forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunexamples.sh
executable file
·142 lines (109 loc) · 4.96 KB
/
runexamples.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/bin/bash
# Copyright 2020 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
# script for running the examples
# install necessary packages
pip install numpy
pip install torch
pip install 'monai[itk, nibabel, pillow]'
# home directory
homedir="$( cd -P "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
TEMP_LOG="temp.txt"
cd "$homedir"
find "$homedir" -type f -name $TEMP_LOG -delete
# download data to specific directory
if [ -e "./testing_ixi_t1.tar.gz" ] && [ -d "./workspace/" ]; then
echo "1" >> $TEMP_LOG
else
wget https://www.dropbox.com/s/y890gb6axzzqff5/testing_ixi_t1.tar.gz?dl=1
mv testing_ixi_t1.tar.gz?dl=1 testing_ixi_t1.tar.gz
mkdir -p ./workspace/data/medical/ixi/IXI-T1/
tar -C ./workspace/data/medical/ixi/IXI-T1/ -xf testing_ixi_t1.tar.gz
fi
# run training files in 3d_classification/torch
for file in "3d_classification/torch"/*train*
do
python "$file"
done
# check training files generated from 3d_classification/torch
[ -e "./best_metric_model_classification3d_array.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d classification torch: model file not generated" | tee $TEMP_LOG && exit 0)
[ -e "./best_metric_model_classification3d_dict.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d classification torch: model file not generated" | tee $TEMP_LOG && exit 0)
# run eval files in 3d_classification/torch
for file in "3d_classification/torch"/*eval*
do
python "$file"
done
# run training files in 3d_classification/ignite
for file in "3d_classification/ignite"/*train*
do
python "$file"
done
# check training files generated from 3d_classification/ignite
[ -e "./runs_array/net_checkpoint_20.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d classification ignite: model file not generated" | tee $TEMP_LOG && exit 0)
[ -e "./runs_dict/net_checkpoint_20.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d classification ignite: model file not generated" | tee $TEMP_LOG && exit 0)
# run eval files in 3d_classification/ignite
for file in "3d_classification/ignite"/*eval*
do
python "$file"
done
# run training files in 2d_segmentation/torch
for file in "2d_segmentation/torch"/*train*
do
python "$file"
done
# check training files generated from 2d_segmentation/torch
[ -e "./best_metric_model_segmentation2d_array.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 2d segmentation torch: model file not generated" | tee $TEMP_LOG && exit 0)
[ -e "./best_metric_model_segmentation2d_dict.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 2d segmentation torch: model file not generated" | tee $TEMP_LOG && exit 0)
# run eval files in 2d_segmentation/torch
for file in "2d_segmentation/torch"/*eval*
do
python "$file"
done
# run training files in 3d_segmentation/torch
for file in "3d_segmentation/torch"/*train*
do
python "$file"
done
# check training files generated from 3d_segmentation/torch
[ -e "./best_metric_model_segmentation3d_array.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d segmentation torch: model file not generated" | tee $TEMP_LOG && exit 0)
[ -e "./best_metric_model_segmentation3d_dict.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d segmentation torch: model file not generated" | tee $TEMP_LOG && exit 0)
# run eval files in 3d_segmentation/torch
for file in "3d_segmentation/torch"/*eval*
do
python "$file"
done
# run training files in 3d_segmentation/ignite
for file in "3d_segmentation/ignite"/*train*
do
python "$file"
done
# check training files generated from 3d_segmentation/ignite
[ -e "./runs_array/net_checkpoint_100.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d segmentation ignite: model file not generated" | tee $TEMP_LOG && exit 0)
[ -e "./runs_dict/net_checkpoint_50.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples 3d segmentation ignite: model file not generated" | tee $TEMP_LOG && exit 0)
# run eval files in 3d_segmentation/ignite
for file in "3d_segmentation/ignite"/*eval*
do
python "$file"
done
# run training file in modules/workflows
for file in "modules/workflows"/*train*
do
python "$file"
done
# check training file generated from modules/workflows
[ -e "./runs/net_key_metric*.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples supervised workflows: model file not generated" | tee $TEMP_LOG && exit 0)
[ -e "./model_out/*.pth" ] && echo "1" >> $TEMP_LOG || (echo "examples GAN workflows: model file not generated" | tee $TEMP_LOG && exit 0)
# run eval file in modules/workflows
for file in "modules/workflows"/*eval*
do
python "$file"
done