-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_TSS_MIL.py
268 lines (178 loc) · 9.45 KB
/
train_TSS_MIL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.nn.functional import softmax
import numpy as np
import torchvision.transforms as transforms
import time
import os
import argparse
import sys
sys.path.append("")
from datasets import Cell_Sampling_new
from models import GatedAttention
from Utils import progress_bar, Logger, mkdir_p,DataParallel_withLoss
from sklearn.metrics import top_k_accuracy_score,f1_score,roc_auc_score
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--lr', default=0.0005, type=float, help='learning rate')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--arch', default='attention', type=str, help='choosing network')
parser.add_argument('--data', default='AZCell', type=str, help='choosing network')
parser.add_argument('--bs', default=32, type=int, help='batch size')
'''Trianing_epochs = args.es* args.repeats'''
parser.add_argument('--es', default=100, type=int, help='epoch size')
parser.add_argument('--repeats', default=20, type=int, help='repeat training')
parser.add_argument('--split', default='batch_separated', type=str, help='dataset split type')
parser.add_argument('--evaluate', action='store_true',
help='Evaluate without training')
args = parser.parse_args()
def my_collate(batch):
data = [item[0] for item in batch]
target = [item[1] for item in batch]
weights = [item[2] for item in batch]
return [data,target,weights]
def main(random_script_id):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_test = transforms.Compose([
transforms.ToTensor(),
])
'''self-supverised learning features'''
data_path = './image_masks/'
label_id_path_file = './train_32class_batch_idx.txt'
random_train_val = './experiment_setup/{}/random{}.txt'.format(args.split,random_script_id)
if args.split == 'batch_separated':
print('batch_separated Dataset')
train_set = Cell_Sampling_new.Cell_Features_sampling(data_path,label_id_path_file,train=True,train_epoch=args.es*args.repeats,
transform=transform_test,random_train_val=random_train_val)
val_set = Cell_Sampling_new.Cell_Features_sampling(data_path,label_id_path_file,train=False,train_epoch=args.es*args.repeats,
transform=transform_test,random_train_val=random_train_val)
else:
print('batch_stratified Dataset')
train_set = Cell_Sampling_new.Cell_Features_sampling_batch_stratified(data_path, label_id_path_file, train=True,train_epoch=args.es*args.repeats,
transform=transform_test, random_train_val=random_script_id)
val_set = Cell_Sampling_new.Cell_Features_sampling_batch_stratified(data_path, label_id_path_file, train=False,train_epoch=args.es*args.repeats,
transform=transform_test, random_train_val=random_script_id)
trainloader = torch.utils.data.DataLoader(train_set, batch_size=args.bs, shuffle=True, num_workers=0,collate_fn=my_collate)
valloader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=0,collate_fn=my_collate)
train_class_num = train_set.class_number
if args.split == 'batch_separated':
args.checkpoint = './experimental_models/batch_separated/random{}/CLANet/'.format(random_script_id)
else:
args.checkpoint = './experimental_models/batch_stratified/random{}/CLANet/'.format(random_script_id)
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
# Model
net = GatedAttention(train_class_num)
#net = net.to(device)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss(reduction='none')
if device == 'cuda':
net = DataParallel_withLoss(net,criterion,device_ids=[0],output_device=0)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
if os.path.isfile(args.resume):
print('==> Resuming from checkpoint..')
# change here
checkpoint = torch.load(args.resume)
net.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch']
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), resume=True)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'))
logger.set_names(['Epoch', 'Learning Rate', 'Train Loss','Train Acc.','Val Loss','Val Acc Top1-5/F1.','Val Batch Acc'])
val_loss_pre = 9999999
if not args.evaluate:
start_time = time.time()
for epoch in range(start_epoch, start_epoch + args.es*args.repeats):
print('\nEpoch: %d Learning rate: %f' % (epoch+1, optimizer.param_groups[0]['lr']))
train_loss, train_acc = train(net,trainloader,optimizer,criterion,device,)
# Validation
val_seq_accs, val_batch_accs = 0, 0
val_loss, val_acc = 0, 0
if (epoch+1)%(5)==0:
val_loss, val_seq_accs, val_batch_accs = Validation(net, valloader, val_set.batch_token,train_class_num)
print('\n Validation Loss: {}, Validation seq acc: {}'.format(val_loss,val_seq_accs,val_batch_accs))
if val_loss < val_loss_pre:
print('-------val loss decrease, save best model now-----------')
val_loss_pre = val_loss
save_model(net, None, epoch, os.path.join(args.checkpoint,'best_model.pth'))
logger.append([epoch+1, optimizer.param_groups[0]['lr'], train_loss, train_acc,val_loss,val_seq_accs, val_batch_accs])
save_model(net, None, epoch, os.path.join(args.checkpoint, 'last_model.pth'))
print('------------Training Finished-----------------!')
logger.close()
# Training
def train(net,trainloader,optimizer,criterion,device,):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs,targets,weights) in enumerate(trainloader):
weights_sum = sum(weights).cuda()
for i in range(len(inputs)):
input_cuda,target,weight = inputs[i].cuda(),targets[i].cuda(),weights[i].cuda()
loss, outputs,_ = net(target,input_cuda)
loss = loss.sum()*weight/weights_sum
loss.backward()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
if ((i+1)%len(inputs)==0):
optimizer.step()
optimizer.zero_grad()
progress_bar(batch_idx, len(trainloader), 'Loss: %.7f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
return train_loss/(batch_idx+1), correct/total
#Validation
def Validation(net,valloader,batch_token,class_num):
net.eval()
val_loss = 0
scores, labels = [], []
with torch.no_grad():
for batch_idx, (inputs, targets,_) in enumerate(valloader):
inputs, targets = inputs[0].cuda(), targets[0].cuda()
loss,outputs,_ = net(targets,inputs)
loss = loss.sum()
val_loss += loss.item()
scores.append(softmax(outputs))
labels.append(targets)
scores = np.array(torch.cat(scores, dim=0).cpu().numpy())
labels = np.array(torch.cat(labels, dim=0).cpu().numpy())
seq_top1_acc,seq_top3_acc,seq_top5_acc = top_k_accuracy_score(labels,scores,k=1,labels=range(class_num))\
,top_k_accuracy_score(labels,scores,k=3,labels=range(class_num))\
,top_k_accuracy_score(labels,scores,k=5,labels=range(class_num))
seq_f1 = f1_score(labels,np.argmax(scores,axis=1),average='macro')
seq_auc = roc_auc_score(labels,scores,multi_class='ovr')
b_scores, b_labels = [],[]
for batch_id in np.unique(batch_token):
b_ids = np.where(batch_token == batch_id)[0]
b_score, b_label = np.mean(scores[b_ids],axis=0), np.argmax(np.bincount(labels[b_ids]))
b_scores.append(b_score)
b_labels.append(b_label)
b_top1_acc, b_top3_acc, b_top5_acc = top_k_accuracy_score(b_labels, b_scores, k=1, labels=range(class_num)) \
, top_k_accuracy_score(b_labels, b_scores, k=3, labels=range(class_num)) \
, top_k_accuracy_score(b_labels, b_scores, k=5, labels=range(class_num))
b_f1 = f1_score(b_labels, np.argmax(b_scores, axis=1), average='macro')
b_auc = roc_auc_score(b_labels, b_scores, multi_class='ovr')
return val_loss/(batch_idx+1), (seq_top1_acc,seq_top3_acc,seq_top5_acc,seq_f1,seq_auc), (b_top1_acc, b_top3_acc, b_top5_acc,b_f1,b_auc )
def save_model(net, acc, epoch, path):
print('Saving..')
state = {
'net': net.module.state_dict(),
'testacc': acc,
'epoch': epoch,
}
torch.save(state, path)
if __name__ == '__main__':
for i in [1,2,3]:
main(i)