-
Notifications
You must be signed in to change notification settings - Fork 606
/
Copy pathdata_loader.py
105 lines (80 loc) · 3.36 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import random
from random import shuffle
import numpy as np
import torch
from torch.utils import data
from torchvision import transforms as T
from torchvision.transforms import functional as F
from PIL import Image
class ImageFolder(data.Dataset):
def __init__(self, root,image_size=224,mode='train',augmentation_prob=0.4):
"""Initializes image paths and preprocessing module."""
self.root = root
# GT : Ground Truth
self.GT_paths = root[:-1]+'_GT/'
self.image_paths = list(map(lambda x: os.path.join(root, x), os.listdir(root)))
self.image_size = image_size
self.mode = mode
self.RotationDegree = [0,90,180,270]
self.augmentation_prob = augmentation_prob
print("image count in {} path :{}".format(self.mode,len(self.image_paths)))
def __getitem__(self, index):
"""Reads an image from a file and preprocesses it and returns."""
image_path = self.image_paths[index]
filename = image_path.split('_')[-1][:-len(".jpg")]
GT_path = self.GT_paths + 'ISIC_' + filename + '_segmentation.png'
image = Image.open(image_path)
GT = Image.open(GT_path)
aspect_ratio = image.size[1]/image.size[0]
Transform = []
ResizeRange = random.randint(300,320)
Transform.append(T.Resize((int(ResizeRange*aspect_ratio),ResizeRange)))
p_transform = random.random()
if (self.mode == 'train') and p_transform <= self.augmentation_prob:
RotationDegree = random.randint(0,3)
RotationDegree = self.RotationDegree[RotationDegree]
if (RotationDegree == 90) or (RotationDegree == 270):
aspect_ratio = 1/aspect_ratio
Transform.append(T.RandomRotation((RotationDegree,RotationDegree)))
RotationRange = random.randint(-10,10)
Transform.append(T.RandomRotation((RotationRange,RotationRange)))
CropRange = random.randint(250,270)
Transform.append(T.CenterCrop((int(CropRange*aspect_ratio),CropRange)))
Transform = T.Compose(Transform)
image = Transform(image)
GT = Transform(GT)
ShiftRange_left = random.randint(0,20)
ShiftRange_upper = random.randint(0,20)
ShiftRange_right = image.size[0] - random.randint(0,20)
ShiftRange_lower = image.size[1] - random.randint(0,20)
image = image.crop(box=(ShiftRange_left,ShiftRange_upper,ShiftRange_right,ShiftRange_lower))
GT = GT.crop(box=(ShiftRange_left,ShiftRange_upper,ShiftRange_right,ShiftRange_lower))
if random.random() < 0.5:
image = F.hflip(image)
GT = F.hflip(GT)
if random.random() < 0.5:
image = F.vflip(image)
GT = F.vflip(GT)
Transform = T.ColorJitter(brightness=0.2,contrast=0.2,hue=0.02)
image = Transform(image)
Transform =[]
Transform.append(T.Resize((int(256*aspect_ratio)-int(256*aspect_ratio)%16,256)))
Transform.append(T.ToTensor())
Transform = T.Compose(Transform)
image = Transform(image)
GT = Transform(GT)
Norm_ = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
image = Norm_(image)
return image, GT
def __len__(self):
"""Returns the total number of font files."""
return len(self.image_paths)
def get_loader(image_path, image_size, batch_size, num_workers=2, mode='train',augmentation_prob=0.4):
"""Builds and returns Dataloader."""
dataset = ImageFolder(root = image_path, image_size =image_size, mode=mode,augmentation_prob=augmentation_prob)
data_loader = data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers)
return data_loader