forked from hangligit/InterpretDiffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
339 lines (275 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import logging
import math
import os
import random
from pathlib import Path
from typing import Iterable, Optional
from tqdm.auto import tqdm
import json
import matplotlib.pyplot as plt
from ruamel.yaml import YAML
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torchvision import transforms
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from transformers import CLIPTextModel, CLIPTokenizer
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from model import model_types
from config import parse_args
from utils_model import save_model, load_model
from utils_data import get_dataloader, get_test_data
import wandb
from PIL import Image
logger = get_logger(__name__)
def unfreeze_layers_unet(unet):
print("Num trainable params unet: ", sum(p.numel() for p in unet.parameters() if p.requires_grad))
return unet
def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, scheduler, epoch):
logger.info("Running validation... ")
device=torch.device('cuda')
model=StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
model=model.to(device)
model.set_progress_bar_config(disable=True)
def predict_cond(model, prompt, seed, condition, img_size):
generator = torch.Generator("cuda").manual_seed(seed)
output = model(prompt=prompt, height=img_size, width=img_size, num_inference_steps=20, generator=generator, controlnet_cond=condition)
image = output[0][0]
return image
test_dataloader=get_test_data(data_dir=args.train_data_dir)
images=[]
for unique in range(2):
seed=unique+1023123789
for prompt, concept in zip(*test_dataloader):
images.append(predict_cond(model=model, prompt=prompt, seed=seed, condition=concept, img_size=args.resolution))
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
if tracker.name == 'wandb':
images = [np.array(image) for image in images]
images = np.concatenate(images, axis=1)
pil_image = Image.fromarray(images)
downsample_factor = 8
downsample_image = pil_image.resize((pil_image.size[0]//downsample_factor, pil_image.size[1]//downsample_factor))
tracker.log({"validation_images": wandb.Image(downsample_image)})
else:
logger.warn(f"image logging not implemented for {tracker.name}")
del model
torch.cuda.empty_cache()
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
os.makedirs(args.output_dir, exist_ok=True)
yaml = YAML()
yaml.dump(vars(args), open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=logging_dir,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
)
if args.use_esd:
load_model(unet, 'baselines/diffusers-nudity-ESDu1-UNET.pt')
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
mlp=model_types[args.model_type](resolution=args.resolution//64)
unet.set_controlnet(mlp)
unet = unfreeze_layers_unet(unet)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
optimizer = torch.optim.Adam(
unet.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="do_not_pad", truncation=True)
input_ids = inputs.input_ids
return input_ids
train_transforms = transforms.Compose(
[
transforms.Resize((args.resolution, args.resolution), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = [example[1] for example in examples]
padded_tokens = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt")
input_conditions = torch.stack([example[2] for example in examples])
return {
"pixel_values": pixel_values,
"input_ids": padded_tokens.input_ids,
"attention_mask": padded_tokens.attention_mask,
"input_conditions": input_conditions,
}
train_dataloader = get_dataloader(args.train_data_dir, batch_size=args.train_batch_size, shuffle=True,
transform=train_transforms, tokenizer=tokenize_captions, collate_fn=collate_fn,
num_workers=4, max_concept_length=100, select=args.select)
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
print('weight_dtype',weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if accelerator.is_main_process:
exp_name = f'{args.output_dir}_prompt_{args.prompt}_lr{str(args.learning_rate)}'
accelerator.init_trackers(
project_name="diffusion-explainer",
config={k:v for k,v in vars(args).items() if k!='config'},
init_kwargs={"wandb": {"name": exp_name}}
)
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
device=torch.device("cuda")
print("Start training")
loss_history=[]
train_loss = 0.0
curious_time=0
global_step = 0
for epoch in range(args.num_train_epochs):
unet.train()
for step, batch in enumerate(train_dataloader):
latents = vae.encode(batch["pixel_values"].to(weight_dtype).to(device)).latent_dist.sample()
latents = latents * 0.18215
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
encoder_hidden_states = text_encoder(batch["input_ids"].to(device))[0]
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, controlnet_cond=batch["input_conditions"].to(device)).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
train_loss += loss.item()
curious_time += timesteps.sum().item()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
global_step += 1
if global_step%1==0:
train_loss = train_loss/1
accelerator.log({"train_loss": train_loss, "lr": lr_scheduler.get_last_lr()[0]}, step=global_step)
loss_history.append(train_loss)
train_loss = 0.0
curious_time = 0
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if not args.skip_evaluation and (global_step)%args.log_every_steps==0:
save_model(unet, args.output_dir+'/unet.pth')
plt.figure()
plt.plot(loss_history)
plt.savefig(args.output_dir+'/loss_history.png')
plt.close()
if epoch%args.log_every_epochs==0:
log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, noise_scheduler, epoch)
save_model(unet, args.output_dir+'/unet.pth')
save_model(unet, args.output_dir+'/unet.pth')
plt.figure()
plt.plot(loss_history)
plt.savefig(args.output_dir+'/loss_history.png')
plt.close()
if __name__ == "__main__":
main()