-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralnetwork.py
71 lines (48 loc) · 2.35 KB
/
neuralnetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy
import scipy.special
class NeuralNetwork:
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# set nodes
self.inodes = input_nodes
self.hnodes = hidden_nodes
self.onodes = output_nodes
# set learning rate
self.lr = learning_rate
self.w_input_hidden = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
self.w_hidden_output = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))
# the activation function
self.sigmoid = lambda x: scipy.special.expit(x)
pass
def train(self, inputs_list, targets_list):
# convert input list to 2D array
inputs = numpy.array(inputs_list, ndmin=2).T
# calc signals into the hidden layer
hidden_inputs = numpy.dot(self.w_input_hidden, inputs)
# calc the signals coming from the hidden layer
hidden_outputs = self.sigmoid(hidden_inputs)
# calc signals into the output layer
final_inputs = numpy.dot(self.w_hidden_output, hidden_outputs)
final_outputs = self.sigmoid(final_inputs)
targets = numpy.array(targets_list, ndim=2).T
# calc the errors
output_errors = targets - final_outputs
hidden_errors = numpy.dot(self.w_hidden_output.T, output_errors)
self.w_hidden_output += self.lr * numpy.dot((output_errors * final_outputs * (1 - final_outputs)),
numpy.transpose(hidden_outputs))
self.w_hidden_output += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1 - hidden_outputs)),
numpy.transpose(inputs_list))
pass
def querry(self, inputs_list):
# convert input list to 2D array
inputs = numpy.array(inputs_list, ndmin=2).T
# calc signals into the hidden layer
hidden_inputs = numpy.dot(self.w_input_hidden, inputs)
# calc the signals coming from the hidden layer
hidden_outputs = self.sigmoid(hidden_inputs)
# calc signals into the output layer
final_inputs = numpy.dot(self.w_hidden_output, hidden_outputs)
final_outputs = self.sigmoid(final_inputs)
return final_outputs
NN = NeuralNetwork(3, 3, 3, 0.3)
result = NN.querry([1.0, 0.5, -1.5])
print result