-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdash_interactivity
106 lines (88 loc) · 5.2 KB
/
dash_interactivity
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Import required libraries
import pandas as pd
import dash
from dash import dcc
from dash import html
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
airline_data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/airline_data.csv',
encoding = "ISO-8859-1",
dtype={'Div1Airport': str, 'Div1TailNum': str,
'Div2Airport': str, 'Div2TailNum': str})
# Create a dash application
app = dash.Dash(__name__)
# Build dash app layout
app.layout = html.Div(children=[ html.H1('Flight Delay Time Statistics',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 30}),
html.Div(["Input Year: ", dcc.Input(id='input-year', value='2010',
type='number', style={'height':'35px', 'font-size': 30}),],
style={'font-size': 30}),
html.Br(),
html.Br(),
# Segment 1
html.Div([
html.Div(dcc.Graph(id='carrier-plot')),
html.Div(dcc.Graph(id='weather-plot'))
], style={'display': 'flex'}),
# Segment 2
html.Div([
html.Div(dcc.Graph(id='nas-plot')),
html.Div(dcc.Graph(id='security-plot'))
], style={'display': 'flex'}),
# Segment 3
html.Div(dcc.Graph(id='late-plot'), style={'width':'65%'})
])
""" Compute_info function description
This function takes in airline data and selected year as an input and performs computation for creating charts and plots.
Arguments:
airline_data: Input airline data.
entered_year: Input year for which computation needs to be performed.
Returns:
Computed average dataframes for carrier delay, weather delay, NAS delay, security delay, and late aircraft delay.
"""
def compute_info(airline_data, entered_year):
# Select data
df = airline_data[airline_data['Year']==int(entered_year)]
# Compute delay averages
avg_car = df.groupby(['Month','Reporting_Airline'])['CarrierDelay'].mean().reset_index()
avg_weather = df.groupby(['Month','Reporting_Airline'])['WeatherDelay'].mean().reset_index()
avg_NAS = df.groupby(['Month','Reporting_Airline'])['NASDelay'].mean().reset_index()
avg_sec = df.groupby(['Month','Reporting_Airline'])['SecurityDelay'].mean().reset_index()
avg_late = df.groupby(['Month','Reporting_Airline'])['LateAircraftDelay'].mean().reset_index()
return avg_car, avg_weather, avg_NAS, avg_sec, avg_late
"""Callback Function
Function that returns fugures using the provided input year.
Arguments:
entered_year: Input year provided by the user.
Returns:
List of figures computed using the provided helper function `compute_info`.
"""
# Callback decorator
@app.callback( [
Output(component_id='carrier-plot', component_property='figure'),
Output(component_id='weather-plot', component_property='figure'),
Output(component_id='nas-plot', component_property='figure'),
Output(component_id='security-plot', component_property='figure'),
Output(component_id='late-plot', component_property='figure')
],
Input(component_id='input-year', component_property='value'))
# Computation to callback function and return graph
def get_graph(entered_year):
# Compute required information for creating graph from the data
avg_car, avg_weather, avg_NAS, avg_sec, avg_late = compute_info(airline_data, entered_year)
# Line plot for carrier delay
carrier_fig = px.line(avg_car, x='Month', y='CarrierDelay', color='Reporting_Airline', title='Average carrrier delay time (minutes) by airline')
# Line plot for weather delay
weather_fig = px.line(avg_weather, x='Month', y='WeatherDelay', color='Reporting_Airline', title='Average weather delay time (minutes) by airline')
# Line plot for nas delay
nas_fig = px.line(avg_NAS, x='Month', y='NASDelay', color='Reporting_Airline', title='Average NAS delay time (minutes) by airline')
# Line plot for security delay
sec_fig = px.line(avg_sec, x='Month', y='SecurityDelay', color='Reporting_Airline', title='Average security delay time (minutes) by airline')
# Line plot for late aircraft delay
late_fig = px.line(avg_late, x='Month', y='LateAircraftDelay', color='Reporting_Airline', title='Average late aircraft delay time (minutes) by airline')
return[carrier_fig, weather_fig, nas_fig, sec_fig, late_fig]
# Run the app
if __name__ == '__main__':
app.run_server()