-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathrtt-logistic_regression_saver.py
104 lines (83 loc) · 2.96 KB
/
rtt-logistic_regression_saver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python3
from tensorflow.python.tools import inspect_checkpoint as chkp
import latticex.rosetta as rtt # difference from tensorflow
import math
import os
import csv
import tensorflow as tf
import numpy as np
from util import read_dataset
np.set_printoptions(suppress=True)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
np.random.seed(0)
EPOCHES = 10
BATCH_SIZE = 16
learning_rate = 0.0002
rtt.activate("SecureNN")
rtt.set_saver_model(False, plain_model = ['P0'])
mpc_player_id = rtt.py_protocol_handler.get_party_id()
# real data
# ######################################## difference from tensorflow
file_x = '../dsets/P' + str(mpc_player_id) + "/cls_train_x.csv"
file_y = '../dsets/P' + str(mpc_player_id) + "/cls_train_y.csv"
real_X, real_Y = rtt.PrivateDataset(data_owner=(
0, 1), label_owner=0).load_data(file_x, file_y, header=None)
# ######################################## difference from tensorflow
DIM_NUM = real_X.shape[1]
X = tf.placeholder(tf.float64, [None, DIM_NUM])
Y = tf.placeholder(tf.float64, [None, 1])
print(X)
print(Y)
# initialize W & b
W = tf.Variable(tf.zeros([DIM_NUM, 1], dtype=tf.float64), name='w')
b = tf.Variable(tf.zeros([1], dtype=tf.float64), name='b')
print(W)
print(b)
# predict
pred_Y = tf.sigmoid(tf.matmul(X, W) + b)
print(pred_Y)
# loss
logits = tf.matmul(X, W) + b
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=logits)
loss = tf.reduce_mean(loss)
print(loss)
# optimizer
train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
print(train)
# save
saver = tf.train.Saver(var_list=None, max_to_keep=5, name='v2')
os.makedirs("./log/ckpt"+str(mpc_player_id), exist_ok=True)
# init
init = tf.global_variables_initializer()
print(init)
# ########### for test, reveal
reveal_W = rtt.SecureReveal(W)
reveal_b = rtt.SecureReveal(b)
reveal_Y = rtt.SecureReveal(pred_Y)
# ########### for test, reveal
with tf.Session() as sess:
sess.run(init)
xW, xb = sess.run([W, b])
print("init weight:{} \nbias:{}".format(xW, xb))
# train
BATCHES = math.ceil(len(real_X) / BATCH_SIZE)
for e in range(EPOCHES):
for i in range(BATCHES):
bX = real_X[(i * BATCH_SIZE): (i + 1) * BATCH_SIZE]
bY = real_Y[(i * BATCH_SIZE): (i + 1) * BATCH_SIZE]
sess.run(train, feed_dict={X: bX, Y: bY})
j = e * BATCHES + i
if j % 50 == 0 or (j == EPOCHES * BATCHES - 1 and j % 50 != 0):
xW, xb = sess.run([W, b])
print("I,E,B:{:0>4d},{:0>4d},{:0>4d} weight:{} \nbias:{}".format(
j, e, i, xW, xb))
saver.save(sess, './log/ckpt'+str(mpc_player_id)+'/model')
chkp.print_tensors_in_checkpoint_file(
'./log/ckpt'+str(mpc_player_id)+'/model', tensor_name='', all_tensors=True)
# predict
Y_pred = sess.run(pred_Y, feed_dict={X: real_X})
print("Y_pred:", Y_pred)
reveal_y = sess.run(reveal_Y, feed_dict={X: real_X})
print("reveal_Y:", reveal_y)
print(rtt.get_perf_stats(True))
rtt.deactivate()