-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathload_data.py
114 lines (96 loc) · 5.25 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
'''
Created on 21 Nov 2017
@author: vermav1
'''
import torch
from torchvision import datasets, transforms
from affine_transforms import Rotation, Zoom
def load_mnist(data_aug, batch_size, test_batch_size,cuda, data_target_dir):
if data_aug == 1:
hw_size = 24
transform_train = transforms.Compose([
transforms.RandomCrop(hw_size),
transforms.ToTensor(),
Rotation(15),
Zoom((0.85, 1.15)),
transforms.Normalize((0.1307,), (0.3081,))
])
transform_test = transforms.Compose([
transforms.CenterCrop(hw_size),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
else:
hw_size = 28
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
kwargs = {'num_workers': 0, 'pin_memory': True} if cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(data_target_dir, train=True, download=True, transform=transform_train),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(data_target_dir, train=False, transform=transform_test),
batch_size=test_batch_size, shuffle=True, **kwargs)
return train_loader, test_loader
def load_data(data_aug, batch_size,workers,dataset, data_target_dir):
if dataset == 'cifar10':
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
elif dataset == 'cifar100':
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
std = [x / 255 for x in [68.2, 65.4, 70.4]]
elif dataset == 'svhn':
mean = [x / 255 for x in [127.5, 127.5, 127.5]]
std = [x / 255 for x in [127.5, 127.5, 127.5]]
else:
assert False, "Unknow dataset : {}".format(dataset)
if data_aug==1:
if dataset == 'svhn':
train_transform = transforms.Compose(
[ transforms.RandomCrop(32, padding=2), transforms.ToTensor(),
transforms.Normalize(mean, std)])
test_transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean, std)])
else:
train_transform = transforms.Compose(
[transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(),
transforms.Normalize(mean, std)])
test_transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean, std)])
else:
train_transform = transforms.Compose(
[ transforms.ToTensor(),
transforms.Normalize(mean, std)])
test_transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean, std)])
if dataset == 'cifar10':
train_data = datasets.CIFAR10(data_target_dir, train=True, transform=train_transform, download=True)
test_data = datasets.CIFAR10(data_target_dir, train=False, transform=test_transform, download=True)
num_classes = 10
elif dataset == 'cifar100':
train_data = datasets.CIFAR100(data_target_dir, train=True, transform=train_transform, download=True)
test_data = datasets.CIFAR100(data_target_dir, train=False, transform=test_transform, download=True)
num_classes = 100
elif dataset == 'svhn':
train_data = datasets.SVHN(data_target_dir, split='train', transform=train_transform, download=True)
test_data = datasets.SVHN(data_target_dir, split='test', transform=test_transform, download=True)
num_classes = 10
elif dataset == 'stl10':
train_data = datasets.STL10(data_target_dir, split='train', transform=train_transform, download=True)
test_data = datasets.STL10(data_target_dir, split='test', transform=test_transform, download=True)
num_classes = 10
elif dataset == 'imagenet':
assert False, 'Do not finish imagenet code'
else:
assert False, 'Do not support dataset : {}'.format(dataset)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True,
num_workers=workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
return train_loader, test_loader, num_classes