-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
246 lines (195 loc) · 7.47 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.nn as nn
import os
from loguru import logger
from collections import defaultdict, deque
logging = logger
def get_nnet(**kwargs):
from libs.nat_model import UViT
return UViT(**kwargs)
def get_optimizer(params, name, **kwargs):
if name == 'adam':
from torch.optim import Adam
return Adam(params, **kwargs)
elif name == 'adamw':
from torch.optim import AdamW
return AdamW(params, **kwargs)
else:
raise NotImplementedError(name)
def customized_lr_scheduler(optimizer, warmup_steps=-1):
from torch.optim.lr_scheduler import LambdaLR
def fn(step):
if warmup_steps > 0:
return min(step / warmup_steps, 1)
else:
return 1
return LambdaLR(optimizer, fn)
def get_lr_scheduler(optimizer, name='customized', args=None, **kwargs):
if name == 'customized':
return customized_lr_scheduler(optimizer, **kwargs)
else:
raise NotImplementedError(name)
def ema(model_dest: nn.Module, model_src: nn.Module, rate):
param_dict_src = dict(model_src.named_parameters())
for p_name, p_dest in model_dest.named_parameters():
p_src = param_dict_src[p_name]
assert p_src is not p_dest
p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)
class TrainState(object):
def __init__(self, optimizer, lr_scheduler, step, nnet=None, nnet_ema=None, args=None):
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.step = step
self.nnet = nnet
self.nnet_ema = nnet_ema
self.args = args
def ema_update(self, rate=0.9999):
if self.nnet_ema is not None:
ema(self.nnet_ema, self.nnet, rate)
def save(self, path):
os.makedirs(path, exist_ok=True)
torch.save(self.step, os.path.join(path, 'step.pth'))
for key, val in self.__dict__.items():
if key not in ['step', 'args'] and val is not None:
torch.save(val.state_dict(), os.path.join(path, f'{key}.pth'))
def load(self, path, ignored_keys=tuple()):
logging.info(f'load from {path}')
self.step = torch.load(os.path.join(path, 'step.pth'), map_location='cpu')
ignored_keys += ('step', 'args')
for key, val in self.__dict__.items():
if key not in ignored_keys and val is not None:
ckpt = torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu')
if key in ['nnet', 'nnet_ema']:
ckpt = {k: v for k, v in ckpt.items() if 'position_ids' not in k}
val.load_state_dict(ckpt)
else:
logging.info(f'<<load state dict>>: ignore {key}')
def resume(self, ckpt_root, step=None, ignored_keys=tuple()):
if not os.path.exists(ckpt_root):
logger.warning('ckpt_root does not exist when resuming.')
return
if ckpt_root.endswith('.ckpt'):
ckpt_path = ckpt_root
else:
if step is None:
ckpts = list(filter(lambda x: '.ckpt' in x, os.listdir(ckpt_root)))
if not ckpts:
return
steps = map(lambda x: int(x.split(".")[0]), ckpts)
step = max(steps)
ckpt_path = os.path.join(ckpt_root, f'{step}.ckpt')
logging.info(f'resume from {ckpt_path}')
self.load(ckpt_path, ignored_keys=ignored_keys)
def to(self, device):
for key, val in self.__dict__.items():
if isinstance(val, nn.Module):
val.to(device)
def cnt_params(model):
return sum(param.numel() for param in model.parameters())
def initialize_train_state(config, device, args):
params = []
nnet = get_nnet(**config.nnet, args=args)
params += nnet.parameters()
nnet_ema = get_nnet(**config.nnet, args=args)
nnet_ema.eval()
logging.info(f'nnet has {cnt_params(nnet)} parameters')
optimizer = get_optimizer(params, **config.optimizer)
lr_scheduler = get_lr_scheduler(optimizer, args=args, **config.lr_scheduler)
train_state = TrainState(optimizer=optimizer, lr_scheduler=lr_scheduler, step=0,
nnet=nnet, nnet_ema=nnet_ema, args=args)
train_state.ema_update(0)
train_state.to(device)
return train_state
def amortize(n_samples, batch_size):
k = n_samples // batch_size
r = n_samples % batch_size
return k * [batch_size] if r == 0 else k * [batch_size] + [r]
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter=" "):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if torch.__version__.startswith('2'):
from torch import inf
else:
from torch._six import inf
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def calc_fid(m1, s1, m2, s2):
a = (m1 - m2).square().sum(dim=-1)
b = s1.trace() + s2.trace()
c = torch.linalg.eigvals(s1 @ s2).sqrt().real.sum(dim=-1)
_fid = (a + b - 2 * c).item()
return _fid