new file mode 100644 index 0000000..340eed7 --- /dev/null +++ b/docs/SystemL_CBV.html @@ -0,0 +1,1139 @@ + + + + + + +SystemL_CBV.v + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+ + +
From OGS Require Import Prelude.
+From OGS.Utils Require Import Psh Rel.
+From OGS.Ctx Require Import All Ctx Covering Subset Subst.
+From OGS.ITree Require Import Event ITree Eq Delay Structure Properties.
+From OGS.OGS Require Import Soundness.
+Set Equations Transparent.
+
+Inductive pre_ty : Type :=
+| Zer : pre_ty
+| One : pre_ty
+| Prod : pre_ty -> pre_ty -> pre_ty
+| Sum : pre_ty -> pre_ty -> pre_ty
+| Arr : pre_ty -> pre_ty -> pre_ty
+.
Notation "`0" := (Zer) : ty_scope.
+Notation "`1" := (One) : ty_scope.
+Notation "A `× B" := (Prod A B) (at level 40) : ty_scope.
+Notation "A `+ B" := (Sum A B) (at level 40) : ty_scope.
+Notation "A `→ B" := (Arr A B) (at level 40) : ty_scope .
+
+Variant ty : Type :=
+| LTy : pre_ty -> ty
+| RTy : pre_ty -> ty
+.
+Derive NoConfusion for ty.
+Bind Scope ty_scope with ty.
+#[global] Coercion LTy : pre_ty >-> ty.
+#[global] Notation "↑ t" := (LTy t) (at level 5) : ty_scope .
+#[global] Notation "¬ t" := (RTy t) (at level 5) : ty_scope .
+Open Scope ty_scope.
+
+Equations t_neg : ty -> ty :=
+  t_neg ↑a := ¬a ;
+  t_neg ¬a := ↑a .
+Notation "a †" := (t_neg a) (at level 5) : ty_scope.
+
+Definition t_ctx : Type := ctx ty.
+Bind Scope ctx_scope with t_ctx.
+
+Inductive term : t_ctx -> ty -> Type :=
+| Val {Γ A} : whn Γ A -> term Γ ↑A
+| Mu {Γ A} : state (Γ ▶ₓ ¬A) -> term Γ ↑A
+
+| VarR {Γ A} : Γ ∋ ¬A -> term Γ ¬A
+| MuT {Γ A} : state (Γ ▶ₓ ↑A) -> term Γ ¬A
+
+| Boom {Γ} : term Γ ¬`0
+| Case {Γ A B} : state (Γ ▶ₓ ↑A) -> state (Γ ▶ₓ ↑B) -> term Γ ¬(A `+ B)
+
+| Fst {Γ A B} : term Γ ¬A -> term Γ ¬(A `× B)
+| Snd {Γ A B} : term Γ ¬B -> term Γ ¬(A `× B)
+| App {Γ A B} : whn Γ A -> term Γ ¬B -> term Γ ¬(A `→ B)
+
+with whn : t_ctx -> pre_ty -> Type :=
+| VarL {Γ A} : Γ ∋ ↑A -> whn Γ A
+
+| Inl {Γ A B} : whn Γ A -> whn Γ (A `+ B)
+| Inr {Γ A B} : whn Γ B -> whn Γ (A `+ B)
+
+| Tt {Γ} : whn Γ `1
+| Pair {Γ A B} : state (Γ ▶ₓ ¬A) -> state (Γ ▶ₓ ¬B) -> whn Γ (A `× B)
+| Lam {Γ A B} : state (Γ ▶ₓ ↑(A `→ B) ▶ₓ ↑A ▶ₓ ¬B) -> whn Γ (A `→ B)
+
+with state : t_ctx -> Type :=
+| Cut {Γ A} : term Γ ↑A -> term Γ ¬A -> state Γ
+.
+
+Definition Cut' {Γ A} : term Γ A -> term Γ A† -> state Γ
+  := match A with
+     | ↑_ => fun x y => Cut x y
+     | ¬_ => fun x y => Cut y x
+     end .
+
+Equations val : t_ctx -> ty -> Type :=
+  val Γ ↑A := whn Γ A ;
+  val Γ ¬A := term Γ ¬A .
+
+Equations Var Γ A : Γ ∋ A -> val Γ A :=
+  Var _ ↑_ i := VarL i ;
+  Var _ ¬_ i := VarR i .
+Arguments Var {Γ} [A] i.
+
+Equations t_of_v Γ A : val Γ A -> term Γ A :=
+  t_of_v _ ↑_ v := Val v ;
+  t_of_v _ ¬_ k := k .
+Arguments t_of_v [Γ A] v.
+Coercion t_of_v : val >-> term.
+
+Equations t_rename : term ⇒ ⟦ c_var , term ⟧ :=
+  t_rename _ _ (Mu c)     _ f := Mu (s_rename _ c _ (r_shift1 f)) ;
+  t_rename _ _ (Val v)    _ f := Val (w_rename _ _ v _ f) ;
+  t_rename _ _ (VarR i)   _ f := VarR (f _ i) ;
+  t_rename _ _ (MuT c)    _ f := MuT (s_rename _ c _ (r_shift1 f)) ;
+  t_rename _ _ (Boom)     _ f := Boom ;
+  t_rename _ _ (App u k)  _ f := App (w_rename _ _ u _ f) (t_rename _ _ k _ f) ;
+  t_rename _ _ (Fst k)    _ f := Fst (t_rename _ _ k _ f) ;
+  t_rename _ _ (Snd k)    _ f := Snd (t_rename _ _ k _ f) ;
+  t_rename _ _ (Case u v) _ f :=
+    Case (s_rename _ u _ (r_shift1 f))
+         (s_rename _ v _ (r_shift1 f))
+with w_rename : whn ⇒ ⟦ c_var , val ⟧ :=
+  w_rename _ _ (VarL i)   _ f := VarL (f _ i) ;
+  w_rename _ _ (Tt)       _ f := Tt ;
+  w_rename _ _ (Lam u)    _ f := Lam (s_rename _ u _ (r_shift3 f)) ;
+  w_rename _ _ (Pair u v) _ f :=
+    Pair (s_rename _ u _ (r_shift1 f))
+         (s_rename _ v _ (r_shift1 f)) ;
+  w_rename _ _ (Inl u)    _ f := Inl (w_rename _ _ u _ f) ;
+  w_rename _ _ (Inr u)    _ f := Inr (w_rename _ _ u _ f)
+with s_rename : state ⇒ ⟦ c_var , state ⟧ :=
+   s_rename _ (Cut v k) _ f := Cut (t_rename _ _ v _ f) (t_rename _ _ k _ f) .
+
+Equations v_rename : val ⇒ ⟦ c_var , val ⟧ :=
+  v_rename _ ↑_ v _ f := w_rename _ _ v _ f ;
+  v_rename _ ¬_ k _ f := t_rename _ _ k _ f .
+
+Notation "t ₜ⊛ᵣ r" := (t_rename _ _ t _ r%asgn) (at level 14).
+Notation "w `ᵥ⊛ᵣ r" := (w_rename _ _ w _ r%asgn) (at level 14).
+Notation "v ᵥ⊛ᵣ r" := (v_rename _ _ v _ r%asgn) (at level 14).
+Notation "s ₛ⊛ᵣ r" := (s_rename _ s _ r%asgn) (at level 14).
+
+Definition a_ren {Γ1 Γ2 Γ3} : Γ1 =[val]> Γ2 -> Γ2 ⊆ Γ3 -> Γ1 =[val]> Γ3 :=
+  fun f g _ i => v_rename _ _ (f _ i) _ g .
+Arguments a_ren {_ _ _} _ _ _ _ /.
+Notation "a ⊛ᵣ r" := (a_ren a r%asgn) (at level 14) : asgn_scope.
+
+Definition t_shift1 {Γ A} : term Γ  ⇒ᵢ term (Γ ▶ₓ A) := fun _ t => t ₜ⊛ᵣ r_pop.
+Definition w_shift1 {Γ A} : whn Γ   ⇒ᵢ whn (Γ ▶ₓ A)  := fun _ w => w `ᵥ⊛ᵣ r_pop.
+Definition s_shift1 {Γ A} : state Γ -> state (Γ ▶ₓ A) := fun s => s ₛ⊛ᵣ r_pop.
+Definition v_shift1 {Γ A} : val Γ   ⇒ᵢ val (Γ ▶ₓ A)  := fun _ v => v ᵥ⊛ᵣ r_pop.
+Definition v_shift3 {Γ A B C} : val Γ ⇒ᵢ val (Γ ▶ₓ A ▶ₓ B ▶ₓ C)
+  := fun _ v => v ᵥ⊛ᵣ (r_pop ᵣ⊛ r_pop ᵣ⊛ r_pop).
+Definition a_shift1 {Γ Δ} [A] (a : Γ =[val]> Δ) : (Γ ▶ₓ A) =[val]> (Δ ▶ₓ A)
+  := [ fun _ i => v_shift1 _ (a _ i) ,ₓ Var top ].
+Definition a_shift3 {Γ Δ} [A B C] (a : Γ =[val]> Δ)
+  : (Γ ▶ₓ A ▶ₓ B ▶ₓ C) =[val]> (Δ ▶ₓ A ▶ₓ B ▶ₓ C)
+  := [ [ [ fun _ i => v_shift3 _ (a _ i) ,ₓ
+           Var (pop (pop top)) ] ,ₓ
+         Var (pop top) ] ,ₓ
+       Var top ].
+
+Equations t_subst : term ⇒ ⟦ val , term ⟧ :=
+  t_subst _ _ (Mu c)     _ f := Mu (s_subst _ c _ (a_shift1 f)) ;
+  t_subst _ _ (Val v)    _ f := Val (w_subst _ _ v _ f) ;
+  t_subst _ _ (VarR i)   _ f := f _ i ;
+  t_subst _ _ (MuT c)    _ f := MuT (s_subst _ c _ (a_shift1 f)) ;
+  t_subst _ _ (Boom)     _ f := Boom ;
+  t_subst _ _ (App u k)  _ f := App (w_subst _ _ u _ f) (t_subst _ _ k _ f) ;
+  t_subst _ _ (Fst k)    _ f := Fst (t_subst _ _ k _ f) ;
+  t_subst _ _ (Snd k)    _ f := Snd (t_subst _ _ k _ f) ;
+  t_subst _ _ (Case u v) _ f :=
+    Case (s_subst _ u _ (a_shift1 f))
+          (s_subst _ v _ (a_shift1 f))
+with w_subst : forall Γ A, whn Γ A -> forall Δ, Γ =[val]> Δ -> whn Δ A :=
+  w_subst _ _ (VarL i)   _ f := f _ i ;
+  w_subst _ _ (Tt)       _ f := Tt ;
+  w_subst _ _ (Lam u)    _ f := Lam (s_subst _ u _ (a_shift3 f)) ;
+  w_subst _ _ (Pair u v) _ f := Pair (s_subst _ u _ (a_shift1 f))
+                                     (s_subst _ v _ (a_shift1 f)) ;
+  w_subst _ _ (Inl u)    _ f := Inl (w_subst _ _ u _ f) ;
+  w_subst _ _ (Inr u)    _ f := Inr (w_subst _ _ u _ f)
+with s_subst : state ⇒ ⟦ val , state ⟧ :=
+   s_subst _ (Cut v k) _ f := Cut (t_subst _ _ v _ f) (t_subst _ _ k _ f) .
+
+Notation "t `ₜ⊛ a" := (t_subst _ _ t _ a%asgn) (at level 30).
+Notation "w `ᵥ⊛ a" := (w_subst _ _ w _ a%asgn) (at level 30).
+
+Equations v_subst : val ⇒ ⟦ val , val ⟧ :=
+  v_subst _ ↑_ v _ f := v `ᵥ⊛ f ;
+  v_subst _ ¬_ k _ f := k `ₜ⊛ f .
+
+#[global] Instance val_monoid : subst_monoid val :=
+  {| v_var := @Var ; v_sub := v_subst |} .
+#[global] Instance state_module : subst_module val state :=
+  {| c_sub := s_subst |} .
+
+Definition asgn1 {Γ A} (v : val Γ A) : (Γ ▶ₓ A) =[val]> Γ
+  := [ Var ,ₓ v ] .
+Definition asgn3 {Γ A B C} (v1 : val Γ A) (v2 : val Γ B) (v3 : val Γ C)
+  : (Γ ▶ₓ A ▶ₓ B ▶ₓ C) =[val]> Γ
+  := [ [ [ Var ,ₓ v1 ] ,ₓ v2 ] ,ₓ v3 ].
+Arguments asgn1 {_ _} & _.
+Arguments asgn3 {_ _ _ _} & _ _.
+
+Notation "₁[ v ]" := (asgn1 v).
+Notation "₃[ v1 , v2 , v3 ]" := (asgn3 v1 v2 v3).
+
+(*
+Variant forcing0 (Γ : t_ctx) : pre_ty -> Type :=
+| FBoom : forcing0 Γ Zer
+| FApp {a b} : whn Γ a -> term Γ ¬b -> forcing0 Γ (a `→ b)
+| FFst {a b} : term Γ ¬a -> forcing0 Γ (a `× b)
+| FSnd {a b} : term Γ ¬b -> forcing0 Γ (a `× b)
+| FCase {a b} : state (Γ ▶ₓ ↑a) -> state (Γ ▶ₓ ↑b) -> forcing0 Γ (a `+ b)
+.
+Arguments FBoom {Γ}.
+Arguments FApp {Γ a b}.
+Arguments FFst {Γ a b}.
+Arguments FSnd {Γ a b}.
+Arguments FCase {Γ a b}.
+
+Equations f0_subst {Γ Δ} : Γ =[val]> Δ -> forcing0 Γ ⇒ᵢ forcing0 Δ :=
+  f0_subst f a (FBoom)        := FBoom ;
+  f0_subst f a (FApp v k)     := FApp (w_subst f _ v) (t_subst f _ k) ;
+  f0_subst f a (FFst k)       := FFst (t_subst f _ k) ;
+  f0_subst f a (FSnd k)       := FSnd (t_subst f _ k) ;
+  f0_subst f a (FCase s1 s2) := FCase (s_subst (a_shift1 f) s1) (s_subst (a_shift1 f) s2) .
+
+Equations forcing : t_ctx -> ty -> Type :=
+  forcing Γ (t+ a) := whn Γ a ;
+  forcing Γ (t- a) := forcing0 Γ a .
+
+Equations f_subst {Γ Δ} : Γ =[val]> Δ -> forcing Γ ⇒ᵢ forcing Δ :=
+  f_subst s (t+ a) v := w_subst s a v ;
+  f_subst s (t- a) f := f0_subst s a f .
+*)
+
+Equations is_neg_pre : pre_ty -> SProp :=
+  is_neg_pre `0       := sEmpty ;
+  is_neg_pre `1       := sUnit ;
+  is_neg_pre (_ `× _) := sUnit ;
+  is_neg_pre (_ `+ _) := sEmpty ;
+  is_neg_pre (_ `→ _) := sUnit .
+
+Equations is_neg : ty -> SProp :=
+  is_neg ↑a := is_neg_pre a ;
+  is_neg ¬a := sUnit .
+
+Definition neg_ty : Type := sigS is_neg.
+Definition neg_coe : neg_ty -> ty := sub_elt.
+Global Coercion neg_coe : neg_ty >-> ty.
+
+Definition neg_ctx : Type := ctxS ty t_ctx is_neg.
+Definition neg_c_coe : neg_ctx -> ctx ty := sub_elt.
+Global Coercion neg_c_coe : neg_ctx >-> ctx.
+
+Bind Scope ctx_scope with neg_ctx.
+Bind Scope ctx_scope with ctx.
+
+Inductive pat : ty -> Type :=
+| PTt : pat ↑`1
+| PPair {a b} : pat ↑(a `× b)
+| PInl {a b} : pat ↑a -> pat ↑(a `+ b)
+| PInr {a b} : pat ↑b -> pat ↑(a `+ b)
+| PLam {a b} : pat ↑(a `→ b)
+| PFst {a b} : pat ¬(a `× b)
+| PSnd {a b} : pat ¬(a `× b)
+| PApp {a b} : pat ↑a -> pat ¬(a `→ b)
+.
+
+Equations pat_dom {t} : pat t -> neg_ctx :=
+  pat_dom (PInl u) := pat_dom u ;
+  pat_dom (PInr u) := pat_dom u ;
+  pat_dom (PTt) := ∅ₛ ▶ₛ {| sub_elt := ↑`1 ; sub_prf := stt |} ;
+  pat_dom (@PLam a b) := ∅ₛ ▶ₛ {| sub_elt := ↑(a `→ b) ; sub_prf := stt |} ;
+  pat_dom (@PPair a b) := ∅ₛ ▶ₛ {| sub_elt := ↑(a `× b) ; sub_prf := stt |} ;
+  pat_dom (@PApp a b v) := pat_dom v ▶ₛ {| sub_elt := ¬b ; sub_prf := stt |} ;
+  pat_dom (@PFst a b) := ∅ₛ ▶ₛ {| sub_elt := ¬a ; sub_prf := stt |} ;
+  pat_dom (@PSnd a b) := ∅ₛ ▶ₛ {| sub_elt := ¬b ; sub_prf := stt |} .
+
+Definition op_pat : Oper ty neg_ctx :=
+  {| o_op a := pat a ; o_dom _ p := (pat_dom p) |} .
+
+Definition op_copat : Oper ty neg_ctx :=
+  {| o_op a := pat (t_neg a) ; o_dom _ p := (pat_dom p) |} .
+
+Definition bare_copat := op_copat∙ .
+
+Equations v_of_p {A} (p : pat A) : val (pat_dom p) A :=
+  v_of_p (PInl u) := Inl (v_of_p u) ;
+  v_of_p (PInr u) := Inr (v_of_p u) ;
+  v_of_p (PTt) := VarL top ;
+  v_of_p (PLam) := VarL top ;
+  v_of_p (PPair) := VarL top ;
+  v_of_p (PApp v) := App (v_shift1 _ (v_of_p v)) (VarR top) ;
+  v_of_p (PFst) := Fst (VarR top) ;
+  v_of_p (PSnd) := Snd (VarR top) .
+Coercion v_of_p : pat >-> val.
+
+Definition elim_var_zer {A : Type} {Γ : neg_ctx} (i : Γ ∋ ↑ `0) : A
+  := match s_prf i with end .
+Definition elim_var_sum {A : Type} {Γ : neg_ctx} {s t} (i : Γ ∋ ↑ (s `+ t)) : A
+  := match s_prf i with end .
+
+Equations p_of_w {Γ : neg_ctx} a : whn Γ a -> pat ↑a :=
+  p_of_w (`0)     (VarL i) := elim_var_zer i ;
+  p_of_w (a `+ b) (VarL i) := elim_var_sum i ;
+  p_of_w (a `+ b) (Inl v)  := PInl (p_of_w _ v) ;
+  p_of_w (a `+ b) (Inr v)  := PInr (p_of_w _ v) ;
+  p_of_w (`1)     _        := PTt ;
+  p_of_w (a `× b) _        := PPair ;
+  p_of_w (a `→ b) _        := PLam .
+
+Equations p_dom_of_w {Γ : neg_ctx} a (v : whn Γ a) : pat_dom (p_of_w a v) =[val]> Γ :=
+  p_dom_of_w (`0)     (VarL i) := elim_var_zer i ;
+  p_dom_of_w (a `+ b) (VarL i) := elim_var_sum i ;
+  p_dom_of_w (a `+ b) (Inl v)  := p_dom_of_w a v ;
+  p_dom_of_w (a `+ b) (Inr v)  := p_dom_of_w b v ;
+  p_dom_of_w (`1)     v        := [ ! ,ₓ v ] ;
+  p_dom_of_w (a `→ b) v        := [ ! ,ₓ v ] ;
+  p_dom_of_w (a `× b) v        := [ ! ,ₓ v ] .
+
+Program Definition w_split {Γ : neg_ctx} a (v : whn Γ a) : (op_copat # val) Γ ¬a
+  := p_of_w _ v ⦇ p_dom_of_w _ v ⦈ .
+
+Definition L_nf : Fam₀ ty neg_ctx := c_var ∥ₛ (op_copat # val ).
+
+(*
+Definition n_rename {Γ Δ : neg_ctx} : Γ ⊆ Δ -> L_nf Γ -> L_nf Δ
+  := fun r n => r _ (nf_var n) ⋅ nf_obs n ⦇ a_ren r (nf_args n) ⦈.
+*)
+
+(*
+Definition nf0_eq {Γ a} : relation (nf0 Γ a) :=
+  fun a b => exists H : projT1 a = projT1 b, rew H in projT2 a ≡ₐ projT2 b .
+
+Definition nf_eq {Γ} : relation (nf Γ) :=
+  fun a b => exists H : projT1 a = projT1 b,
+      (rew H in fst (projT2 a) = fst (projT2 b)) /\ (nf0_eq (rew H in snd (projT2 a)) (snd (projT2 b))).
+
+#[global] Instance nf0_eq_rfl {Γ t} : Reflexive (@nf0_eq Γ t) .
+  intros [ m a ]; unshelve econstructor; auto.
+Qed.
+
+#[global] Instance nf0_eq_sym {Γ t} : Symmetric (@nf0_eq Γ t) .
+  intros [ m1 a1 ] [ m2 a2 ] [ p q ]; unshelve econstructor; cbn in *.
+  - now symmetry.
+  - revert a1 q ; rewrite p; intros a1 q.
+    now symmetry.
+Qed.
+
+#[global] Instance nf0_eq_tra {Γ t} : Transitive (@nf0_eq Γ t) .
+  intros [ m1 a1 ] [ m2 a2 ] [ m3 a3 ] [ p1 q1 ] [ p2 q2 ]; unshelve econstructor; cbn in *.
+  - now transitivity m2.
+  - transitivity (rew [fun p : pat (t_neg t) => pat_dom p =[ val ]> Γ] p2 in a2); auto.
+    now rewrite <- p2.
+Qed.
+
+#[global] Instance nf_eq_rfl {Γ} : Reflexiveᵢ (fun _ : T1 => @nf_eq Γ) .
+  intros _ [ x [ i n ] ].
+  unshelve econstructor; auto.
+Qed.
+
+#[global] Instance nf_eq_sym {Γ} : Symmetricᵢ (fun _ : T1 => @nf_eq Γ) .
+  intros _ [ x1 [ i1 n1 ] ] [ x2 [ i2 n2 ] ] [ p [ q1 q2 ] ].
+  unshelve econstructor; [ | split ]; cbn in *.
+  - now symmetry.
+  - revert i1 q1; rewrite p; intros i1 q1; now symmetry.
+  - revert n1 q2; rewrite p; intros n1 q2; now symmetry.
+Qed.
+
+#[global] Instance nf_eq_tra {Γ} : Transitiveᵢ (fun _ : T1 => @nf_eq Γ) .
+  intros _ [ x1 [ i1 n1 ] ] [ x2 [ i2 n2 ] ] [ x3 [ i3 n3 ] ] [ p1 [ q1 r1 ] ] [ p2 [ q2 r2 ] ].
+  unshelve econstructor; [ | split ]; cbn in *.
+  - now transitivity x2.
+  - transitivity (rew [has Γ] p2 in i2); auto.
+    now rewrite <- p2.
+  - transitivity (rew [nf0 Γ] p2 in n2); auto.
+    now rewrite <- p2.
+Qed.
+
+Definition comp_eq {Γ} : relation (delay (nf Γ)) :=
+  it_eq (fun _ : T1 => nf_eq) (i := T1_0) .
+Notation "u ≋ v" := (comp_eq u v) (at level 40) .
+
+Definition pat_of_nf : nf ⇒ᵢ pat' :=
+  fun Γ u => (projT1 u ,' (fst (projT2 u) , projT1 (snd (projT2 u)))) .
+*)
+
+Program Definition app_nf {Γ : neg_ctx} {a b} (i : Γ ∋ ↑(a `→ b))
+  (v : whn Γ a) (k : term Γ ¬b) : L_nf Γ
+  := i ⋅ PApp (p_of_w _ v) ⦇ [ p_dom_of_w _ v ,ₓ (k : val _ ¬_) ] ⦈ .
+
+Program Definition fst_nf {Γ : neg_ctx} {a b} (i : Γ ∋ ↑(a `× b))
+  (k : term Γ ¬a) : L_nf Γ
+  := i ⋅ PFst ⦇ [ ! ,ₓ (k : val _ ¬_) ] ⦈ .
+
+Program Definition snd_nf {Γ : neg_ctx} {a b} (i : Γ ∋ ↑(a `× b))
+  (k : term Γ ¬b) : L_nf Γ
+  := i ⋅ PSnd ⦇ [ ! ,ₓ (k : val _ ¬_) ] ⦈ .
+
+Equations eval_aux {Γ : neg_ctx} : state Γ -> (state Γ + L_nf Γ) :=
+  eval_aux (Cut (Mu s)           (k))        := inl (s ₜ⊛ [ k ]) ;
+  eval_aux (Cut (Val v)          (MuT s))    := inl (s ₜ⊛ [ v ]) ;
+
+  eval_aux (Cut (Val v)          (VarR i))   := inr (s_var_upg i ⋅ w_split _ v) ;
+
+  eval_aux (Cut (Val (VarL i))   (Boom))     := elim_var_zer i ;
+  eval_aux (Cut (Val (VarL i))   (Case s t)) := elim_var_sum i ;
+
+  eval_aux (Cut (Val (VarL i))   (App v k))  := inr (app_nf i v k) ;
+  eval_aux (Cut (Val (VarL i))   (Fst k))    := inr (fst_nf i k) ;
+  eval_aux (Cut (Val (VarL i))   (Snd k))    := inr (snd_nf i k) ;
+
+
+  eval_aux (Cut (Val (Lam s))    (App v k))  := inl (s ₜ⊛ [ Lam s , v , k ]) ;
+  eval_aux (Cut (Val (Pair s t)) (Fst k))    := inl (s ₜ⊛ [ k ]) ;
+  eval_aux (Cut (Val (Pair s t)) (Snd k))    := inl (t ₜ⊛ [ k ]) ;
+  eval_aux (Cut (Val (Inl u))    (Case s t)) := inl (s ₜ⊛ [ u ]) ;
+  eval_aux (Cut (Val (Inr u))    (Case s t)) := inl (t ₜ⊛ [ u ]) .
+
+Definition eval {Γ : neg_ctx} : state Γ -> delay (L_nf Γ)
+  := iter_delay (fun c => Ret' (eval_aux c)).
+
+(*
+Definition refold {Γ : neg_ctx} (p : nf Γ)
+  : (Γ ∋ (projT1 p) * val Γ (t_neg (projT1 p)))%type.
+destruct p as [x [i [ p s ]]]; cbn in *.
+exact (i , v_subst s _ (v_of_p p)).
+Defined.
+*)
+
+Definition p_app {Γ A} (v : val Γ A) (m : pat A†) (e : pat_dom m =[val]> Γ) : state Γ
+  := Cut' v (m `ₜ⊛ e) .
+
+(*
+Definition emb {Γ} (m : pat' Γ) : state (Γ +▶ₓ pat_dom' Γ m) .
+  destruct m as [a [i v]]; cbn in *.
+  destruct a.
+  - refine (Cut _ _).
+    + refine (Val (VarL (r_concat_l _ i))).
+    + refine (t_rename r_concat_r _ (v_of_p v)).
+  - refine (Cut _ _).
+    + refine (Val (v_rename r_concat_r _ (v_of_p v))).
+    + refine (VarR (r_concat_l _ i)).
+Defined.
+*)
+
+Scheme term_mut := Induction for term Sort Prop
+  with whn_mut := Induction for whn Sort Prop
+  with state_mut := Induction for state Sort Prop.
+
+Record syn_ind_args (Pt : forall Γ A, term Γ A -> Prop)
+                    (Pv : forall Γ A, whn Γ A -> Prop)
+                    (Ps : forall Γ, state Γ -> Prop) :=
+{
+  ind_s_mu : forall Γ A s, Ps _ s -> Pt Γ ↑A (Mu s) ;
+  ind_s_val : forall Γ A v, Pv _ _ v -> Pt Γ ↑A (Val v) ;
+  ind_s_varn : forall Γ A i, Pt Γ ¬A (VarR i) ;
+  ind_s_mut : forall Γ A s, Ps _ s -> Pt Γ ¬A (MuT s) ;
+  ind_s_zer : forall Γ, Pt Γ ¬`0 Boom ;
+  ind_s_app : forall Γ A B, forall v, Pv _ _ v -> forall k, Pt _ _ k -> Pt Γ ¬(A `→ B) (App v k) ;
+  ind_s_fst : forall Γ A B, forall k, Pt _ _ k -> Pt Γ ¬(A `× B) (Fst k) ;
+  ind_s_snd : forall Γ A B, forall k, Pt _ _ k -> Pt Γ ¬(A `× B) (Snd k) ;
+  ind_s_match : forall Γ A B, forall s, Ps _ s -> forall t, Ps _ t -> Pt Γ ¬(A `+ B) (Case s t) ;
+  ind_s_varp : forall Γ A i, Pv Γ A (VarL i) ;
+  ind_s_inl : forall Γ A B v, Pv _ _ v -> Pv Γ (A `+ B) (Inl v) ;
+  ind_s_inr : forall Γ A B v, Pv _ _ v -> Pv Γ (A `+ B) (Inr v) ;
+  ind_s_onei : forall Γ, Pv Γ `1 Tt ;
+  ind_s_lam : forall Γ A B s, Ps _ s -> Pv Γ (A `→ B) (Lam s) ;
+  ind_s_pair : forall Γ A B, forall s, Ps _ s -> forall t, Ps _ t -> Pv Γ (A `× B) (Pair s t) ;
+  ind_s_cut : forall Γ A, forall u, Pt _ _ u -> forall v, Pt _ _ v -> Ps Γ (@Cut _ A u v)
+} .
+
+Lemma term_ind_mut Pt Pv Ps (arg : syn_ind_args Pt Pv Ps) Γ A u : Pt Γ A u.
+  destruct arg; now apply (term_mut Pt Pv Ps).
+Qed.
+
+Lemma whn_ind_mut Pt Pv Ps (arg : syn_ind_args Pt Pv Ps) Γ A v : Pv Γ A v.
+  destruct arg; now apply (whn_mut Pt Pv Ps).
+Qed.
+
+Lemma state_ind_mut Pt Pv Ps (arg : syn_ind_args Pt Pv Ps) Γ s : Ps Γ s.
+  destruct arg; now apply (state_mut Pt Pv Ps).
+Qed.
+
+Definition t_ren_proper_P Γ A (t : term Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> t ₜ⊛ᵣ f1 = t ₜ⊛ᵣ f2 .
+Definition w_ren_proper_P Γ A (v : whn Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> v `ᵥ⊛ᵣ f1 = v `ᵥ⊛ᵣ f2 .
+Definition s_ren_proper_P Γ (s : state Γ) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> s ₛ⊛ᵣ f1 = s ₛ⊛ᵣ f2 .
+Lemma ren_proper_prf : syn_ind_args t_ren_proper_P w_ren_proper_P s_ren_proper_P.
+  econstructor.
+  all: unfold t_ren_proper_P, w_ren_proper_P, s_ren_proper_P.
+  all: intros; cbn; f_equal; cbn; eauto.
+  all: try now apply H.
+  all: first [ apply H | apply H0 | apply H1 | apply H2 ]; auto.
+  all: first [ apply r_shift1_eq | apply r_shift3_eq ]; auto.
+Qed.
+
+#[global] Instance t_ren_eq {Γ a t Δ} : Proper (asgn_eq _ _ ==> eq) (t_rename Γ a t Δ).
+  intros f1 f2 H1; now apply (term_ind_mut _ _ _ ren_proper_prf).
+Qed.
+
+#[global] Instance w_ren_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (w_rename Γ a v Δ).
+  intros f1 f2 H1; now apply (whn_ind_mut _ _ _ ren_proper_prf).
+Qed.
+
+#[global] Instance s_ren_eq {Γ s Δ} : Proper (asgn_eq _ _ ==> eq) (s_rename Γ s Δ).
+  intros f1 f2 H1; now apply (state_ind_mut _ _ _ ren_proper_prf).
+Qed.
+
+#[global] Instance v_ren_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (v_rename Γ a v Δ).
+  destruct a.
+  now apply w_ren_eq.
+  now apply t_ren_eq.
+Qed.
+
+#[global] Instance a_ren_eq {Γ1 Γ2 Γ3}
+  : Proper (asgn_eq _ _ ==> asgn_eq _ _ ==> asgn_eq _ _) (@a_ren Γ1 Γ2 Γ3).
+  intros r1 r2 H1 a1 a2 H2 ? i; cbn; now rewrite H1, (v_ren_eq _ _ H2).
+Qed.
+
+#[global] Instance a_shift1_eq {Γ Δ A} : Proper (asgn_eq _ _ ==> asgn_eq _ _) (@a_shift1 Γ Δ A).
+  intros ? ? H ? h.
+  dependent elimination h; auto; cbn; now rewrite H.
+Qed.
+
+#[global] Instance a_shift3_eq {Γ Δ A B C}
+  : Proper (asgn_eq _ _ ==> asgn_eq _ _) (@a_shift3 Γ Δ A B C).
+  intros ? ? H ? v.
+  do 3 (dependent elimination v; auto).
+  cbn; now rewrite H.
+Qed.
+
+Definition t_ren_ren_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2) .
+Definition w_ren_ren_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (v `ᵥ⊛ᵣ f1) `ᵥ⊛ᵣ f2 = v `ᵥ⊛ᵣ (f1 ᵣ⊛ f2) .
+Definition s_ren_ren_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (s ₛ⊛ᵣ f1) ₛ⊛ᵣ f2 = s ₛ⊛ᵣ (f1 ᵣ⊛ f2) .
+
+Lemma ren_ren_prf : syn_ind_args t_ren_ren_P w_ren_ren_P s_ren_ren_P.
+  econstructor.
+  all: unfold t_ren_ren_P, w_ren_ren_P, s_ren_ren_P.
+  all: intros; cbn; f_equal; eauto.
+  all: first [ rewrite r_shift1_comp | rewrite r_shift3_comp ]; eauto.
+Qed.
+
+Lemma t_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) A (t : term Γ1 A)
+  : (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2) .
+  now apply (term_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma w_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ᵣ f1) `ᵥ⊛ᵣ f2 = v `ᵥ⊛ᵣ (f1 ᵣ⊛ f2) .
+  now apply (whn_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma s_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1)
+  : (s ₛ⊛ᵣ f1) ₛ⊛ᵣ f2 = s ₛ⊛ᵣ (f1 ᵣ⊛ f2) .
+  now apply (state_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma v_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ᵣ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ᵣ (f1 ᵣ⊛ f2) .
+  destruct A.
+  now apply w_ren_ren.
+  now apply t_ren_ren.
+Qed.
+
+Definition t_ren_id_l_P Γ A (t : term Γ A) : Prop := t ₜ⊛ᵣ r_id = t.
+Definition w_ren_id_l_P Γ A (v : whn Γ A) : Prop := v `ᵥ⊛ᵣ r_id = v.
+Definition s_ren_id_l_P Γ (s : state Γ) : Prop := s ₛ⊛ᵣ r_id  = s.
+
+Lemma ren_id_l_prf : syn_ind_args t_ren_id_l_P w_ren_id_l_P s_ren_id_l_P.
+  econstructor.
+  all: unfold t_ren_id_l_P, w_ren_id_l_P, s_ren_id_l_P.
+  all: intros; cbn; f_equal; eauto.
+  all: first [ rewrite r_shift1_id | rewrite r_shift3_id ]; eauto.
+Qed.
+
+Lemma t_ren_id_l {Γ} A (t : term Γ A) : t ₜ⊛ᵣ r_id = t.
+  now apply (term_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma w_ren_id_l {Γ} A (v : whn Γ A) : v `ᵥ⊛ᵣ r_id = v.
+  now apply (whn_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma s_ren_id_l {Γ} (s : state Γ) : s ₛ⊛ᵣ r_id  = s.
+  now apply (state_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma v_ren_id_l {Γ} A (v : val Γ A) : v ᵥ⊛ᵣ r_id = v.
+  destruct A.
+  now apply w_ren_id_l.
+  now apply t_ren_id_l.
+Qed.
+
+Lemma v_ren_id_r {Γ Δ} (f : Γ ⊆ Δ) A (i : Γ ∋ A) : (Var i) ᵥ⊛ᵣ f = Var (f _ i).
+  now destruct A.
+Qed.
+
+Lemma a_shift1_id {Γ A} : @a_shift1 Γ Γ A Var ≡ₐ Var.
+  intros [ [] | [] ] i; dependent elimination i; auto.
+Qed.
+
+Lemma a_shift3_id {Γ A B C} : @a_shift3 Γ Γ A B C Var ≡ₐ Var.
+  intros ? v; cbn.
+  do 3 (dependent elimination v; cbn; auto).
+  now destruct a.
+Qed.
+
+Arguments Var : simpl never.
+Lemma a_shift1_ren_r {Γ1 Γ2 Γ3 A} (f1 : Γ1 =[ val ]> Γ2) (f2 : Γ2 ⊆ Γ3)
+      : a_shift1 (A:=A) (f1 ⊛ᵣ f2) ≡ₐ a_shift1 f1 ⊛ᵣ r_shift1 f2 .
+  intros ? h; dependent elimination h; cbn.
+  - now rewrite v_ren_id_r.
+  - now unfold v_shift1; rewrite 2 v_ren_ren.
+Qed.
+
+Lemma a_shift3_ren_r {Γ1 Γ2 Γ3 A B C} (f1 : Γ1 =[ val ]> Γ2) (f2 : Γ2 ⊆ Γ3)
+      : a_shift3 (A:=A) (B:=B) (C:=C) (f1 ⊛ᵣ f2) ≡ₐ a_shift3 f1 ⊛ᵣ r_shift3 f2 .
+  intros ? v; do 3 (dependent elimination v; cbn; [ now rewrite v_ren_id_r | ]).
+  unfold v_shift3; now rewrite 2 v_ren_ren.
+Qed.
+
+Lemma a_shift1_ren_l {Γ1 Γ2 Γ3 A} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3)
+  : a_shift1 (A:=A) (f1 ᵣ⊛ f2) ≡ₐ r_shift1 f1 ᵣ⊛ a_shift1 f2 .
+  intros ? i; dependent elimination i; auto.
+Qed.
+
+Lemma a_shift3_ren_l {Γ1 Γ2 Γ3 A B C} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3)
+      : a_shift3 (A:=A) (B:=B) (C:=C) (f1 ᵣ⊛ f2) ≡ₐ r_shift3 f1 ᵣ⊛ a_shift3 f2 .
+  intros ? v; do 3 (dependent elimination v; auto).
+Qed.
+
+Definition t_sub_proper_P Γ A (t : term Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ =[val]> Δ), f1 ≡ₐ f2 -> t `ₜ⊛ f1 = t `ₜ⊛ f2 .
+Definition w_sub_proper_P Γ A (v : whn Γ A) : Prop :=
+  forall Δ (f1 f2 : Γ =[val]> Δ), f1 ≡ₐ f2 -> v `ᵥ⊛ f1 = v `ᵥ⊛ f2 .
+Definition s_sub_proper_P Γ (s : state Γ) : Prop :=
+  forall Δ (f1 f2 : Γ =[val]> Δ), f1 ≡ₐ f2 -> s ₜ⊛ f1 = s ₜ⊛ f2 .
+
+Lemma sub_proper_prf : syn_ind_args t_sub_proper_P w_sub_proper_P s_sub_proper_P.
+  econstructor.
+  all: unfold t_sub_proper_P, w_sub_proper_P, s_sub_proper_P.
+  all: intros; cbn; f_equal.
+  all: first [ apply H | apply H0 | apply H1 | apply H2 ]; auto.
+  all: first [ apply a_shift1_eq | apply a_shift3_eq ]; auto.
+Qed.
+
+#[global] Instance t_sub_eq {Γ a t Δ} : Proper (asgn_eq _ _ ==> eq) (t_subst Γ a t Δ).
+  intros f1 f2 H1; now apply (term_ind_mut _ _ _ sub_proper_prf).
+Qed.
+
+#[global] Instance w_sub_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (w_subst Γ a v Δ).
+  intros f1 f2 H1; now apply (whn_ind_mut _ _ _ sub_proper_prf).
+Qed.
+
+#[global] Instance s_sub_eq {Γ s Δ} : Proper (asgn_eq _ _ ==> eq) (s_subst Γ s Δ).
+  intros f1 f2 H1; now apply (state_ind_mut _ _ _ sub_proper_prf).
+Qed.
+
+#[global] Instance v_sub_eq {Γ a v Δ} : Proper (asgn_eq _ _ ==> eq) (v_subst Γ a v Δ).
+  destruct a.
+  - now apply w_sub_eq.
+  - now apply t_sub_eq.
+Qed.
+
+#[global] Instance a_comp_eq {Γ1 Γ2 Γ3}
+  : Proper (asgn_eq _ _ ==> asgn_eq _ _ ==> asgn_eq _ _) (@a_comp _ _ _ _ _ Γ1 Γ2 Γ3).
+  intros ? ? H1 ? ? H2 ? ?; cbn; rewrite H1; now eapply v_sub_eq.
+Qed.
+
+Definition t_ren_sub_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3),
+    (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+Definition w_ren_sub_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3),
+    (v `ᵥ⊛ f1) `ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+Definition s_ren_sub_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3),
+    (s ₜ⊛ f1) ₛ⊛ᵣ f2 = s ₜ⊛ (f1 ⊛ᵣ f2) .
+Lemma ren_sub_prf : syn_ind_args t_ren_sub_P w_ren_sub_P s_ren_sub_P.
+  econstructor.
+  all: unfold t_ren_sub_P, w_ren_sub_P, s_ren_sub_P.
+  all: intros; cbn; f_equal; auto.
+  all: first [ rewrite a_shift1_ren_r | rewrite a_shift3_ren_r ]; auto.
+Qed.
+
+Lemma t_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) A (t : term Γ1 A)
+  : (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+  now apply (term_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma w_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ f1) `ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+  now apply (whn_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma s_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1)
+  : (s ₜ⊛ f1) ₛ⊛ᵣ f2 = s ₜ⊛ (f1 ⊛ᵣ f2) .
+  now apply (state_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma v_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 ⊆ Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ (f1 ⊛ᵣ f2) .
+  destruct A.
+  - now apply w_ren_sub.
+  - now apply t_ren_sub.
+Qed.
+
+Definition t_sub_ren_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3),
+    (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2).
+Definition w_sub_ren_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3),
+    (v `ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2).
+Definition s_sub_ren_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3),
+    (s ₛ⊛ᵣ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ᵣ⊛ f2).
+
+Lemma sub_ren_prf : syn_ind_args t_sub_ren_P w_sub_ren_P s_sub_ren_P.
+  econstructor.
+  all: unfold t_sub_ren_P, w_sub_ren_P, s_sub_ren_P.
+  all: intros; cbn; f_equal; auto.
+  all: first [ rewrite a_shift1_ren_l | rewrite a_shift3_ren_l ]; auto.
+Qed.
+
+Lemma t_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) A (t : term Γ1 A)
+  : (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2).
+  now apply (term_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma w_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2).
+  now apply (whn_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma s_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) (s : state Γ1)
+  : (s ₛ⊛ᵣ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ᵣ⊛ f2).
+  now apply (state_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma v_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val]> Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ᵣ f1) ᵥ⊛ f2 = v ᵥ⊛ (f1 ᵣ⊛ f2).
+  destruct A.
+  - now apply w_sub_ren.
+  - now apply t_sub_ren.
+Qed.
+
+Lemma v_sub_id_r {Γ Δ} (f : Γ =[val]> Δ) A (i : Γ ∋ A) : Var i ᵥ⊛ f = f A i.
+  now destruct A.
+Qed.
+
+Lemma a_shift1_comp {Γ1 Γ2 Γ3 A} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3)
+  : @a_shift1 _ _ A (f1 ⊛ f2) ≡ₐ a_shift1 f1 ⊛ a_shift1 f2 .
+  intros x i; dependent elimination i; cbn.
+  - now rewrite v_sub_id_r.
+  - now unfold v_shift1; rewrite v_ren_sub, v_sub_ren.
+Qed.
+
+Lemma a_shift3_comp {Γ1 Γ2 Γ3 A B C} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3)
+  : @a_shift3 _ _ A B C (f1 ⊛ f2) ≡ₐ a_shift3 f1 ⊛ a_shift3 f2 .
+  intros ? v; do 3 (dependent elimination v; cbn; [ now rewrite v_sub_id_r | ]).
+  now unfold v_shift3; rewrite v_ren_sub, v_sub_ren.
+Qed.
+
+Definition t_sub_sub_P Γ1 A (t : term Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3),
+    (t `ₜ⊛ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ⊛ f2) .
+Definition w_sub_sub_P Γ1 A (v : whn Γ1 A) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3),
+    (v `ᵥ⊛ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ⊛ f2) .
+Definition s_sub_sub_P Γ1 (s : state Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3),
+    (s ₜ⊛ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ⊛ f2) .
+
+Lemma sub_sub_prf : syn_ind_args t_sub_sub_P w_sub_sub_P s_sub_sub_P.
+  econstructor.
+  all: unfold t_sub_sub_P, w_sub_sub_P, s_sub_sub_P.
+  all: intros; cbn; f_equal; auto.
+  all: first [ rewrite a_shift1_comp | rewrite a_shift3_comp ]; auto.
+Qed.
+
+Lemma t_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) A (t : term Γ1 A)
+  : (t `ₜ⊛ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ⊛ f2) .
+  now apply (term_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma w_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) A (v : whn Γ1 A)
+  : (v `ᵥ⊛ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ⊛ f2) .
+  now apply (whn_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma s_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) (s : state Γ1)
+  : (s ₜ⊛ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ⊛ f2) .
+  now apply (state_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma v_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val]> Γ2) (f2 : Γ2 =[val]> Γ3) A (v : val Γ1 A)
+  : (v ᵥ⊛ f1) ᵥ⊛ f2 = v ᵥ⊛ (f1 ⊛ f2) .
+  destruct A.
+  - now apply w_sub_sub.
+  - now apply t_sub_sub.
+Qed.
+
+Lemma a_comp_assoc {Γ1 Γ2 Γ3 Γ4} (u : Γ1 =[val]> Γ2) (v : Γ2 =[val]> Γ3) (w : Γ3 =[val]> Γ4)
+           : (u ⊛ v) ⊛ w ≡ₐ u ⊛ (v ⊛ w).
+  intros ? i; unfold a_comp; now apply v_sub_sub.
+Qed.
+
+Definition t_sub_id_l_P Γ A (t : term Γ A) : Prop := t `ₜ⊛ Var = t.
+Definition w_sub_id_l_P Γ A (v : whn Γ A) : Prop := v `ᵥ⊛ Var = v.
+Definition s_sub_id_l_P Γ (s : state Γ) : Prop := s ₜ⊛ Var = s.
+
+Lemma sub_id_l_prf : syn_ind_args t_sub_id_l_P w_sub_id_l_P s_sub_id_l_P.
+  econstructor.
+  all: unfold t_sub_id_l_P, w_sub_id_l_P, s_sub_id_l_P.
+  all: intros; cbn; f_equal; auto.
+  all: first [ rewrite a_shift1_id | rewrite a_shift3_id ]; auto.
+Qed.
+
+Lemma t_sub_id_l {Γ} A (t : term Γ A) : t `ₜ⊛ Var = t.
+  now apply (term_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma w_sub_id_l {Γ} A (v : whn Γ A) : v `ᵥ⊛ Var = v.
+  now apply (whn_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma s_sub_id_l {Γ} (s : state Γ) : s ₜ⊛ Var = s.
+  now apply (state_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma v_sub_id_l {Γ} A (v : val Γ A) : v ᵥ⊛ Var = v.
+  destruct A.
+  - now apply w_sub_id_l.
+  - now apply t_sub_id_l.
+Qed.
+
+Lemma sub1_sub {Γ Δ A} (f : Γ =[val]> Δ) (v : val Γ A) :
+  a_shift1 f ⊛ asgn1 (v ᵥ⊛ f) ≡ₐ asgn1 v ⊛ f.
+  intros ? h; dependent elimination h; cbn.
+  - now rewrite v_sub_id_r.
+  - unfold v_shift1; rewrite v_sub_ren, v_sub_id_r.
+    now apply v_sub_id_l.
+Qed.
+
+Lemma sub1_ren {Γ Δ A} (f : Γ ⊆ Δ) (v : val Γ A) :
+  r_shift1 f ᵣ⊛ asgn1 (v ᵥ⊛ᵣ f) ≡ₐ asgn1 v ⊛ᵣ f.
+  intros ? h; dependent elimination h; auto.
+  cbn; now rewrite v_ren_id_r.
+Qed.
+
+Lemma v_sub1_sub {Γ Δ A B} (f : Γ =[val]> Δ) (v : val Γ A) (w : val (Γ ▶ₓ A) B)
+  : (w ᵥ⊛ a_shift1 f) ᵥ⊛ [ v ᵥ⊛ f ] = (w ᵥ⊛ [ v ]) ᵥ⊛ f .
+  cbn; rewrite 2 v_sub_sub.
+  apply v_sub_eq; now rewrite sub1_sub.
+Qed.
+
+Lemma v_sub1_ren {Γ Δ A B} (f : Γ ⊆ Δ) (v : val Γ A) (w : val (Γ ▶ₓ A) B)
+  : (w ᵥ⊛ᵣ r_shift1 f) ᵥ⊛ [ v ᵥ⊛ᵣ f ] = (w ᵥ⊛ [ v ]) ᵥ⊛ᵣ f .
+  cbn; rewrite v_sub_ren, v_ren_sub.
+  apply v_sub_eq; now rewrite sub1_ren.
+Qed.
+
+Lemma s_sub1_sub {Γ Δ A} (f : Γ =[val]> Δ) (v : val Γ A) (s : state (Γ ▶ₓ A))
+  : (s ₜ⊛ a_shift1 f) ₜ⊛ [ v ᵥ⊛ f ] = (s ₜ⊛ [ v ]) ₜ⊛ f .
+  cbn; now rewrite 2 s_sub_sub, sub1_sub.
+Qed.
+
+Lemma s_sub3_sub {Γ Δ A B C} (f : Γ =[val]> Δ) (s : state (Γ ▶ₓ A ▶ₓ B ▶ₓ C)) u v w
+  : (s ₜ⊛ a_shift3 f) ₜ⊛ [ u ᵥ⊛ f , v ᵥ⊛ f , w ᵥ⊛ f ] = (s ₜ⊛ [ u, v , w ]) ₜ⊛ f .
+  cbn; rewrite 2 s_sub_sub; apply s_sub_eq.
+  intros ? v0; cbn.
+  do 3 (dependent elimination v0; cbn; [ now rewrite v_sub_id_r | ]).
+  unfold v_shift3; rewrite v_sub_ren, v_sub_id_r, <- v_sub_id_l.
+  now apply v_sub_eq.
+Qed.
+
+Lemma s_sub1_ren {Γ Δ A} (f : Γ ⊆ Δ) (v : val Γ A) (s : state (Γ ▶ₓ A))
+  : (s ₛ⊛ᵣ r_shift1 f) ₜ⊛ [ v ᵥ⊛ᵣ f ] = (s ₜ⊛ [ v ]) ₛ⊛ᵣ f .
+  cbn; now rewrite s_sub_ren, s_ren_sub, sub1_ren.
+Qed.
+
+Lemma t_sub1_sub {Γ Δ A B} (f : Γ =[val]> Δ) (v : val Γ A) (t : term (Γ ▶ₓ A) B)
+  : (t `ₜ⊛ a_shift1 f) `ₜ⊛ [ v ᵥ⊛ f ] = (t `ₜ⊛ [ v ]) `ₜ⊛ f .
+  cbn; rewrite 2 t_sub_sub.
+  apply t_sub_eq; now rewrite sub1_sub.
+Qed.
+
+Lemma t_sub1_ren {Γ Δ A B} (f : Γ ⊆ Δ) (v : val Γ A) (t : term (Γ ▶ₓ A) B)
+  : (t ₜ⊛ᵣ r_shift1 f) `ₜ⊛ [ v ᵥ⊛ᵣ f ] = (t `ₜ⊛ [ v ]) ₜ⊛ᵣ f .
+  cbn; rewrite t_sub_ren, t_ren_sub.
+  apply t_sub_eq; now rewrite sub1_ren.
+Qed.
+
+#[global] Instance p_app_eq {Γ A} (v : val Γ A) (m : pat (t_neg A))
+  : Proper (asgn_eq _ _ ==> eq) (p_app v m) .
+  intros u1 u2 H; destruct A; cbn.
+  now rewrite (t_sub_eq u1 u2 H).
+  now rewrite (w_sub_eq u1 u2 H).
+Qed.
+
+Lemma refold_id_aux {Γ : neg_ctx} A (v : whn Γ A)
+  : (p_of_w _ v : val _ _) `ᵥ⊛ p_dom_of_w _ v = v .
+  cbn; funelim (p_of_w A v); auto.
+  - destruct (s_prf i).
+  - destruct (s_prf i).
+  - now cbn; f_equal. 
+  - now cbn; f_equal. 
+Qed.
+
+Equations p_of_w_eq {Γ : neg_ctx} A (p : pat ↑A) (e : pat_dom p =[val]> Γ)
+          : p_of_w A ((p : val _ _) `ᵥ⊛ e) = p :=
+  p_of_w_eq (a `+ b) (PInl v) e := f_equal PInl (p_of_w_eq _ v e) ;
+  p_of_w_eq (a `+ b) (PInr v) e := f_equal PInr (p_of_w_eq _ v e) ;
+  p_of_w_eq (`1)     PTt      e := eq_refl ;
+  p_of_w_eq (a `× b) PPair    e := eq_refl ;
+  p_of_w_eq (a `→ b) PLam     e := eq_refl .
+
+Lemma p_dom_of_w_eq {Γ : neg_ctx} A (p : pat ↑A) (e : pat_dom p =[val]> Γ)
+      : rew [fun p => pat_dom p =[ val ]> Γ] p_of_w_eq A p e
+        in p_dom_of_w A ((p : val _ _) `ᵥ⊛ e)
+      ≡ₐ e .
+  funelim (p_of_w_eq A p e); cbn.
+  - intros ? v; repeat (dependent elimination v; auto).
+  - intros ? v; repeat (dependent elimination v; auto).
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    now rewrite (eq_trans Heqxx' (eq_sym (rew_map _ PInl _ _))).
+  - match goal with | |- ?s ≡ₐ e => pose (xx := s); change (_ ≡ₐ e) with (xx ≡ₐ e) end .
+    remember xx as xx'; unfold xx in Heqxx'; clear xx.
+    now rewrite (eq_trans Heqxx' (eq_sym (rew_map _ PInr _ _))).
+  - intros ? v; repeat (dependent elimination v; auto).
+Qed.
+
+Notation val_n := (val ∘ neg_c_coe).
+Notation state_n := (state ∘ neg_c_coe).
+
+#[global] Instance val_n_monoid : subst_monoid val_n .
+  esplit.
+  - intros Γ x i; exact (Var i).
+  - intros Γ x v Δ f; exact (v ᵥ⊛ f).
+Defined.
+
+#[global] Instance state_n_module : subst_module val_n state_n .
+  esplit; intros Γ s Δ f; exact (s ₜ⊛ (f : Γ =[val]> Δ)).
+Defined.
+
+#[global] Instance val_n_laws : subst_monoid_laws val_n .
+  esplit.
+  - intros ???? <- ????; now apply v_sub_eq.
+  - intros ?????; now apply v_sub_id_r.
+  - intros ???; now apply v_sub_id_l.
+  - intros ???????; symmetry; now apply v_sub_sub.
+Qed.
+
+#[global] Instance state_n_laws : subst_module_laws val_n state_n .
+  esplit.
+  - intros ??? <- ????; now apply s_sub_eq.
+  - intros ??; now apply s_sub_id_l.
+  - intros ??????; symmetry; now apply s_sub_sub.
+Qed.
+
+#[global] Instance var_laws : var_assumptions val_n.
+  esplit.
+  - intros ? [] ?? H; now dependent destruction H.
+  - intros ? [] v; dependent elimination v.
+    all: try exact (Yes _ (Vvar _)).
+    all: apply No; intro H; dependent destruction H.
+  - intros ?? [] ???; cbn in v; dependent induction v.
+    all: try now dependent destruction X; exact (Vvar _).
+    all: dependent induction w; dependent destruction X; exact (Vvar _).
+Qed.
+
+#[global] Instance sysl_machine : machine val_n state_n op_copat :=
+  {| Machine.eval := @eval ; oapp := @p_app |} .
+
+From Coinduction Require Import coinduction lattice rel tactics.
+
+Ltac refold_eval :=
+  change (Structure.iter _ _ ?a) with (eval a);
+  change (Structure.subst (fun pat : T1 => let 'T1_0 := pat in ?f) T1_0 ?u)
+    with (bind_delay' u f).
+
+Definition upg_v {Γ} {A : pre_ty} : whn Γ A  -> val Γ ↑A := fun v => v.
+Definition upg_k {Γ} {A : pre_ty} : term Γ ¬A -> val Γ ¬A := fun v => v.
+Definition dwn_v {Γ} {A : pre_ty} : val Γ ↑A -> whn Γ A  := fun v => v.
+Definition dwn_k {Γ} {A : pre_ty} : val Γ ¬A -> term Γ ¬A := fun v => v.
+
+Lemma nf_eq_split {Γ : neg_ctx} {A : pre_ty} (i : Γ ∋ ¬A) (p : pat ↑A) γ
+  : nf_eq (i ⋅ w_split _ (dwn_v ((p : val _ _) `ᵥ⊛ γ)))
+          (i ⋅ (p : o_op op_copat ¬A) ⦇ γ ⦈).
+  unfold w_split, dwn_v; cbn.
+  pose proof (p_dom_of_w_eq A p γ).
+  pose (H' := p_of_w_eq A p γ); fold H' in H.
+  pose (a := p_dom_of_w A (v_of_p p `ᵥ⊛ γ)); fold a in H |- *.
+  remember a as a'; clear a Heqa'.
+  revert a' H; rewrite H'; intros; now econstructor.
+Qed.
+
+#[global] Instance machine_law : machine_laws val_n state_n op_copat.
+  esplit.
+  - intros; apply p_app_eq.
+  - intros ?? [] ????; cbn.
+    now rewrite (t_sub_sub _ _ _ _).
+    now rewrite (w_sub_sub _ _ _ _).
+  - cbn; intros Γ Δ; unfold comp_eq, it_eq; coinduction R CIH; intros c a.
+    cbn; funelim (eval_aux c); try now destruct (s_prf i).
+    + change (it_eqF _ ?RX ?RY _ _ _) with
+        (it_eq_map ∅ₑ RX RY T1_0
+           (eval (Cut (Val (v `ᵥ⊛ a)) (a _ i)))
+           (eval (Cut (Val ((v_of_p (p_of_w _ v) `ᵥ⊛ p_dom_of_w _ v `ᵥ⊛ a))) (a _ i)))).
+      now rewrite (refold_id_aux _ v).
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_v v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_v v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ᵥ⊛ ?a) with (upg_v v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + now change (it_eqF _ ?RX ?RY _ _ _) with
+        (it_eq_map ∅ₑ RX RY T1_0
+           (eval (Cut (a _ i) (Fst k `ₜ⊛ a)))
+           (eval (Cut (a _ i) (Fst k `ₜ⊛ a)))).
+    + cbn; econstructor; refold_eval.
+      change (?v `ₜ⊛ ?a) with (upg_k v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + now change (it_eqF _ ?RX ?RY _ _ _) with
+        (it_eq_map ∅ₑ RX RY T1_0
+           (eval (Cut (a _ i) (Snd k `ₜ⊛ a)))
+           (eval (Cut (a _ i) (Snd k `ₜ⊛ a)))).
+    + cbn; econstructor; refold_eval.
+      change (?v `ₜ⊛ ?a) with (upg_k v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+    + simp eval_aux.
+      unfold p_app, app_nf, nf_var, nf_obs, nf_args, cut_l, cut_r, fill_op, fill_args.
+      change (it_eqF _ ?RX ?RY _ _ _) with
+        (it_eq_map ∅ₑ RX RY T1_0
+           (eval (Cut (a _ i) (App v k `ₜ⊛ a)))
+           (eval (Cut (a _ i) (PApp (p_of_w A7 v) `ₜ⊛ [ p_dom_of_w _ v ,ₓ upg_k k ] `ₜ⊛ a)))).
+      cbn - [ it_eq_map ].
+      rewrite w_sub_ren.
+      change (r_pop ᵣ⊛ (p_dom_of_w _ v ▶ₐ _))%asgn with (p_dom_of_w _ v).
+      now rewrite (refold_id_aux _ v).
+    + cbn; econstructor; refold_eval.
+      change (Lam (s_subst _ _ _ _)) with (upg_v (Lam s) ᵥ⊛ a).
+      change (?v `ₜ⊛ ?a) with (upg_k v ᵥ⊛ a).
+      change (?v `ᵥ⊛ ?a) with (upg_v v ᵥ⊛ a).
+      rewrite s_sub3_sub.
+      apply CIH.
+    + cbn; econstructor; refold_eval.
+      change (?v `ₜ⊛ ?a) with (upg_k v ᵥ⊛ a); rewrite s_sub1_sub.
+      apply CIH.
+  - cbn; intros ? [ A i [ o γ ]]; cbn; unfold p_app, nf_args, cut_r, fill_args.
+    cbn in o; funelim (v_of_p o); simpl_depind; inversion eqargs.
+    all: match goal with
+         | H : _ = ?A† |- _ => destruct A; dependent destruction H
+         end.
+    all: dependent destruction eqargs; cbn.
+    all: apply it_eq_unstep; cbn; unfold Var; cbn; econstructor.
+    1-2,5-7: econstructor; intros ? v; repeat (dependent elimination v; auto).
+    1-2: exact (nf_eq_split _ _ γ).
+    (* a bit of an ugly case because we didn't write proper generic functions
+       for splitting negative values.. hence knowing this one is an App is
+       getting in our way *)
+    clear; unfold app_nf.
+    rewrite w_sub_ren.
+    pose (γ' := (r_pop ᵣ⊛ γ)%asgn);
+      change (sub_elt _) with (pat_dom v : t_ctx) in γ' at 1; cbn in γ'.
+    change (r_pop ᵣ⊛ γ)%asgn with γ'.
+    pose (vv := γ _ Ctx.top); cbn in vv; change (γ _ Ctx.top) with vv.
+    assert (H : [ γ' ,ₓ upg_k vv ] ≡ₐ γ) by now intros ? ii; dependent elimination ii.
+    remember γ' as a; remember vv as t; clear γ' vv Heqa Heqt.
+    pose proof (p_dom_of_w_eq _ v a).
+    pose (H' := p_of_w_eq _ v a); fold H' in H0.
+    pose (aa := p_dom_of_w _ ((v : val _ _) `ᵥ⊛ a)); fold aa in H0 |- *.
+    remember aa as a'; clear aa Heqa'.
+    revert a' H0; rewrite H'; intros; econstructor.
+    etransitivity; [ | exact H ].
+    refine (a_append_eq _ _ _ _ _ _); auto.
+  - intros A; econstructor; intros [ B m ] H; dependent elimination H;
+      cbn [projT1 projT2] in i, i0.
+    destruct y.
+    all: dependent elimination v; try now destruct (t0 (Vvar _)).
+    all: clear t0.
+    all: cbn in o; dependent elimination o; cbn in i0.
+    all: match goal with
+         | u : dom _ =[val_n]> _ |- _ =>
+             cbn in i0;
+             pose (vv := u _ Ctx.top); change (u _ Ctx.top) with vv in i0;
+             remember vv as v'; clear u vv Heqv'; cbn in v'
+         | _ => idtac
+       end.
+    1-10: now apply it_eq_step in i0; inversion i0.
+    all: dependent elimination v'; [ | apply it_eq_step in i0; now inversion i0 ].
+    all:
+      apply it_eq_step in i0; cbn in i0; dependent elimination i0; cbn in r_rel;
+      apply noConfusion_inv in r_rel; unfold w_split in r_rel;
+      cbn in r_rel; unfold NoConfusionHom_f_cut,s_var_upg in r_rel; cbn in r_rel;
+      pose proof (H := f_equal pr1 r_rel); cbn in H; dependent destruction H;
+      apply DepElim.pr2_uip in r_rel;
+      pose proof (H := f_equal pr1 r_rel); cbn in H; dependent destruction H;
+      apply DepElim.pr2_uip in r_rel; dependent destruction r_rel.
+    all:
+      econstructor; intros [ t o ] H; cbn in t,o; dependent elimination H.
+    all: dependent elimination v; try now destruct (t0 (Vvar _)).
+    all: apply it_eq_step in i0; cbn in i0; now inversion i0.
+Qed.
+
+Definition subst_eq (Δ : neg_ctx) {Γ} : relation (state Γ) :=
+  fun u v => forall (σ : Γ =[val]> Δ), evalₒ (u ₜ⊛ σ : state_n Δ) ≈ evalₒ (v ₜ⊛ σ : state_n Δ) .
+Notation "x ≈⟦sub Δ ⟧≈ y" := (subst_eq Δ x y) (at level 50).
+
+Theorem subst_correct (Δ : neg_ctx) {Γ : neg_ctx} (x y : state Γ)
+  : x ≈⟦ogs Δ ⟧≈ y -> x ≈⟦sub Δ ⟧≈ y.
+  exact (ogs_correction _ x y).
+Qed.
+
+Definition c_of_t {Γ : neg_ctx} {A} (t : term Γ ↑A)
+           : state_n (Γ ▶ₛ {| sub_elt := ¬A ; sub_prf := stt |}) :=
+  Cut (t_shift1 _ t) (VarR Ctx.top) .
+Notation "'name⁺'" := c_of_t.
+
+Definition a_of_sk {Γ Δ : neg_ctx} {A} (s : Γ =[val]> Δ) (k : term Δ ¬A)
+  : (Γ ▶ₛ {| sub_elt := ¬A ; sub_prf := stt |}) =[val_n]> Δ :=
+  [ s ,ₓ k : val _ ¬_ ].
+
+Lemma sub_csk {Γ Δ : neg_ctx} {A} (t : term Γ ↑A) (s : Γ =[val]> Δ)
+  (k : term Δ ¬A)
+  : Cut (t `ₜ⊛ s) k = c_of_t t ₜ⊛ a_of_sk s k.
+Proof.
+  cbn; f_equal; unfold t_shift1; rewrite t_sub_ren; now apply t_sub_eq.
+Qed.
+
+Definition ciu_eq (Δ : neg_ctx) {Γ A} : relation (term Γ ↑A) :=
+  fun u v =>
+    forall (σ : Γ =[val]> Δ) (k : term Δ ¬A),
+      evalₒ (Cut (u `ₜ⊛ σ) k : state_n Δ) ≈ evalₒ (Cut (v `ₜ⊛ σ) k : state_n Δ) .
+Notation "x ≈⟦ciu Δ ⟧⁺≈ y" := (ciu_eq Δ x y) (at level 50).
+
+Theorem ciu_correct (Δ : neg_ctx) {Γ : neg_ctx} {A} (x y : term Γ ↑A)
+  : (name⁺ x) ≈⟦ogs Δ ⟧≈ (name⁺ y) -> x ≈⟦ciu Δ ⟧⁺≈ y.
+  intros H σ k; rewrite 2 sub_csk.
+  now apply subst_correct.
+Qed.
+
+
+ diff --git a/docs/ULC_CBV.html b/docs/ULC_CBV.html new file mode 100644 index 0000000..c040d42 --- /dev/null +++ b/docs/ULC_CBV.html @@ -0,0 +1,684 @@ + + + + + + +Un(i)typed Call-by-value Lambda Calculus + + + + + + + + + +
Built with Alectryon, running Coq+SerAPI v8.17.0+0.17.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
+

Un(i)typed Call-by-value Lambda Calculus

+ +

This file follows very closely its sibling CBVTyped.v. It is recommended to read that +one first: the comments on this one will be quite more terse and focus on the differences.

+
+

Syntax

+

As our framework is "well-typed well-scoped", when we mean untyped, we really mean +unityped, i.e., we will take the single element set as set of types. Although, the +typing rules will not be as uninteresting as it would seem. Indeed, as we adopt a +single-sided sequent-calculus style of presentation, we do give types to continuations +(formally negated types), and we thus have not one type, but two: the type of terms + and the type of continuations .

+

Typing contexts, terms, values, evaluation contexts and configurations work +straightforwardly.

+
Variant ty : Type :=
+| Left : ty
+| Right : ty
+.
Notation "⊕" := (Left) (at level 20) : ty_scope .
+Notation "⊖" := (Right) (at level 20) : ty_scope .
+
+
The reference Ctx.ctx was not found in the current +environment.
+
Bind Scope ctx_scope with t_ctx .

Note that is is the proper pure untyped lambda calculus: in constrast with our STLC example, +the lambda is not recursive and there is no unit value nor base type, only functions.

+
Inductive term (Γ : t_ctx) : Type :=
+| Val : val Γ -> term Γ
+| App : term Γ -> term Γ -> term Γ
+with val (Γ : t_ctx) : Type :=
+| Var : Γ ∋ ⊕ -> val Γ
+| Lam : term (Γ ▶ₓ ⊕) -> val Γ
+.
Inductive ev_ctx (Γ : t_ctx) : Type :=
+| K0 : Γ ∋ ⊖ -> ev_ctx Γ
+| K1 : term Γ -> ev_ctx Γ -> ev_ctx Γ
+| K2 : val Γ -> ev_ctx Γ -> ev_ctx Γ
+.
Variant state (Γ : t_ctx) : Type :=
+| Cut : term Γ -> ev_ctx Γ -> state Γ
+.

We introduce the sorted family of generalized values, together with the generalized +variable.

+
Equations val_m : t_ctx -> ty -> Type :=
+  val_m Γ (⊕) := val Γ ;
+  val_m Γ (⊖) := ev_ctx Γ .
+
+Equations a_id {Γ} : Γ =[val_m]> Γ :=
+  a_id (⊕) i := Var i ;
+  a_id (⊖) i := K0 i .
+
+

Substitution and Renaming

+
Equations t_rename {Γ Δ} : Γ ⊆ Δ -> term Γ -> term Δ :=
+  t_rename f (Val v)     := Val (v_rename f v) ;
+  t_rename f (App t1 t2) := App (t_rename f t1) (t_rename f t2) ;
+with v_rename {Γ Δ} : Γ ⊆ Δ -> val Γ -> val Δ :=
+  v_rename f (Var i) := Var (f _ i) ;
+  v_rename f (Lam t) := Lam (t_rename (r_shift1 f) t) .
+
+Equations e_rename {Γ Δ} : Γ ⊆ Δ -> ev_ctx Γ -> ev_ctx Δ :=
+  e_rename f (K0 i)   := K0 (f _ i) ;
+  e_rename f (K1 t π) := K1 (t_rename f t) (e_rename f π) ;
+  e_rename f (K2 v π) := K2 (v_rename f v) (e_rename f π) .
+
+Equations s_rename {Γ Δ} : Γ ⊆ Δ -> state Γ -> state Δ :=
+  s_rename f (Cut t π) := Cut (t_rename f t) (e_rename f π).
+
+Equations m_rename {Γ Δ} : Γ ⊆ Δ -> val_m Γ ⇒ᵢ val_m Δ :=
+  m_rename f (⊕) v := v_rename f v ;
+  m_rename f (⊖) π := e_rename f π .

Renaming an assigment on the left.

+
Definition a_ren {Γ1 Γ2 Γ3} : Γ1 =[val_m]> Γ2 -> Γ2 ⊆ Γ3 -> Γ1 =[val_m]> Γ3 :=
+  fun f g _ i => m_rename g _ (f _ i) .
+Arguments a_ren _ _ _ /.

The following bunch of notations will help us to keep the code readable:

+
Notation "t ₜ⊛ᵣ r" := (t_rename r%asgn t) (at level 14).
+Notation "v ᵥ⊛ᵣ r" := (v_rename r%asgn v) (at level 14).
+Notation "π ₑ⊛ᵣ r" := (e_rename r%asgn π) (at level 14).
+Notation "v ₘ⊛ᵣ r" := (m_rename r%asgn _ v) (at level 14).
+Notation "s ₛ⊛ᵣ r" := (s_rename r%asgn s) (at level 14).
+Notation "a ⊛ᵣ r" := (a_ren a%asgn r%asgn) (at level 14) : asgn_scope.

The weakenings we will need for substitution..

+
Definition t_shift1 {Γ a} := @t_rename Γ (Γ ▶ₓ a) r_pop.
+Definition v_shift1 {Γ a} := @v_rename Γ (Γ ▶ₓ a) r_pop.
+Definition m_shift1 {Γ a} := @m_rename Γ (Γ ▶ₓ a) r_pop.
+Definition a_shift1 {Γ Δ a} (f : Γ =[val_m]> Δ) :=
+  [ a_map f m_shift1 ,ₓ a_id a top ]%asgn .
+

Substitutions

+
Equations t_subst {Γ Δ} : Γ =[val_m]> Δ -> term Γ -> term Δ :=
+  t_subst f (Val v)     := Val (v_subst f v) ;
+  t_subst f (App t1 t2) := App (t_subst f t1) (t_subst f t2) ;
+with v_subst {Γ Δ} : Γ =[val_m]> Δ -> val Γ -> val Δ :=
+  v_subst f (Var i) := f _ i ;
+  v_subst f (Lam t) := Lam (t_subst (a_shift1 f) t) .
+
+Equations e_subst {Γ Δ} : Γ =[val_m]> Δ -> ev_ctx Γ -> ev_ctx Δ :=
+  e_subst f (K0 i)   := f _ i ;
+  e_subst f (K1 t π) := K1 (t_subst f t) (e_subst f π) ;
+  e_subst f (K2 v π) := K2 (v_subst f v) (e_subst f π) .
+
+Notation "t `ₜ⊛ a" := (t_subst a%asgn t) (at level 30).
+Notation "v `ᵥ⊛ a" := (v_subst a%asgn v) (at level 30).
+Notation "π `ₑ⊛ a" := (e_subst a%asgn π) (at level 30).
+
+Equations m_subst : val_m ⇒ ⟦ val_m , val_m ⟧ :=
+  m_subst _ (⊕) v _ f := v `ᵥ⊛ f ;
+  m_subst _ (⊖) π _ f := π `ₑ⊛ f .
+
+Equations s_subst : state ⇒ ⟦ val_m , state ⟧ :=
+  s_subst _ (Cut t π) _ f := Cut (t `ₜ⊛ f) (π `ₑ⊛ f) .

We can now instanciate the substitution monoid and module structures.

+
#[global] Instance val_m_monoid : subst_monoid val_m :=
+  {| v_var := @a_id ; v_sub := m_subst |} .
+#[global] Instance state_module : subst_module val_m state :=
+  {| c_sub := s_subst |} .

Single-variable substitution.

+
Definition assign1 {Γ a} v : (Γ ▶ₓ a) =[val_m]> Γ := a_id ▶ₐ v .
+Definition t_subst1 {Γ a} (t : term _) v := t `ₜ⊛ @assign1 Γ a v.
+Notation "t /[ v ]" := (t_subst1 t v) (at level 50, left associativity).
+
+
+

An Evaluator

+
+

Patterns and Observations

+

As before we define observations (copatterns), as there are only functions and +continuations there is exactly one pattern at each type. Knowing this, we could +have made this type (obs) disappear, but it is kept here for the sake of being +more explicit.

+
Variant obs : ty -> Type :=
+| ORet : obs (⊖)
+| OApp : obs (⊕)
+.

Observation still behave as binders, returning bind a term (what we are returning) and +applying binds a term (the argument) and a continuation.

+
Equations obs_dom {a} : obs a -> t_ctx :=
+  obs_dom (@ORet) := ∅ ▶ₓ ⊕ ;
+  obs_dom (@OApp) := ∅ ▶ₓ ⊕ ▶ₓ ⊖ .
+
+Definition obs_op : Oper ty t_ctx :=
+  {| o_op := obs ; o_dom := @obs_dom |} .
+Notation ORet' := (ORet : o_op obs_op _).
+Notation OApp' := (OApp : o_op obs_op _).

We now define applying an observation with arguments to a value.

+
Equations obs_app {Γ a} (v : val_m Γ a) (p : obs a) (γ : obs_dom p =[val_m]> Γ) : state Γ :=
+  obs_app v (OApp) γ := Cut (Val v) (K2 (γ _ (pop top)) (γ _ top)) ;
+  obs_app π (ORet) γ := Cut (Val (γ _ top)) π .
+
+

Normal forms

+

Normal forms take the exact same form as for ULC: a head variable and an observation on it, +with arguments.

+
Definition nf := c_var ∥ₛ (obs_op # val_m).
+
+

The CBV Machine

+

The evaluator as a state machine.

+
    +
  1. t1 t2 | π t2 | t1 1 π
  2. +
  3. v | x normal
  4. +
  5. v | t 1 π t | v 2 π
  6. +
  7. x | v 2 π normal
  8. +
  9. λx.t | v 2 π t[xv] | π
  10. +
+

Rules 1,3,5 step to a new configuration, while cases 2,4 are stuck on normal +forms.

+
Equations eval_step {Γ : t_ctx} : state Γ -> (state Γ + nf Γ) :=
+  eval_step (Cut (App t1 t2)   (π))      := inl (Cut t2 (K1 t1 π)) ;
+  eval_step (Cut (Val v)       (K0 i))   := inr (i ⋅ ORet' ⦇ ! ▶ₐ v ⦈) ;
+  eval_step (Cut (Val v)       (K1 t π)) := inl (Cut t (K2 v π)) ;
+  eval_step (Cut (Val (Var i)) (K2 v π)) := inr (i ⋅ OApp' ⦇ ! ▶ₐ v ▶ₐ π ⦈) ;
+  eval_step (Cut (Val (Lam t)) (K2 v π)) := inl (Cut (t /[ v ]) π) .
+
+Definition ulc_eval {Γ : t_ctx} : state Γ -> delay (nf Γ)
+  := iter_delay (ret_delay ∘ eval_step).
+
+
+

Properties

+

We now tackle the basic syntactic lemmas on renaming and substitution. See you in 400 lines.

+
Scheme term_mut := Induction for term Sort Prop
+   with val_mut := Induction for val Sort Prop .
+
+Record syn_ind_args (P_t : forall Γ, term Γ -> Prop)
+                    (P_v : forall Γ, val Γ -> Prop)
+                    (P_e : forall Γ, ev_ctx Γ -> Prop) :=
+  {
+    ind_val {Γ} v (_ : P_v Γ v) : P_t Γ (Val v) ;
+    ind_app {Γ} t1 (_ : P_t Γ t1) t2 (_ : P_t Γ t2) : P_t Γ (App t1 t2) ;
+    ind_var {Γ} i : P_v Γ (Var i) ;
+    ind_lam {Γ} t (_ : P_t _ t) : P_v Γ (Lam t) ;
+    ind_kvar {Γ} i : P_e Γ (K0 i) ;
+    ind_kfun {Γ} t (_ : P_t Γ t) π (_ : P_e Γ π) : P_e Γ (K1 t π) ;
+    ind_karg {Γ} v (_ : P_v Γ v) π (_ : P_e Γ π) : P_e Γ (K2 v π)
+  } .
+
+Lemma term_ind_mut P_t P_v P_e (H : syn_ind_args P_t P_v P_e) Γ t : P_t Γ t .
+  destruct H; now apply (term_mut P_t P_v).
+Qed.
+
+Lemma val_ind_mut P_t P_v P_e (H : syn_ind_args P_t P_v P_e) Γ v : P_v Γ v .
+  destruct H; now apply (val_mut P_t P_v).
+Qed.
+
+Lemma ctx_ind_mut P_t P_v P_e (H : syn_ind_args P_t P_v P_e) Γ π : P_e Γ π .
+  induction π.
+  - apply (ind_kvar _ _ _ H).
+  - apply (ind_kfun _ _ _ H); auto; apply (term_ind_mut _ _ _ H).
+  - apply (ind_karg _ _ _ H); auto; apply (val_ind_mut _ _ _ H).
+Qed.

Renaming respects pointwise equality of assignments.

+
Definition t_ren_proper_P Γ (t : term Γ) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> t ₜ⊛ᵣ f1 = t ₜ⊛ᵣ f2 .
+Definition v_ren_proper_P Γ (v : val Γ) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> v ᵥ⊛ᵣ f1 = v ᵥ⊛ᵣ f2 .
+Definition e_ren_proper_P Γ (π : ev_ctx Γ) : Prop :=
+  forall Δ (f1 f2 : Γ ⊆ Δ), f1 ≡ₐ f2 -> π ₑ⊛ᵣ f1 = π ₑ⊛ᵣ f2 .
+Lemma ren_proper_prf : syn_ind_args t_ren_proper_P v_ren_proper_P e_ren_proper_P.
+  econstructor.
+  all: unfold t_ren_proper_P, v_ren_proper_P, e_ren_proper_P.
+  all: intros; cbn; f_equal; auto.
+  all: apply H.
+  now apply r_shift1_eq.
+Qed.
+
+#[global] Instance t_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@t_rename Γ Δ).
+  intros f1 f2 H1 x y ->; now apply (term_ind_mut _ _ _ ren_proper_prf).
+Qed.
+#[global] Instance v_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@v_rename Γ Δ).
+  intros f1 f2 H1 x y ->; now apply (val_ind_mut _ _ _ ren_proper_prf).
+Qed.
+#[global] Instance e_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@e_rename Γ Δ).
+  intros f1 f2 H1 x y ->; now apply (ctx_ind_mut _ _ _ ren_proper_prf).
+Qed.
+#[global] Instance m_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> forall_relation (fun a => eq ==> eq)) (@m_rename Γ Δ).
+  intros ? ? H1 [] _ ? ->; cbn in *; now rewrite H1.
+Qed.
+#[global] Instance s_ren_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@s_rename Γ Δ).
+  intros ? ? H1 _ x ->; destruct x; cbn; now rewrite H1.
+Qed.
+#[global] Instance a_ren_eq {Γ1 Γ2 Γ3}
+  : Proper (asgn_eq _ _ ==> asgn_eq _ _ ==> asgn_eq _ _) (@a_ren Γ1 Γ2 Γ3).
+  intros ?? H1 ?? H2 ??; apply (m_ren_eq _ _ H2), H1.
+Qed.
+#[global] Instance a_shift_eq {Γ Δ x} : Proper (asgn_eq _ _ ==> asgn_eq _ _) (@a_shift1 Γ Δ x).
+  intros ? ? H ? h; dependent elimination h; cbn; auto.
+  now rewrite H.
+Qed.

Renaming-renaming assocativity.

+
Definition t_ren_ren_P Γ1 (t : term Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2)  .
+Definition v_ren_ren_P Γ1 (v : val Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (v ᵥ⊛ᵣ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ᵣ (f1 ᵣ⊛ f2)  .
+Definition e_ren_ren_P Γ1 (π : ev_ctx Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3),
+    (π ₑ⊛ᵣ f1) ₑ⊛ᵣ f2 = π ₑ⊛ᵣ (f1 ᵣ⊛ f2)  .
+
+Lemma ren_ren_prf : syn_ind_args t_ren_ren_P v_ren_ren_P e_ren_ren_P .
+  econstructor.
+  all: unfold t_ren_ren_P, v_ren_ren_P, e_ren_ren_P.
+  all: intros; cbn; f_equal; auto.
+  rewrite H; apply t_ren_eq; auto.
+  intros ? h; dependent elimination h; auto.
+Qed.
+
+Lemma t_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) (t : term Γ1)
+  : (t ₜ⊛ᵣ f1) ₜ⊛ᵣ f2 = t ₜ⊛ᵣ (f1 ᵣ⊛ f2)  .
+  now apply (term_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma v_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) (v : val Γ1)
+  : (v ᵥ⊛ᵣ f1) ᵥ⊛ᵣ f2 = v ᵥ⊛ᵣ (f1 ᵣ⊛ f2)  .
+  now apply (val_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma e_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) (π : ev_ctx Γ1)
+  : (π ₑ⊛ᵣ f1) ₑ⊛ᵣ f2 = π ₑ⊛ᵣ (f1 ᵣ⊛ f2)  .
+  now apply (ctx_ind_mut _ _ _ ren_ren_prf).
+Qed.
+Lemma m_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) a (v : val_m Γ1 a)
+  : (v ₘ⊛ᵣ f1) ₘ⊛ᵣ f2 = v ₘ⊛ᵣ (f1 ᵣ⊛ f2)  .
+  destruct a; [ now apply v_ren_ren | now apply e_ren_ren ].
+Qed.
+Lemma s_ren_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1)
+  : (s ₛ⊛ᵣ f1) ₛ⊛ᵣ f2 = s ₛ⊛ᵣ (f1 ᵣ⊛ f2)  .
+  destruct s; apply (f_equal2 Cut); [ now apply t_ren_ren | now apply e_ren_ren ].
+Qed.

Left identity law of renaming.

+
Definition t_ren_id_l_P Γ (t : term Γ) : Prop := t ₜ⊛ᵣ r_id = t .
+Definition v_ren_id_l_P Γ (v : val Γ) : Prop := v ᵥ⊛ᵣ r_id = v .
+Definition e_ren_id_l_P Γ (π : ev_ctx Γ) : Prop := π ₑ⊛ᵣ r_id = π .
+Lemma ren_id_l_prf : syn_ind_args t_ren_id_l_P v_ren_id_l_P e_ren_id_l_P .
+  econstructor.
+  all: unfold t_ren_id_l_P, v_ren_id_l_P, e_ren_id_l_P.
+  all: intros; cbn; f_equal; auto.
+  rewrite <- H at 2; apply t_ren_eq; auto.
+  intros ? h; dependent elimination h; auto.
+Qed.
+
+Lemma t_ren_id_l {Γ} (t : term Γ) : t ₜ⊛ᵣ r_id = t.
+  now apply (term_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma v_ren_id_l {Γ} (v : val Γ) : v ᵥ⊛ᵣ r_id = v .
+  now apply (val_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma e_ren_id_l {Γ} (π : ev_ctx Γ) : π ₑ⊛ᵣ r_id = π.
+  now apply (ctx_ind_mut _ _ _ ren_id_l_prf).
+Qed.
+Lemma m_ren_id_l {Γ a} (v : val_m Γ a) : v ₘ⊛ᵣ r_id = v .
+  destruct a; [ now apply v_ren_id_l | now apply e_ren_id_l ].
+Qed.
+Lemma s_ren_id_l {Γ} (s : state Γ) : s ₛ⊛ᵣ r_id = s .
+  destruct s; apply (f_equal2 Cut); [ now apply t_ren_id_l | now apply e_ren_id_l ].
+Qed.
+
+Lemma m_ren_id_r {Γ Δ} (f : Γ ⊆ Δ) {a} (i : Γ ∋ a) : a_id _ i ₘ⊛ᵣ f = a_id _ (f _ i) .
+  now destruct a.
+Qed.
+
+Lemma a_ren_id_r {Γ Δ} (f : Γ ⊆ Δ) : a_id ⊛ᵣ f ≡ₐ f ᵣ⊛ a_id .
+  intros ??; now apply m_ren_id_r.
+Qed.
+Lemma a_shift_id {Γ x} : @a_shift1 Γ Γ x a_id ≡ₐ a_id.
+  intros ? v; dependent elimination v; auto.
+  exact (m_ren_id_r _ _).
+Qed.

Lemma 5: shifting assigments commutes with left and right renaming.

+
Lemma a_shift1_s_ren {Γ1 Γ2 Γ3 a} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3)
+  : @a_shift1 _ _ a (f1 ᵣ⊛ f2) ≡ₐ r_shift1 f1 ᵣ⊛ a_shift1 f2 .
+  intros ? v; dependent elimination v; auto.
+Qed.
+Lemma a_shift1_a_ren {Γ1 Γ2 Γ3 a} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3)
+      : @a_shift1 _ _ a (f1 ⊛ᵣ f2) ≡ₐ a_shift1 f1 ⊛ᵣ r_shift1 f2 .
+  intros ? v.
+  dependent elimination v.
+  cbn; now rewrite m_ren_id_r.
+  cbn; unfold m_shift1, r_shift1; now rewrite 2 m_ren_ren.
+Qed.

Lemma 6: substitution respects pointwise equality of assigments.

+
Definition t_sub_proper_P Γ (t : term Γ) : Prop :=
+  forall Δ (f1 f2 : Γ =[val_m]> Δ), f1 ≡ₐ f2 -> t `ₜ⊛ f1 = t `ₜ⊛ f2 .
+Definition v_sub_proper_P Γ (v : val Γ) : Prop :=
+  forall Δ (f1 f2 : Γ =[val_m]> Δ), f1 ≡ₐ f2 -> v `ᵥ⊛ f1 = v `ᵥ⊛ f2 .
+Definition e_sub_proper_P Γ (π : ev_ctx Γ) : Prop :=
+  forall Δ (f1 f2 : Γ =[val_m]> Δ), f1 ≡ₐ f2 -> π `ₑ⊛ f1 = π `ₑ⊛ f2.
+Lemma sub_proper_prf : syn_ind_args t_sub_proper_P v_sub_proper_P e_sub_proper_P.
+  econstructor.
+  all: unfold t_sub_proper_P, v_sub_proper_P, e_sub_proper_P.
+  all: intros; cbn; f_equal; auto.
+  now apply H, a_shift_eq.
+Qed.
+
+#[global] Instance t_sub_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@t_subst Γ Δ).
+  intros ? ? H1 _ ? ->; now apply (term_ind_mut _ _ _ sub_proper_prf).
+Qed.
+#[global] Instance v_sub_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@v_subst Γ Δ).
+  intros ? ? H1 _ ? ->; now apply (val_ind_mut _ _ _ sub_proper_prf).
+Qed.
+#[global] Instance e_sub_eq {Γ Δ}
+  : Proper (asgn_eq _ _ ==> eq ==> eq) (@e_subst Γ Δ).
+  intros ? ? H1 _ ? ->; now apply (ctx_ind_mut _ _ _ sub_proper_prf).
+Qed.
+#[global] Instance m_sub_eq
+  : Proper ( Γ,  _, eq ==>  Δ, asgn_eq Γ Δ ==> eq) m_subst.
+  intros ? [] ?? -> ??? H1; cbn in *; now rewrite H1.
+Qed.
+#[global] Instance s_sub_eq
+  : Proper ( Γ, eq ==>  Δ, asgn_eq Γ Δ ==> eq) s_subst.
+  intros ??[] -> ??? H1; cbn; now rewrite H1.
+Qed.
+(*
+#[global] Instance a_comp_eq {Γ1 Γ2 Γ3} : Proper (ass_eq _ _ ==> ass_eq _ _ ==> ass_eq _ _) (@a_comp Γ1 Γ2 Γ3).
+  intros ? ? H1 ? ? H2 ? ?; unfold a_comp, s_map; now rewrite H1, H2.
+Qed.
+*)

Lemma 7: renaming-substitution "associativity".

+
Definition t_ren_sub_P Γ1 (t : term Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) ,
+    (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+Definition v_ren_sub_P Γ1 (v : val Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) ,
+    (v `ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+Definition e_ren_sub_P Γ1 (π : ev_ctx Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) ,
+    (π `ₑ⊛ f1) ₑ⊛ᵣ f2 = π `ₑ⊛ (f1 ⊛ᵣ f2) .
+Lemma ren_sub_prf : syn_ind_args t_ren_sub_P v_ren_sub_P e_ren_sub_P.
+  econstructor.
+  all: unfold t_ren_sub_P, v_ren_sub_P, e_ren_sub_P.
+  all: intros; cbn; f_equal; auto.
+  change (a_shift1 (fun x => _)) with (a_shift1 (a:=⊕) (f1 ⊛ᵣ f2)); now rewrite a_shift1_a_ren.
+Qed.
+
+Lemma t_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) (t : term Γ1)
+  : (t `ₜ⊛ f1) ₜ⊛ᵣ f2 = t `ₜ⊛ (f1 ⊛ᵣ f2) .
+  now apply (term_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma v_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) (v : val Γ1)
+  : (v `ᵥ⊛ f1) ᵥ⊛ᵣ f2 = v `ᵥ⊛ (f1 ⊛ᵣ f2) .
+  now apply (val_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma e_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) (π : ev_ctx Γ1)
+  : (π `ₑ⊛ f1) ₑ⊛ᵣ f2 = π `ₑ⊛ (f1 ⊛ᵣ f2) .
+  now apply (ctx_ind_mut _ _ _ ren_sub_prf).
+Qed.
+Lemma m_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) a (v : val_m Γ1 a)
+  : (v ᵥ⊛ f1) ₘ⊛ᵣ f2 = v ᵥ⊛ (f1 ⊛ᵣ f2) .
+  destruct a; [ now apply v_ren_sub | now apply e_ren_sub ].
+Qed.
+Lemma s_ren_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 ⊆ Γ3) (s : state Γ1)
+  : (s ₜ⊛ f1) ₛ⊛ᵣ f2 = s ₜ⊛ (f1 ⊛ᵣ f2) .
+  destruct s; cbn; now rewrite t_ren_sub, e_ren_sub.
+Qed.

Lemma 8: substitution-renaming "associativity".

+
Definition t_sub_ren_P Γ1 (t : term Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2) .
+Definition v_sub_ren_P Γ1 (v : val Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  (v ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2) .
+Definition e_sub_ren_P Γ1 (π : ev_ctx Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  (π ₑ⊛ᵣ f1) `ₑ⊛ f2 = π `ₑ⊛ (f1 ᵣ⊛ f2) .
+Lemma sub_ren_prf : syn_ind_args t_sub_ren_P v_sub_ren_P e_sub_ren_P.
+  econstructor.
+  all: unfold t_sub_ren_P, v_sub_ren_P, e_sub_ren_P.
+  all: intros; cbn; f_equal; auto.
+  now rewrite a_shift1_s_ren.
+Qed.
+
+Lemma t_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) (t : term Γ1)
+  : (t ₜ⊛ᵣ f1) `ₜ⊛ f2 = t `ₜ⊛ (f1 ᵣ⊛ f2) .
+  now apply (term_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma v_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) (v : val Γ1)
+  : (v ᵥ⊛ᵣ f1) `ᵥ⊛ f2 = v `ᵥ⊛ (f1 ᵣ⊛ f2) .
+  now apply (val_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma e_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) (π : ev_ctx Γ1)
+  : (π ₑ⊛ᵣ f1) `ₑ⊛ f2 = π `ₑ⊛ (f1 ᵣ⊛ f2) .
+  now apply (ctx_ind_mut _ _ _ sub_ren_prf).
+Qed.
+Lemma m_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) a (v : val_m Γ1 a)
+  : (v ₘ⊛ᵣ f1) ᵥ⊛ f2 = v ᵥ⊛ (f1 ᵣ⊛ f2) .
+  destruct a; [ now apply v_sub_ren | now apply e_sub_ren ].
+Qed.
+Lemma s_sub_ren {Γ1 Γ2 Γ3} (f1 : Γ1 ⊆ Γ2) (f2 : Γ2 =[val_m]> Γ3) (s : state Γ1)
+  : (s ₛ⊛ᵣ f1) ₜ⊛ f2 = s ₜ⊛ (f1 ᵣ⊛ f2) .
+  destruct s; cbn; now rewrite t_sub_ren, e_sub_ren.
+Qed.

Lemma 9: left identity law of substitution.

+
Definition t_sub_id_l_P Γ (t : term Γ) : Prop := t `ₜ⊛ a_id = t .
+Definition v_sub_id_l_P Γ (v : val Γ) : Prop := v `ᵥ⊛ a_id = v .
+Definition e_sub_id_l_P Γ (π : ev_ctx Γ) : Prop := π `ₑ⊛ a_id = π .
+Lemma sub_id_l_prf : syn_ind_args t_sub_id_l_P v_sub_id_l_P e_sub_id_l_P.
+  econstructor.
+  all: unfold t_sub_id_l_P, v_sub_id_l_P, e_sub_id_l_P.
+  all: intros; cbn; f_equal; auto.
+  now rewrite a_shift_id.
+Qed.
+
+Lemma t_sub_id_l {Γ} (t : term Γ) : t `ₜ⊛ a_id = t .
+  now apply (term_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma v_sub_id_l {Γ} (v : val Γ) : v `ᵥ⊛ a_id = v .
+  now apply (val_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma e_sub_id_l {Γ} (π : ev_ctx Γ) : π `ₑ⊛ a_id = π .
+  now apply (ctx_ind_mut _ _ _ sub_id_l_prf).
+Qed.
+Lemma m_sub_id_l {Γ} a (v : val_m Γ a) : v ᵥ⊛ a_id = v .
+  destruct a; [ now apply v_sub_id_l | now apply e_sub_id_l ].
+Qed.
+Lemma s_sub_id_l {Γ} (s : state Γ) : s ₜ⊛ a_id = s .
+  destruct s; cbn; now rewrite t_sub_id_l, e_sub_id_l.
+Qed.

Lemma 9: right identity law of substitution. As for renaming, this one is +mostly by definition.

+
Lemma m_sub_id_r {Γ1 Γ2} {a} (i : Γ1 ∋ a) (f : Γ1 =[val_m]> Γ2) : a_id a i ᵥ⊛ f = f a i.
+  now destruct a.
+Qed.

Lemma 10: shifting assigments respects composition.

+
Lemma a_shift1_comp {Γ1 Γ2 Γ3 a} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) 
+  : @a_shift1 _ _ a (f1 ⊛ f2) ≡ₐ a_shift1 f1 ⊛ a_shift1 f2 .
+  intros ? v; dependent elimination v; cbn.
+  now rewrite m_sub_id_r.
+  unfold m_shift1; now rewrite m_ren_sub, m_sub_ren.
+Qed.

Lemma 11: substitution-substitution associativity, ie composition law.

+
Definition t_sub_sub_P Γ1 (t : term Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  t `ₜ⊛ (f1 ⊛ f2) = (t `ₜ⊛ f1) `ₜ⊛ f2 .
+Definition v_sub_sub_P Γ1 (v : val Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  v `ᵥ⊛ (f1 ⊛ f2) = (v `ᵥ⊛ f1) `ᵥ⊛ f2 .
+Definition e_sub_sub_P Γ1 (π : ev_ctx Γ1) : Prop :=
+  forall Γ2 Γ3 (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) ,
+  π `ₑ⊛ (f1 ⊛ f2) = (π `ₑ⊛ f1) `ₑ⊛ f2 .
+Lemma sub_sub_prf : syn_ind_args t_sub_sub_P v_sub_sub_P e_sub_sub_P.
+  econstructor.
+  all: unfold t_sub_sub_P, v_sub_sub_P, e_sub_sub_P.
+  all: intros; cbn; f_equal; auto.
+  now rewrite a_shift1_comp.
+Qed.
+
+Lemma t_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) (t : term Γ1)
+  : t `ₜ⊛ (f1 ⊛ f2) = (t `ₜ⊛ f1) `ₜ⊛ f2 .
+  now apply (term_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma v_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) (v : val Γ1)
+  : v `ᵥ⊛ (f1 ⊛ f2) = (v `ᵥ⊛ f1) `ᵥ⊛ f2 .
+  now apply (val_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma e_sub_sub {Γ1 Γ2 Γ3} (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) (π : ev_ctx Γ1)
+  : π `ₑ⊛ (f1 ⊛ f2) = (π `ₑ⊛ f1) `ₑ⊛ f2 .
+  now apply (ctx_ind_mut _ _ _ sub_sub_prf).
+Qed.
+Lemma m_sub_sub {Γ1 Γ2 Γ3} a (v : val_m Γ1 a) (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3)
+  : v ᵥ⊛ (f1 ⊛ f2) = (v ᵥ⊛ f1) ᵥ⊛ f2 .
+  destruct a; [ now apply v_sub_sub | now apply e_sub_sub ].
+Qed.
+Lemma s_sub_sub {Γ1 Γ2 Γ3} (s : state Γ1) (f1 : Γ1 =[val_m]> Γ2) (f2 : Γ2 =[val_m]> Γ3) 
+  : s ₜ⊛ (f1 ⊛ f2) = (s ₜ⊛ f1) ₜ⊛ f2 .
+  destruct s; cbn; now rewrite t_sub_sub, e_sub_sub.
+Qed.
+Lemma a_sub1_sub {Γ Δ a} (f : Γ =[val_m]> Δ) (v : val_m Γ a)
+  : a_shift1 f ⊛ assign1 (v ᵥ⊛ f) ≡ₐ (assign1 v) ⊛ f .
+  intros ? i; dependent elimination i; cbn.
+  now rewrite m_sub_id_r.
+  unfold m_shift1; rewrite m_sub_ren, m_sub_id_r; now apply m_sub_id_l.
+Qed.
+Lemma t_sub1_sub {Γ Δ x} (f : Γ =[val_m]> Δ) (t : term (Γ ▶ₓ x)) v
+  : (t `ₜ⊛ a_shift1 f) /[ v ᵥ⊛ f ] = (t /[ v ]) `ₜ⊛ f.
+  unfold t_subst1; now rewrite <- 2 t_sub_sub, a_sub1_sub.
+Qed.
+
+

The Actual Instance

+

We can now instanciate the generic OGS construction.

+
#[global] Instance ulc_val_laws : subst_monoid_laws val_m :=
+  {| v_sub_proper := @m_sub_eq ;
+     v_sub_var := @m_sub_id_r ;
+     v_var_sub := @m_sub_id_l ;
+     Subst.v_sub_sub := @m_sub_sub |} .
+
+#[global] Instance ulc_conf_laws : subst_module_laws val_m state :=
+  {| c_sub_proper := @s_sub_eq ;
+     c_var_sub := @s_sub_id_l ;
+     c_sub_sub := @s_sub_sub |} .
+
+#[global] Instance ulc_var_laws : var_assumptions val_m.
+  econstructor.
+  - intros ? [] ?? H; now dependent destruction H.
+  - intros ? [] []; try now apply Yes; exact (Vvar _).
+    all: apply No; intro H; dependent destruction H.
+  - intros ?? [] v r H; induction v; dependent destruction H; exact (Vvar _).
+Qed.
+
+#[global] Instance ulc_machine : machine val_m state obs_op :=
+  {| eval := @ulc_eval ;
+     oapp := @obs_app |} .
+
+From Coinduction Require Import coinduction lattice rel tactics.
+From OGS.ITree Require Import Eq.
+
+Ltac refold_eval :=
+  change (Structure.iter _ _ ?a) with (ulc_eval a);
+  change (Structure.subst (fun pat : T1 => let 'T1_0 := pat in ?f) T1_0 ?u)
+    with (bind_delay' u f).
+
+#[global] Instance ulc_machine_law : machine_laws val_m state obs_op.
+  econstructor; cbn; intros.
+  - intros ?? H1; dependent elimination o; cbn; repeat (f_equal; auto).
+  - destruct x; dependent elimination o; cbn; f_equal.
+  - revert c a; unfold comp_eq, it_eq; coinduction R CIH; intros c e.
+    cbn; funelim (eval_step c); cbn.
+    + destruct (e (⊖) i); auto.
+      remember (v `ᵥ⊛ e) as v'; clear H v Heqv'.
+      dependent elimination v'; cbn; auto.
+    + econstructor; refold_eval; apply CIH.
+    + remember (e (⊕) i) as vv; clear H i Heqvv.
+      dependent elimination vv; cbn; auto.
+    + econstructor;
+       refold_eval;
+       change (?v `ᵥ⊛ ?a) with ((v : val_m _ (⊕)) ᵥ⊛ a).
+      rewrite t_sub1_sub.
+      apply CIH.
+    + econstructor; refold_eval; apply CIH.
+  - destruct u as [ a i [ p γ ] ]; cbn.
+    dependent elimination p; cbn.
+    all: unfold comp_eq; apply it_eq_unstep; cbn; econstructor.
+    all: econstructor; intros ? v; do 3 (dependent elimination v; auto).
+  - intros [ x p ].
+    destruct x; dependent elimination p; econstructor.
+    * intros [ z p ] H.
+      dependent elimination p; dependent elimination H.
+      all: dependent elimination v; try now destruct (t0 (Vvar _)).
+      all: apply it_eq_step in i0; now inversion i0.
+    * intros [ z p ] H.
+      dependent elimination p; dependent elimination H; cbn in *.
+      dependent elimination v; try now destruct (t0 (Vvar _)).
+      + apply it_eq_step in i0; now inversion i0.
+      + remember (a _ Ctx.top) as vv; clear a Heqvv.
+        dependent elimination vv;
+          apply it_eq_step in i0; cbn in i0; dependent elimination i0.
+        inversion r_rel.
+      + econstructor; intros [ z p ] H.
+        dependent elimination p; dependent elimination H.
+        all: dependent elimination v0; try now destruct (t1 (Vvar _)).
+        all: apply it_eq_step in i2; now inversion i2.
+Qed.
+
+

Concrete soundness theorem

+
Definition subst_eq Δ {Γ} : relation (state Γ) :=
+  fun u v => forall σ : Γ =[val_m]> Δ, evalₒ (u ₜ⊛ σ) ≈ evalₒ (v ₜ⊛ σ) .
+Notation "x ≈⟦sub Δ ⟧≈ y" := (subst_eq Δ x y) (at level 10).
+
+Theorem ulc_subst_correct Δ {Γ} (x y : state Γ)
+  : x ≈⟦ogs Δ⟧≈ y -> x ≈⟦sub Δ⟧≈ y .
+  exact (ogs_correction Δ x y).
+Qed.
+

Recovering CIU-equivalence

+
Definition ciu_eq Δ {Γ} : relation (term Γ) :=
+  fun u v => forall (σ : Γ =[val_m]> Δ) (π : ev_ctx Δ),
+      evalₒ (Cut (u `ₜ⊛ σ) π) ≈ evalₒ (Cut (v `ₜ⊛ σ) π) .
+Notation "x ≈⟦ciu Δ ⟧≈ y" := (ciu_eq Δ x y) (at level 10).
+
+Definition c_init {Γ} (t : term Γ) : state (Γ ▶ₓ ⊖)
+  := Cut (t_shift1 t) (K0 Ctx.top) .
+
+Definition a_of_sk {Γ Δ} (σ : Γ =[val_m]> Δ) (π : ev_ctx Δ)
+  : (Γ ▶ₓ ⊖) =[val_m]> Δ := σ ▶ₐ (π : val_m _ (⊖)) .
+
+Lemma sub_init {Γ Δ} (t : term Γ) (σ : Γ =[val_m]> Δ) (π : ev_ctx Δ)
+  : Cut (t `ₜ⊛ σ) π = c_init t ₜ⊛ a_of_sk σ π  .
+  cbn; unfold t_shift1; now rewrite t_sub_ren.
+Qed.

We can now obtain a correctness theorem with respect to standard +CIU-equivalence by embedding terms into states. Proving that CIU-equivalence +entails our substitution equivalence is left to the reader!

+
Theorem ulc_ciu_correct Δ {Γ} (x y : term Γ)
+  : c_init x ≈⟦ogs Δ⟧≈ c_init y -> x ≈⟦ciu Δ⟧≈ y .
+  intros H σ k; rewrite 2 sub_init.
+  now apply ulc_subst_correct.
+Qed.
+
+
+

Example terms

+

Following a trick by Conor McBride we provide a cool notation for writing terms +without any DeBruijn indices, instead leveraging Coq's binders. For this we need +a bit of infrastructure, for manipulating terms that only have term variables.

+
Equations n_ctx : nat -> t_ctx :=
+  n_ctx O     := ∅ ;
+  n_ctx (S n) := n_ctx n ▶ₓ ⊕ .
+
+Notation var' n := (n_ctx n ∋ ⊕).
+Notation term' n := (term (n_ctx n)).
+
+Equations v_emb (n : nat) : var' (S n) :=
+  v_emb O     := Ctx.top ;
+  v_emb (S n) := pop (v_emb n) .
+
+Equations v_lift {n} : var' n -> var' (S n) :=
+  @v_lift (S _) Ctx.top     := Ctx.top ;
+  @v_lift (S _) (pop i) := pop (v_lift i) .

Here starts the magic.

+
Equations mk_var (m : nat) : forall n, var' (m + S n) :=
+  mk_var O     := v_emb ;
+  mk_var (S m) := v_lift ∘ mk_var m .
+
+Definition mk_lam {m : nat} (f : (forall n, term' (m + S n)) -> term' (S m)) : term' m
+  := Val (Lam (f (Val ∘ Var ∘ mk_var m))).
+Arguments mk_lam {_} & _ .

Now a bit of syntactic sugar.

+
Declare Custom Entry lambda.
+Notation "✨ e ✨" := (e : term' 0) (e custom lambda at level 2).
+Notation "x" := (x _) (in custom lambda at level 0, x ident).
+Notation "( x )" := x (in custom lambda at level 0, x at level 2).
+Notation "x y" := (App x y)
+  (in custom lambda at level 1, left associativity).
+Notation "'λ' x .. y ⇒ U" :=
+  (mk_lam (fun x => .. (mk_lam (fun y => U)) ..))
+  (in custom lambda at level 1, x binder, y binder, U at level 2).

Aren't these beautiful?

+
Definition Delta := ✨ (λ x ⇒ x x) ✨ .
+Definition Omega := ✨ (λ x ⇒ x x) (λ x ⇒ x x) ✨ .
+Definition Upsilon := ✨ λ f ⇒ (λ x ⇒ f (x x)) (λ x ⇒ f (x x)) ✨.
+Definition Theta := ✨ (λ x f ⇒ f (x x f)) (λ x f ⇒ f (x x f)) ✨.

You can check the actual lambda-term they unwrap to +by running eg:

+
Eval cbv in Upsilon.
+
+
+ diff --git a/docs/alectryon.css b/docs/alectryon.css new file mode 100644 index 0000000..e8092db --- /dev/null +++ b/docs/alectryon.css @@ -0,0 +1,713 @@ +@charset "UTF-8"; +/* +Copyright © 2019 Clément Pit-Claudel + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ + +/*******************************/ +/* CSS reset for .alectryon-io */ +/*******************************/ + +.alectryon-io blockquote { + line-height: inherit; +} + +.alectryon-io blockquote:after { + display: none; +} + +.alectryon-io label { + display: inline; + font-size: inherit; + margin: 0; +} + +/* Undo and
, added to improve RSS rendering. */ + +.alectryon-io small.alectryon-output { + font-size: inherit; +} + +.alectryon-io blockquote.alectryon-goal, +.alectryon-io blockquote.alectryon-message { + font-weight: normal; + font-size: inherit; +} + +/***************/ +/* Main styles */ +/***************/ + +.alectryon-coqdoc .doc .code, +.alectryon-coqdoc .doc .comment, +.alectryon-coqdoc .doc .inlinecode, +.alectryon-mref, +.alectryon-block, .alectryon-io, +.alectryon-toggle-label, .alectryon-banner { + font-family: 'Iosevka Slab Web', 'Iosevka Web', 'Iosevka Slab', 'Iosevka', 'Fira Code', monospace; + font-feature-settings: "COQX" 1 /* Coq ligatures */, "XV00" 1 /* Legacy */, "calt" 1 /* Fallback */; + line-height: initial; +} + +.alectryon-io, .alectryon-block, .alectryon-toggle-label, .alectryon-banner { + overflow: visible; + overflow-wrap: break-word; + position: relative; + white-space: pre-wrap; +} + +/* +CoqIDE doesn't turn off the unicode bidirectional algorithm (and PG simply +respects the user's `bidi-display-reordering` setting), so don't turn it off +here either. But beware unexpected results like `Definition test_אב := 0.` + +.alectryon-io span { + direction: ltr; + unicode-bidi: bidi-override; +} + +In any case, make an exception for comments: + +.highlight .c { + direction: embed; + unicode-bidi: initial; +} +*/ + +.alectryon-mref, +.alectryon-mref-marker { + align-self: center; + box-sizing: border-box; + display: inline-block; + font-size: 80%; + font-weight: bold; + line-height: 1; + box-shadow: 0 0 0 1pt black; + padding: 1pt 0.3em; + text-decoration: none; +} + +.alectryon-block .alectryon-mref-marker, +.alectryon-io .alectryon-mref-marker { + user-select: none; + margin: -0.25em 0 -0.25em 0.5em; +} + +.alectryon-inline .alectryon-mref-marker { + margin: -0.25em 0.15em -0.25em 0.625em; /* 625 = 0.5em / 80% */ +} + +.alectryon-mref { + color: inherit; + margin: -0.5em 0.25em; +} + +.alectryon-goal:target .goal-separator .alectryon-mref-marker, +:target > .alectryon-mref-marker { + animation: blink 0.2s step-start 0s 3 normal none; + background-color: #fcaf3e; + position: relative; +} + +@keyframes blink { + 50% { + box-shadow: 0 0 0 3pt #fcaf3e, 0 0 0 4pt black; + z-index: 10; + } +} + +.alectryon-toggle, +.alectryon-io .alectryon-extra-goal-toggle { + display: none; +} + +.alectryon-bubble, +.alectryon-io label, +.alectryon-toggle-label { + cursor: pointer; +} + +.alectryon-toggle-label { + display: block; + font-size: 0.8em; +} + +.alectryon-io .alectryon-input { + padding: 0.1em 0; /* Enlarge the hitbox slightly to fill interline gaps */ +} + +.alectryon-io .alectryon-sentence.alectryon-target .alectryon-input { + /* FIXME if keywords were ‘bolder’ we wouldn't need !important */ + font-weight: bold !important; /* Use !important to avoid a * selector */ +} + +.alectryon-bubble:before, +.alectryon-toggle-label:before, +.alectryon-io label.alectryon-input:after, +.alectryon-io .alectryon-goal > label:before { + border: 1px solid #babdb6; + border-radius: 1em; + box-sizing: border-box; + content: ''; + display: inline-block; + font-weight: bold; + height: 0.25em; + margin-bottom: 0.15em; + vertical-align: middle; + width: 0.75em; +} + +.alectryon-toggle-label:before, +.alectryon-io .alectryon-goal > label:before { + margin-right: 0.25em; +} + +.alectryon-io .alectryon-goal > label:before { + margin-top: 0.125em; +} + +.alectryon-io label.alectryon-input { + padding-right: 1em; /* Prevent line wraps before the checkbox bubble */ +} + +.alectryon-io label.alectryon-input:after { + margin-left: 0.25em; + margin-right: -1em; /* Compensate for the anti-wrapping space */ +} + +.alectryon-failed { + /* Underlines are broken in Chrome (they reset at each element boundary)… */ + /* text-decoration: red wavy underline; */ + /* … but it isn't too noticeable with dots */ + text-decoration: red dotted underline; + text-decoration-skip-ink: none; + /* Chrome prints background images in low resolution, yielding a blurry underline */ + /* background: bottom / 0.3em auto repeat-x url(); */ +} + +/* Wrapping :hover rules in a media query ensures that tapping a Coq sentence + doesn't trigger its :hover state (otherwise, on mobile, tapping a sentence to + hide its output causes it to remain visible (its :hover state gets triggered. + We only do it for the default style though, since other styles don't put the + output over the main text, so showing too much is not an issue. */ +@media (any-hover: hover) { + .alectryon-bubble:hover:before, + .alectryon-toggle-label:hover:before, + .alectryon-io label.alectryon-input:hover:after { + background: #eeeeec; + } + + .alectryon-io label.alectryon-input:hover { + text-decoration: underline dotted #babdb6; + text-shadow: 0 0 1px rgb(46, 52, 54, 0.3); /* #2e3436 + opacity */ + } + + .alectryon-io .alectryon-sentence:hover .alectryon-output { + z-index: 2; /* Place hovered goals above .alectryon-sentence.alectryon-target ones */ + } +} + +.alectryon-toggle:checked + .alectryon-toggle-label:before, +.alectryon-io .alectryon-sentence > .alectryon-toggle:checked + label.alectryon-input:after, +.alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal > label:before { + background-color: #babdb6; + border-color: #babdb6; +} + +/* Disable clicks on sentences when the document-wide toggle is set. */ +.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input { + cursor: unset; + pointer-events: none; +} + +/* Hide individual checkboxes when the document-wide toggle is set. */ +.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input:after { + display: none; +} + +/* .alectryon-output is displayed by toggles, :hover, and .alectryon-target rules */ +.alectryon-io .alectryon-output { + box-sizing: border-box; + display: none; + left: 0; + right: 0; + position: absolute; + padding: 0.25em 0; + overflow: visible; /* Let box-shadows overflow */ + z-index: 1; /* Default to an index lower than that used by :hover */ +} + +@media (any-hover: hover) { /* See note above about this @media query */ + .alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) { + display: block; + } +} + +.alectryon-io .alectryon-sentence.alectryon-target .alectryon-output { + display: block; +} + +/* Indicate active (hovered or targeted) goals with a shadow. */ +.alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-messages, +.alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-messages, +.alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-goals, +.alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-goals { + box-shadow: 0 0 3px gray; +} + +.alectryon-io .alectryon-extra-goals .alectryon-goal .goal-hyps { + display: none; +} + +.alectryon-io .alectryon-extra-goals .alectryon-extra-goal-toggle:not(:checked) + .alectryon-goal label.goal-separator hr { + /* Dashes indicate that the hypotheses are hidden */ + border-top-style: dashed; +} + + +/* Show just a small preview of the other goals; this is undone by the + "extra-goal" toggle and by :hover and .alectryon-target in windowed mode. */ +.alectryon-io .alectryon-extra-goals .alectryon-goal .goal-conclusion { + max-height: 5.2em; + overflow-y: auto; + /* Combining ‘overflow-y: auto’ with ‘display: inline-block’ causes extra space + to be added below the box. ‘vertical-align: middle’ gets rid of it. */ + vertical-align: middle; +} + +.alectryon-io .alectryon-goals, +.alectryon-io .alectryon-messages { + background: #eeeeec; + border: thin solid #d3d7cf; /* Convenient when pre's background is already #EEE */ + display: block; + padding: 0.25em; +} + +.alectryon-message::before { + content: ''; + float: right; + /* etc/svg/square-bubble-xl.svg */ + background: url("data:image/svg+xml,%3Csvg width='14' height='14' viewBox='0 0 3.704 3.704' xmlns='http://www.w3.org/2000/svg'%3E%3Cg fill-rule='evenodd' stroke='%23000' stroke-width='.264'%3E%3Cpath d='M.794.934h2.115M.794 1.463h1.455M.794 1.992h1.852'/%3E%3C/g%3E%3Cpath d='M.132.14v2.646h.794v.661l.926-.661h1.72V.14z' fill='none' stroke='%23000' stroke-width='.265'/%3E%3C/svg%3E") top right no-repeat; + height: 14px; + width: 14px; +} + +.alectryon-toggle:checked + label + .alectryon-container { + width: unset; +} + +/* Show goals when a toggle is set */ +.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input + .alectryon-output, +.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output { + display: block; + position: static; + width: unset; + background: unset; /* Override the backgrounds set in floating in windowed mode */ + padding: 0.25em 0; /* Re-assert so that later :hover rules don't override this padding */ +} + +.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input + .alectryon-output .goal-hyps, +.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output .goal-hyps { + /* Overridden back in windowed style */ + flex-flow: row wrap; + justify-content: flex-start; +} + +.alectryon-toggle:checked + label + .alectryon-container .alectryon-sentence .alectryon-output > div, +.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output > div { + display: block; +} + +.alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal .goal-hyps { + display: flex; +} + +.alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal .goal-conclusion { + max-height: unset; + overflow-y: unset; +} + +.alectryon-toggle:checked + label + .alectryon-container .alectryon-sentence > .alectryon-toggle ~ .alectryon-wsp, +.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-wsp { + display: none; +} + +.alectryon-io .alectryon-messages, +.alectryon-io .alectryon-message, +.alectryon-io .alectryon-goals, +.alectryon-io .alectryon-goal, +.alectryon-io .goal-hyps > span, +.alectryon-io .goal-conclusion { + border-radius: 0.15em; +} + +.alectryon-io .alectryon-goal, +.alectryon-io .alectryon-message { + align-items: center; + background: #d3d7cf; + display: block; + flex-direction: column; + margin: 0.25em; + padding: 0.5em; + position: relative; +} + +.alectryon-io .goal-hyps { + align-content: space-around; + align-items: baseline; + display: flex; + flex-flow: column nowrap; /* re-stated in windowed mode */ + justify-content: space-around; + /* LATER use a ‘gap’ property instead of margins once supported */ + margin: -0.15em -0.25em; /* -0.15em to cancel the item spacing */ + padding-bottom: 0.35em; /* 0.5em-0.15em to cancel the 0.5em of .goal-separator */ +} + +.alectryon-io .goal-hyps > br { + display: none; /* Only for RSS readers */ +} + +.alectryon-io .goal-hyps > span, +.alectryon-io .goal-conclusion { + background: #eeeeec; + display: inline-block; + padding: 0.15em 0.35em; +} + +.alectryon-io .goal-hyps > span { + align-items: baseline; + display: inline-flex; + margin: 0.15em 0.25em; +} + +.alectryon-block var, +.alectryon-inline var, +.alectryon-io .goal-hyps > span > var { + font-weight: 600; + font-style: unset; +} + +.alectryon-io .goal-hyps > span > var { + /* Shrink the list of names, but let it grow as long as space is available. */ + flex-basis: min-content; + flex-grow: 1; +} + +.alectryon-io .goal-hyps > span b { + font-weight: 600; + margin: 0 0 0 0.5em; + white-space: pre; +} + +.alectryon-io .hyp-body, +.alectryon-io .hyp-type { + display: flex; + align-items: baseline; +} + +.alectryon-io .goal-separator { + align-items: center; + display: flex; + flex-direction: row; + height: 1em; /* Fixed height to ignore goal name and markers */ + margin-top: -0.5em; /* Compensated in .goal-hyps when shown */ +} + +.alectryon-io .goal-separator hr { + border: none; + border-top: thin solid #555753; + display: block; + flex-grow: 1; + margin: 0; +} + +.alectryon-io .goal-separator .goal-name { + font-size: 0.75em; + margin-left: 0.5em; +} + +/**********/ +/* Banner */ +/**********/ + +.alectryon-banner { + background: #eeeeec; + border: 1px solid #babcbd; + font-size: 0.75em; + padding: 0.25em; + text-align: center; + margin: 1em 0; +} + +.alectryon-banner a { + cursor: pointer; + text-decoration: underline; +} + +.alectryon-banner kbd { + background: #d3d7cf; + border-radius: 0.15em; + border: 1px solid #babdb6; + box-sizing: border-box; + display: inline-block; + font-family: inherit; + font-size: 0.9em; + height: 1.3em; + line-height: 1.2em; + margin: -0.25em 0; + padding: 0 0.25em; + vertical-align: middle; +} + +/**********/ +/* Toggle */ +/**********/ + +.alectryon-toggle-label { + margin: 1rem 0; +} + +/******************/ +/* Floating style */ +/******************/ + +/* If there's space, display goals to the right of the code, not below it. */ +@media (min-width: 80rem) { + /* Unlike the windowed case, we don't want to move output blocks to the side + when they are both :checked and -targeted, since it gets confusing as + things jump around; hence the commented-output part of the selector, + which would otherwise increase specificity */ + .alectryon-floating .alectryon-sentence.alectryon-target /* > .alectryon-toggle ~ */ .alectryon-output, + .alectryon-floating .alectryon-sentence:hover .alectryon-output { + top: 0; + left: 100%; + right: -100%; + padding: 0 0.5em; + position: absolute; + } + + .alectryon-floating .alectryon-output { + min-height: 100%; + } + + .alectryon-floating .alectryon-sentence:hover .alectryon-output { + background: white; /* Ensure that short goals hide long ones */ + } + + /* This odd margin-bottom property prevents the sticky div from bumping + against the bottom of its container (.alectryon-output). The alternative + would be enlarging .alectryon-output, but that would cause overflows, + enlarging scrollbars and yielding scrolling towards the bottom of the + page. Doing things this way instead makes it possible to restrict + .alectryon-output to a reasonable size (100%, through top = bottom = 0). + See also https://stackoverflow.com/questions/43909940/. */ + /* See note on specificity above */ + .alectryon-floating .alectryon-sentence.alectryon-target /* > .alectryon-toggle ~ */ .alectryon-output > div, + .alectryon-floating .alectryon-sentence:hover .alectryon-output > div { + margin-bottom: -200%; + position: sticky; + top: 0; + } + + .alectryon-floating .alectryon-toggle:checked + label + .alectryon-container .alectryon-sentence .alectryon-output > div, + .alectryon-floating .alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output > div { + margin-bottom: unset; /* Undo the margin */ + } + + /* Float underneath the current fragment + @media (max-width: 80rem) { + .alectryon-floating .alectryon-output { + top: 100%; + } + } */ +} + +/********************/ +/* Multi-pane style */ +/********************/ + +.alectryon-windowed { + border: 0 solid #2e3436; + box-sizing: border-box; +} + +.alectryon-windowed .alectryon-sentence:hover .alectryon-output { + background: white; /* Ensure that short goals hide long ones */ +} + +.alectryon-windowed .alectryon-output { + position: fixed; /* Overwritten by the ‘:checked’ rules */ +} + +/* See note about specificity below */ +.alectryon-windowed .alectryon-sentence:hover .alectryon-output, +.alectryon-windowed .alectryon-sentence.alectryon-target > .alectryon-toggle ~ .alectryon-output { + padding: 0.5em; + overflow-y: auto; /* Windowed contents may need to scroll */ +} + +.alectryon-windowed .alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-messages, +.alectryon-windowed .alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-messages, +.alectryon-windowed .alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-goals, +.alectryon-windowed .alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-goals { + box-shadow: none; /* A shadow is unnecessary here and incompatible with overflow-y set to auto */ +} + +.alectryon-windowed .alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .goal-hyps { + /* Restated to override the :checked style */ + flex-flow: column nowrap; + justify-content: space-around; +} + + +.alectryon-windowed .alectryon-sentence.alectryon-target .alectryon-extra-goals .alectryon-goal .goal-conclusion +/* Like .alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal .goal-conclusion */ { + max-height: unset; + overflow-y: unset; +} + +.alectryon-windowed .alectryon-output > div { + display: flex; /* Put messages after goals */ + flex-direction: column-reverse; +} + +/*********************/ +/* Standalone styles */ +/*********************/ + +.alectryon-standalone { + font-family: 'IBM Plex Serif', 'PT Serif', 'Merriweather', 'DejaVu Serif', serif; + line-height: 1.5; +} + +@media screen and (min-width: 50rem) { + html.alectryon-standalone { + /* Prevent flickering when hovering a block causes scrollbars to appear. */ + margin-left: calc(100vw - 100%); + margin-right: 0; + } +} + +/* Coqdoc */ + +.alectryon-coqdoc .doc .code, +.alectryon-coqdoc .doc .inlinecode, +.alectryon-coqdoc .doc .comment { + display: inline; +} + +.alectryon-coqdoc .doc .comment { + color: #eeeeec; +} + +.alectryon-coqdoc .doc .paragraph { + height: 0.75em; +} + +/* Centered, Floating */ + +.alectryon-standalone .alectryon-centered, +.alectryon-standalone .alectryon-floating { + max-width: 50rem; + margin: auto; +} + +@media (min-width: 80rem) { + .alectryon-standalone .alectryon-floating { + max-width: 80rem; + } + + .alectryon-standalone .alectryon-floating > * { + width: 50%; + margin-left: 0; + } +} + +/* Windowed */ + +.alectryon-standalone .alectryon-windowed { + display: block; + margin: 0; + overflow-y: auto; + position: absolute; + padding: 0 1em; +} + +.alectryon-standalone .alectryon-windowed > * { + /* Override properties of docutils_basic.css */ + margin-left: 0; + max-width: unset; +} + +.alectryon-standalone .alectryon-windowed .alectryon-io { + box-sizing: border-box; + width: 100%; +} + +/* No need to predicate the ‘:hover’ rules below on ‘:not(:checked)’, since ‘left’, + ‘right’, ‘top’, and ‘bottom’ will be inactived by the :checked rules setting + ‘position’ to ‘static’ */ + + +/* Specificity: We want the output to stay inline when hovered while unfolded + (:checked), but we want it to move when it's targeted (i.e. when the user + is browsing goals one by one using the keyboard, in which case we want to + goals to appear in consistent locations). The selectors below ensure + that :hover < :checked < -targeted in terms of specificity. */ +/* LATER: Reimplement this stuff with CSS variables */ +.alectryon-windowed .alectryon-sentence.alectryon-target > .alectryon-toggle ~ .alectryon-output { + position: fixed; +} + +@media screen and (min-width: 60rem) { + .alectryon-standalone .alectryon-windowed { + border-right-width: thin; + bottom: 0; + left: 0; + right: 50%; + top: 0; + } + + .alectryon-standalone .alectryon-windowed .alectryon-sentence:hover .alectryon-output, + .alectryon-standalone .alectryon-windowed .alectryon-sentence.alectryon-target .alectryon-output { + bottom: 0; + left: 50%; + right: 0; + top: 0; + } +} + +@media screen and (max-width: 60rem) { + .alectryon-standalone .alectryon-windowed { + border-bottom-width: 1px; + bottom: 40%; + left: 0; + right: 0; + top: 0; + } + + .alectryon-standalone .alectryon-windowed .alectryon-sentence:hover .alectryon-output, + .alectryon-standalone .alectryon-windowed .alectryon-sentence.alectryon-target .alectryon-output { + bottom: 0; + left: 0; + right: 0; + top: 60%; + } +} diff --git a/docs/alectryon.js b/docs/alectryon.js new file mode 100644 index 0000000..6a469d0 --- /dev/null +++ b/docs/alectryon.js @@ -0,0 +1,172 @@ +var Alectryon; +(function(Alectryon) { + (function (slideshow) { + function anchor(sentence) { return "#" + sentence.id; } + + function current_sentence() { return slideshow.sentences[slideshow.pos]; } + + function unhighlight() { + var sentence = current_sentence(); + if (sentence) sentence.classList.remove("alectryon-target"); + slideshow.pos = -1; + } + + function highlight(sentence) { + sentence.classList.add("alectryon-target"); + } + + function scroll(sentence) { + // Put the top of the current fragment close to the top of the + // screen, but scroll it out of view if showing it requires pushing + // the sentence past half of the screen. If sentence is already in + // a reasonable position, don't move. + var parent = sentence.parentElement; + /* We want to scroll the whole document, so start at root… */ + while (parent && !parent.classList.contains("alectryon-root")) + parent = parent.parentElement; + /* … and work up from there to find a scrollable element. + parent.scrollHeight can be greater than parent.clientHeight + without showing scrollbars, so we add a 10px buffer. */ + while (parent && parent.scrollHeight <= parent.clientHeight + 10) + parent = parent.parentElement; + /* and elements can have their client rect overflow + * the window if their height is unset, so scroll the window + * instead */ + if (parent && (parent.nodeName == "BODY" || parent.nodeName == "HTML")) + parent = null; + + var rect = function(e) { return e.getBoundingClientRect(); }; + var parent_box = parent ? rect(parent) : { y: 0, height: window.innerHeight }, + sentence_y = rect(sentence).y - parent_box.y, + fragment_y = rect(sentence.parentElement).y - parent_box.y; + + // The assertion below sometimes fails for the first element in a block. + // console.assert(sentence_y >= fragment_y); + + if (sentence_y < 0.1 * parent_box.height || + sentence_y > 0.7 * parent_box.height) { + (parent || window).scrollBy( + 0, Math.max(sentence_y - 0.5 * parent_box.height, + fragment_y - 0.1 * parent_box.height)); + } + } + + function highlighted(pos) { + return slideshow.pos == pos; + } + + function navigate(pos, inhibitScroll) { + unhighlight(); + slideshow.pos = Math.min(Math.max(pos, 0), slideshow.sentences.length - 1); + var sentence = current_sentence(); + highlight(sentence); + if (!inhibitScroll) + scroll(sentence); + } + + var keys = { + PAGE_UP: 33, + PAGE_DOWN: 34, + ARROW_UP: 38, + ARROW_DOWN: 40, + h: 72, l: 76, p: 80, n: 78 + }; + + function onkeydown(e) { + e = e || window.event; + if (e.ctrlKey || e.metaKey) { + if (e.keyCode == keys.ARROW_UP) + slideshow.previous(); + else if (e.keyCode == keys.ARROW_DOWN) + slideshow.next(); + else + return; + } else { + // if (e.keyCode == keys.PAGE_UP || e.keyCode == keys.p || e.keyCode == keys.h) + // slideshow.previous(); + // else if (e.keyCode == keys.PAGE_DOWN || e.keyCode == keys.n || e.keyCode == keys.l) + // slideshow.next(); + // else + return; + } + e.preventDefault(); + } + + function start() { + slideshow.navigate(0); + } + + function toggleHighlight(idx) { + if (highlighted(idx)) + unhighlight(); + else + navigate(idx, true); + } + + function handleClick(evt) { + if (evt.ctrlKey || evt.metaKey) { + var sentence = evt.currentTarget; + + // Ensure that the goal is shown on the side, not inline + var checkbox = sentence.getElementsByClassName("alectryon-toggle")[0]; + if (checkbox) + checkbox.checked = false; + + toggleHighlight(sentence.alectryon_index); + evt.preventDefault(); + } + } + + function init() { + document.onkeydown = onkeydown; + slideshow.pos = -1; + slideshow.sentences = Array.from(document.getElementsByClassName("alectryon-sentence")); + slideshow.sentences.forEach(function (s, idx) { + s.addEventListener('click', handleClick, false); + s.alectryon_index = idx; + }); + } + + slideshow.start = start; + slideshow.end = unhighlight; + slideshow.navigate = navigate; + slideshow.next = function() { navigate(slideshow.pos + 1); }; + slideshow.previous = function() { navigate(slideshow.pos + -1); }; + window.addEventListener('DOMContentLoaded', init); + })(Alectryon.slideshow || (Alectryon.slideshow = {})); + + (function (styles) { + var styleNames = ["centered", "floating", "windowed"]; + + function className(style) { + return "alectryon-" + style; + } + + function setStyle(style) { + var root = document.getElementsByClassName("alectryon-root")[0]; + styleNames.forEach(function (s) { + root.classList.remove(className(s)); }); + root.classList.add(className(style)); + } + + function init() { + var banner = document.getElementsByClassName("alectryon-banner")[0]; + if (banner) { + banner.append(" Style: "); + styleNames.forEach(function (styleName, idx) { + var s = styleName; + var a = document.createElement("a"); + a.onclick = function() { setStyle(s); }; + a.append(styleName); + if (idx > 0) banner.append("; "); + banner.appendChild(a); + }); + banner.append("."); + } + } + + window.addEventListener('DOMContentLoaded', init); + + styles.setStyle = setStyle; + })(Alectryon.styles || (Alectryon.styles = {})); +})(Alectryon || (Alectryon = {})); diff --git a/docs/docutils_basic.css b/docs/docutils_basic.css new file mode 100644 index 0000000..332c5bc --- /dev/null +++ b/docs/docutils_basic.css @@ -0,0 +1,593 @@ +/****************************************************************************** +The MIT License (MIT) + +Copyright (c) 2014 Matthias Eisen +Further changes Copyright (c) 2020, 2021 Clément Pit-Claudel + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +******************************************************************************/ + +kbd, +pre, +samp, +tt, +body code, /* Increase specificity to override IBM's stylesheet */ +body code.highlight, +.docutils.literal { + font-family: 'Iosevka Slab Web', 'Iosevka Web', 'Iosevka Slab', 'Iosevka', 'Fira Code', monospace; + font-feature-settings: "COQX" 1 /* Coq ligatures */, "XV00" 1 /* Legacy */, "calt" 1 /* Fallback */; +} + +body { + color: #111; + font-family: 'IBM Plex Serif', 'PT Serif', 'Merriweather', 'DejaVu Serif', serif; + line-height: 1.5; +} + +div.document { + margin: 0 auto; + max-width: 720px; +} + + +/* ========== Headings ========== */ + +h1, h2, h3, h4, h5, h6 { + font-weight: normal; + margin-top: 1.5em; +} + +h1.section-subtitle, +h2.section-subtitle, +h3.section-subtitle, +h4.section-subtitle, +h5.section-subtitle, +h6.section-subtitle { + margin-top: 0.4em; +} + +h1.title { + text-align: center; +} + +h2.subtitle { + text-align: center; +} + +span.section-subtitle { + font-size: 80%, +} + +/* //-------- Headings ---------- */ + + +/* ========== Images ========== */ + +img, +.figure, +object { + display: block; + margin-left: auto; + margin-right: auto; +} + +div.figure { + margin-left: 2em; + margin-right: 2em; +} + +img.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +/* reset inner alignment in figures */ +div.align-right { + text-align: inherit; +} + +object[type="image/svg+xml"], +object[type="application/x-shockwave-flash"] { + overflow: hidden; +} + +/* //-------- Images ---------- */ + + + +/* ========== Literal Blocks ========== */ + +.docutils.literal { + background-color: #eee; + padding: 0 0.2em; + border-radius: 0.1em; +} + +pre.address { + margin-bottom: 0; + margin-top: 0; + font: inherit; +} + +pre.literal-block { + border-left: solid 5px #ccc; + padding: 1em; +} + +pre.literal-block, pre.doctest-block, pre.math, pre.code { +} + +span.interpreted { +} + +span.pre { + white-space: pre; +} + +pre.code .ln { + color: grey; +} +pre.code, code { + border-style: none; + /* ! padding: 1em 0; */ /* Removed because that large hitbox bleeds over links on other lines */ +} +pre.code .comment, code .comment { + color: #888; +} +pre.code .keyword, code .keyword { + font-weight: bold; + color: #080; +} +pre.code .literal.string, code .literal.string { + color: #d20; + background-color: #fff0f0; +} +pre.code .literal.number, code .literal.number { + color: #00d; +} +pre.code .name.builtin, code .name.builtin { + color: #038; + color: #820; +} +pre.code .name.namespace, code .name.namespace { + color: #b06; +} +pre.code .deleted, code .deleted { + background-color: #fdd; +} +pre.code .inserted, code .inserted { + background-color: #dfd; +} + + +/* //-------- Literal Blocks --------- */ + + +/* ========== Tables ========== */ + +table { + border-spacing: 0; + border-collapse: collapse; + border-style: none; + border-top: solid thin #111; + border-bottom: solid thin #111; +} + +td, +th { + border: none; + padding: 0.5em; + vertical-align: top; +} + +th { + border-top: solid thin #111; + border-bottom: solid thin #111; + background-color: #ddd; +} + + +table.field-list, +table.footnote, +table.citation, +table.option-list { + border: none; +} +table.docinfo { + margin: 2em 4em; +} + +table.docutils { + margin: 1em 0; +} + +table.docutils th.field-name, +table.docinfo th.docinfo-name { + border: none; + background: none; + font-weight: bold ; + text-align: left ; + white-space: nowrap ; + padding-left: 0; + vertical-align: middle; +} + +table.docutils.booktabs { + border: none; + border-top: medium solid; + border-bottom: medium solid; + border-collapse: collapse; +} + +table.docutils.booktabs * { + border: none; +} +table.docutils.booktabs th { + border-bottom: thin solid; + text-align: left; +} + +span.option { + white-space: nowrap; +} + +table caption { + margin-bottom: 2px; +} + +/* //-------- Tables ---------- */ + + +/* ========== Lists ========== */ + +ol.simple, ul.simple { + margin-bottom: 1em; +} + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +dl.docutils dd { + margin-bottom: 0.5em; +} + + +dl.docutils dt { + font-weight: bold; +} + +/* //-------- Lists ---------- */ + + +/* ========== Sidebar ========== */ + +div.sidebar { + margin: 0 0 0.5em 1em ; + border-left: solid medium #111; + padding: 1em ; + width: 40% ; + float: right ; + clear: right; +} + +div.sidebar { + font-size: 0.9rem; +} + +p.sidebar-title { + font-size: 1rem; + font-weight: bold ; +} + +p.sidebar-subtitle { + font-weight: bold; +} + +/* //-------- Sidebar ---------- */ + + +/* ========== Topic ========== */ + +div.topic { + border-left: thin solid #111; + padding-left: 1em; +} + +div.topic p { + padding: 0; +} + +p.topic-title { + font-weight: bold; +} + +/* //-------- Topic ---------- */ + + +/* ========== Header ========== */ + +div.header { + font-family: "Century Gothic", CenturyGothic, Geneva, AppleGothic, sans-serif; + font-size: 0.9rem; + margin: 2em auto 4em auto; + max-width: 960px; + clear: both; +} + +hr.header { + border: 0; + height: 1px; + margin-top: 1em; + background-color: #111; +} + +/* //-------- Header ---------- */ + + +/* ========== Footer ========== */ + +div.footer { + font-family: "Century Gothic", CenturyGothic, Geneva, AppleGothic, sans-serif; + font-size: 0.9rem; + margin: 6em auto 2em auto; + max-width: 960px; + clear: both; + text-align: center; +} + +hr.footer { + border: 0; + height: 1px; + margin-bottom: 2em; + background-color: #111; +} + +/* //-------- Footer ---------- */ + + +/* ========== Admonitions ========== */ + +div.admonition, +div.attention, +div.caution, +div.danger, +div.error, +div.hint, +div.important, +div.note, +div.tip, +div.warning { + border: solid thin #111; + padding: 0 1em; +} + +div.error, +div.danger { + border-color: #a94442; + background-color: #f2dede; +} + +div.hint, +div.tip { + border-color: #31708f; + background-color: #d9edf7; +} + +div.attention, +div.caution, +div.warning { + border-color: #8a6d3b; + background-color: #fcf8e3; +} + +div.hint p.admonition-title, +div.tip p.admonition-title { + color: #31708f; + font-weight: bold ; +} + +div.note p.admonition-title, +div.admonition p.admonition-title, +div.important p.admonition-title { + font-weight: bold ; +} + +div.attention p.admonition-title, +div.caution p.admonition-title, +div.warning p.admonition-title { + color: #8a6d3b; + font-weight: bold ; +} + +div.danger p.admonition-title, +div.error p.admonition-title, +.code .error { + color: #a94442; + font-weight: bold ; +} + +/* //-------- Admonitions ---------- */ + + +/* ========== Table of Contents ========== */ + +div.contents { + margin: 2em 0; + border: none; +} + +ul.auto-toc { + list-style-type: none; +} + +a.toc-backref { + text-decoration: none ; + color: #111; +} + +/* //-------- Table of Contents ---------- */ + + + +/* ========== Line Blocks========== */ + +div.line-block { + display: block ; + margin-top: 1em ; + margin-bottom: 1em; +} + +div.line-block div.line-block { + margin-top: 0 ; + margin-bottom: 0 ; + margin-left: 1.5em; +} + +/* //-------- Line Blocks---------- */ + + +/* ========== System Messages ========== */ + +div.system-messages { + margin: 5em; +} + +div.system-messages h1 { + color: red; +} + +div.system-message { + border: medium outset ; + padding: 1em; +} + +div.system-message p.system-message-title { + color: red ; + font-weight: bold; +} + +/* //-------- System Messages---------- */ + + +/* ========== Helpers ========== */ + +.hidden { + display: none; +} + +.align-left { + text-align: left; +} + +.align-center { + clear: both ; + text-align: center; +} + +.align-right { + text-align: right; +} + +/* //-------- Helpers---------- */ + + +p.caption { + font-style: italic; + text-align: center; +} + +p.credits { +font-style: italic ; +font-size: smaller } + +p.label { +white-space: nowrap } + +p.rubric { +font-weight: bold ; +font-size: larger ; +color: maroon ; +text-align: center } + +p.attribution { +text-align: right ; +margin-left: 50% } + +blockquote.epigraph { + margin: 2em 5em; +} + +div.abstract { +margin: 2em 5em } + +div.abstract { +font-weight: bold ; +text-align: center } + +div.dedication { +margin: 2em 5em ; +text-align: center ; +font-style: italic } + +div.dedication { +font-weight: bold ; +font-style: normal } + + +span.classifier { +font-style: oblique } + +span.classifier-delimiter { +font-weight: bold } + +span.problematic { +color: red } + + + diff --git a/docs/pygments.css b/docs/pygments.css new file mode 100644 index 0000000..bb109d3 --- /dev/null +++ b/docs/pygments.css @@ -0,0 +1,83 @@ +/* Pygments stylesheet generated by Alectryon (style=None) */ +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll, .code .hll { background-color: #ffffcc } +.highlight .c, .code .c { color: #555753; font-style: italic } /* Comment */ +.highlight .err, .code .err { color: #A40000; border: 1px solid #C00 } /* Error */ +.highlight .g, .code .g { color: #000 } /* Generic */ +.highlight .k, .code .k { color: #8F5902 } /* Keyword */ +.highlight .l, .code .l { color: #2E3436 } /* Literal */ +.highlight .n, .code .n { color: #000 } /* Name */ +.highlight .o, .code .o { color: #000 } /* Operator */ +.highlight .x, .code .x { color: #2E3436 } /* Other */ +.highlight .p, .code .p { color: #000 } /* Punctuation */ +.highlight .ch, .code .ch { color: #555753; font-weight: bold; font-style: italic } /* Comment.Hashbang */ +.highlight .cm, .code .cm { color: #555753; font-style: italic } /* Comment.Multiline */ +.highlight .cp, .code .cp { color: #3465A4; font-style: italic } /* Comment.Preproc */ +.highlight .cpf, .code .cpf { color: #555753; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1, .code .c1 { color: #555753; font-style: italic } /* Comment.Single */ +.highlight .cs, .code .cs { color: #3465A4; font-weight: bold; font-style: italic } /* Comment.Special */ +.highlight .gd, .code .gd { color: #A40000 } /* Generic.Deleted */ +.highlight .ge, .code .ge { color: #000; font-style: italic } /* Generic.Emph */ +.highlight .ges, .code .ges { color: #000 } /* Generic.EmphStrong */ +.highlight .gr, .code .gr { color: #A40000 } /* Generic.Error */ +.highlight .gh, .code .gh { color: #A40000; font-weight: bold } /* Generic.Heading */ +.highlight .gi, .code .gi { color: #4E9A06 } /* Generic.Inserted */ +.highlight .go, .code .go { color: #000; font-style: italic } /* Generic.Output */ +.highlight .gp, .code .gp { color: #8F5902 } /* Generic.Prompt */ +.highlight .gs, .code .gs { color: #000; font-weight: bold } /* Generic.Strong */ +.highlight .gu, .code .gu { color: #000; font-weight: bold } /* Generic.Subheading */ +.highlight .gt, .code .gt { color: #000; font-style: italic } /* Generic.Traceback */ +.highlight .kc, .code .kc { color: #204A87; font-weight: bold } /* Keyword.Constant */ +.highlight .kd, .code .kd { color: #4E9A06; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn, .code .kn { color: #4E9A06; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp, .code .kp { color: #204A87 } /* Keyword.Pseudo */ +.highlight .kr, .code .kr { color: #8F5902 } /* Keyword.Reserved */ +.highlight .kt, .code .kt { color: #204A87 } /* Keyword.Type */ +.highlight .ld, .code .ld { color: #2E3436 } /* Literal.Date */ +.highlight .m, .code .m { color: #2E3436 } /* Literal.Number */ +.highlight .s, .code .s { color: #AD7FA8 } /* Literal.String */ +.highlight .na, .code .na { color: #C4A000 } /* Name.Attribute */ +.highlight .nb, .code .nb { color: #75507B } /* Name.Builtin */ +.highlight .nc, .code .nc { color: #204A87 } /* Name.Class */ +.highlight .no, .code .no { color: #CE5C00 } /* Name.Constant */ +.highlight .nd, .code .nd { color: #3465A4; font-weight: bold } /* Name.Decorator */ +.highlight .ni, .code .ni { color: #C4A000; text-decoration: underline } /* Name.Entity */ +.highlight .ne, .code .ne { color: #C00 } /* Name.Exception */ +.highlight .nf, .code .nf { color: #A40000 } /* Name.Function */ +.highlight .nl, .code .nl { color: #3465A4; font-weight: bold } /* Name.Label */ +.highlight .nn, .code .nn { color: #000 } /* Name.Namespace */ +.highlight .nx, .code .nx { color: #000 } /* Name.Other */ +.highlight .py, .code .py { color: #000 } /* Name.Property */ +.highlight .nt, .code .nt { color: #A40000 } /* Name.Tag */ +.highlight .nv, .code .nv { color: #CE5C00 } /* Name.Variable */ +.highlight .ow, .code .ow { color: #8F5902 } /* Operator.Word */ +.highlight .pm, .code .pm { color: #000 } /* Punctuation.Marker */ +.highlight .w, .code .w { color: #D3D7CF; text-decoration: underline } /* Text.Whitespace */ +.highlight .mb, .code .mb { color: #2E3436 } /* Literal.Number.Bin */ +.highlight .mf, .code .mf { color: #2E3436 } /* Literal.Number.Float */ +.highlight .mh, .code .mh { color: #2E3436 } /* Literal.Number.Hex */ +.highlight .mi, .code .mi { color: #2E3436 } /* Literal.Number.Integer */ +.highlight .mo, .code .mo { color: #2E3436 } /* Literal.Number.Oct */ +.highlight .sa, .code .sa { color: #AD7FA8 } /* Literal.String.Affix */ +.highlight .sb, .code .sb { color: #AD7FA8 } /* Literal.String.Backtick */ +.highlight .sc, .code .sc { color: #AD7FA8; font-weight: bold } /* Literal.String.Char */ +.highlight .dl, .code .dl { color: #AD7FA8 } /* Literal.String.Delimiter */ +.highlight .sd, .code .sd { color: #AD7FA8 } /* Literal.String.Doc */ +.highlight .s2, .code .s2 { color: #AD7FA8 } /* Literal.String.Double */ +.highlight .se, .code .se { color: #AD7FA8; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh, .code .sh { color: #AD7FA8; text-decoration: underline } /* Literal.String.Heredoc */ +.highlight .si, .code .si { color: #CE5C00 } /* Literal.String.Interpol */ +.highlight .sx, .code .sx { color: #AD7FA8 } /* Literal.String.Other */ +.highlight .sr, .code .sr { color: #AD7FA8 } /* Literal.String.Regex */ +.highlight .s1, .code .s1 { color: #AD7FA8 } /* Literal.String.Single */ +.highlight .ss, .code .ss { color: #8F5902 } /* Literal.String.Symbol */ +.highlight .bp, .code .bp { color: #5C35CC } /* Name.Builtin.Pseudo */ +.highlight .fm, .code .fm { color: #A40000 } /* Name.Function.Magic */ +.highlight .vc, .code .vc { color: #CE5C00 } /* Name.Variable.Class */ +.highlight .vg, .code .vg { color: #CE5C00; text-decoration: underline } /* Name.Variable.Global */ +.highlight .vi, .code .vi { color: #CE5C00 } /* Name.Variable.Instance */ +.highlight .vm, .code .vm { color: #CE5C00 } /* Name.Variable.Magic */ +.highlight .il, .code .il { color: #2E3436 } /* Literal.Number.Integer.Long */ \ No newline at end of file