-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBaseServer.py
222 lines (178 loc) · 7.38 KB
/
BaseServer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.nn as nn
import numpy as np
import copy
import time
import wandb
import os
from .measures import *
__all__ = ["BaseServer"]
class BaseServer:
def __init__(
self,
algo_params,
model,
data_distributed,
optimizer,
scheduler,
n_rounds=200,
sample_ratio=0.1,
local_epochs=5,
device="cuda:0",
):
"""
Server class controls the overall experiment.
"""
self.algo_params = algo_params
self.num_classes = data_distributed["num_classes"]
self.server_model = model
self.global_loaders = data_distributed["global"]
self.criterion = nn.CrossEntropyLoss()
self.data_distributed = data_distributed
self.optimizer = optimizer
self.scheduler = scheduler
self.sample_ratio = sample_ratio
self.n_rounds = n_rounds
self.device = device
self.n_clients = len(data_distributed["partition_map"].keys())
self.local_epochs = local_epochs
self.server_results = {}
def run(self):
"""Run the FL experiment"""
self._print_start()
for round_idx in range(self.n_rounds):
# Initial Model Statistics
if round_idx == 0:
global_results = evaluate_model_on_loaders(
self.server_model, self.global_loaders, self.device
)
self.server_results = self._results_updater(
self.server_results, global_results
)
start_time = time.time()
# Make local sets to distributed to clients
sampled_clients = self._client_sampling(round_idx)
history_dict = {"client_history": sampled_clients}
self.server_results = self._results_updater(
self.server_results, history_dict
)
# Client training stage to upload weights & stats
(
updated_local_weights,
client_sizes,
round_local_results,
) = self._clients_training(sampled_clients)
# Get aggregated weights & update global
ag_weights = self._aggregation(updated_local_weights, client_sizes)
self.server_model.load_state_dict(ag_weights)
# Evaluate server statistics
global_results = evaluate_model_on_loaders(
self.server_model, self.global_loaders, self.device, "Global"
)
self.server_results = self._results_updater(
self.server_results, global_results
)
# Print results and logging
print(
f"\n[Round {round_idx+1}/{self.n_rounds}] (Elapsed {round(time.time()-start_time, 1)}s)"
)
self._print_stats_with_logging(global_results, round_idx)
self._print_stats_with_logging(round_local_results, round_idx)
# Change learning rate
if self.scheduler is not None:
self.scheduler.step()
# Measure personalized performance
# if ((round_idx + 1) % 10 == 0):
# if round_idx == self.n_rounds - 1:
# sampled_clients = np.arange(self.n_clients)
# _, _, round_local_results = self._clients_training(
# sampled_clients, finetune=True
# )
# self._print_stats_with_logging(round_local_results, round_idx + 1)
def _clients_training(self, sampled_clients, finetune=False):
"""Conduct local training and get trained local models' weights"""
updated_local_weights, client_sizes = [], []
round_local_results = {}
server_weights = self.server_model.state_dict()
server_optimizer = self.optimizer.state_dict()
# Client training stage
for client_idx in sampled_clients:
# Fetch client datasets
self._set_client_data(client_idx)
# Download global
self.client.download_global(server_weights, server_optimizer)
# Local training
if finetune:
local_results = self.client.finetune()
else:
local_results, local_size = self.client.train()
# Upload locals
updated_local_weights.append(self.client.upload_local())
client_sizes.append(local_size)
# Update results
round_local_results = self._results_updater(
round_local_results, local_results
)
# Reset local model
self.client.reset()
return updated_local_weights, client_sizes, round_local_results
def _client_sampling(self, round_idx):
"""Sample clients by given sampling ratio"""
# make sure for same client sampling for fair comparison
np.random.seed(round_idx)
clients_per_round = max(int(self.n_clients * self.sample_ratio), 1)
sampled_clients = np.random.choice(
self.n_clients, clients_per_round, replace=False
)
return sampled_clients
def _set_client_data(self, client_idx):
"""Assign local client datasets."""
self.client.datasize = self.data_distributed["local_sizes"][client_idx]
self.client.local_loaders = self.data_distributed["local"][client_idx]
def _aggregation(self, w, ns):
"""Average locally trained model parameters"""
prop = torch.tensor(ns, dtype=torch.float)
prop /= torch.sum(prop)
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
w_avg[k] = w_avg[k] * prop[0]
for k in w_avg.keys():
for i in range(1, len(w)):
w_avg[k] += w[i][k] * prop[i]
return copy.deepcopy(w_avg)
def _print_stats_with_logging(self, result_dict, round_idx):
for key, item in result_dict.items():
if ("Local" in key) or type(item) == list:
wandb.log({key: np.mean(item)}, step=round_idx)
wandb.log({key + "_std": np.std(item)}, step=round_idx)
print(
f"[{key}]: {item}, Avg - {np.mean(item):2.4f} (std {np.std(item):2.4f})"
)
else:
wandb.log({key: item}, step=round_idx)
print(f"[{key}]: - {item:2.4f}")
def _results_updater(self, result_dict, result_dict_elem):
"""Combine multiple results as clean format"""
for key, item in result_dict_elem.items():
if key not in result_dict.keys():
result_dict[key] = [item]
else:
result_dict[key].append(item)
return result_dict
def _save_server_model(self, round_idx):
weights = self.server_model.state_dict()
save_path = os.path.join(wandb.run.dir, f"model_{round_idx+1}.pth")
torch.save(weights, save_path)
print(f"model_{round_idx+1}.pth Saved!")
def _print_start(self):
"""Print initial log for experiment"""
if self.device == "cpu":
return "cpu"
if isinstance(self.device, str):
device_idx = int(self.device[-1])
elif isinstance(self.device, torch._device):
device_idx = self.device.index
device_name = torch.cuda.get_device_name(device_idx)
print("\n" + "=" * 50)
print(f"Train start on device: {device_name}")
print("=" * 50)