forked from johschmidt42/PyTorch-2D-3D-UNet-Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visual.py
213 lines (163 loc) · 6.43 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import napari
from transformations import re_normalize
def enable_gui_qt():
"""Performs the magic command %gui qt"""
from IPython import get_ipython
ipython = get_ipython()
ipython.magic('gui qt')
class DatasetViewer:
def __init__(self,
dataset):
self.dataset = dataset
self.index = 0
# napari viewer instance
self.viewer = None
# current image & shape layer
self.image_layer = None
self.label_layer = None
def napari(self):
# IPython magic
enable_gui_qt()
# napari
if self.viewer:
try:
del self.viewer
except AttributeError:
pass
self.index = 0
# Init napari instance
self.viewer = napari.Viewer()
# Show current sample
self.show_sample()
# Key-bindings
# Press 'n' to get the next sample
@self.viewer.bind_key('n')
def next(viewer):
self.increase_index() # Increase the index
self.show_sample() # Show next sample
# Press 'b' to get the previous sample
@self.viewer.bind_key('b')
def prev(viewer):
self.decrease_index() # Decrease the index
self.show_sample() # Show next sample
def increase_index(self):
self.index += 1
if self.index >= len(self.dataset):
self.index = 0
def decrease_index(self):
self.index -= 1
if self.index < 0:
self.index = len(self.dataset) - 1
def show_sample(self):
# Get a sample from the dataset
sample = self.get_sample_dataset(self.index)
x, y = sample
# Get the names from the dataset
names = self.get_names_dataset(self.index)
x_name, y_name = names
x_name, y_name = x_name.name, y_name.name # only possible if pathlib.Path
# Transform the sample to numpy, cpu and correct format to visualize
x = self.transform_x(x)
y = self.transform_y(y)
# Create or update image layer
if self.image_layer not in self.viewer.layers:
self.image_layer = self.create_image_layer(x, x_name)
else:
self.update_image_layer(self.image_layer, x, x_name)
# Create or update label layer
if self.label_layer not in self.viewer.layers:
self.label_layer = self.create_label_layer(y, y_name)
else:
self.update_label_layer(self.label_layer, y, y_name)
# Reset view
self.viewer.reset_view()
def create_image_layer(self, x, x_name):
return self.viewer.add_image(x, name=str(x_name))
def update_image_layer(self, image_layer, x, x_name):
"""Replace the data and the name of a given image_layer"""
image_layer.data = x
image_layer.name = str(x_name)
def create_label_layer(self, y, y_name):
return self.viewer.add_labels(y, name=str(y_name))
def update_label_layer(self, target_layer, y, y_name):
"""Replace the data and the name of a given image_layer"""
target_layer.data = y
target_layer.name = str(y_name)
def get_sample_dataset(self, index):
return self.dataset[index]
def get_names_dataset(self, index):
return self.dataset.inputs[index], self.dataset.targets[index]
def transform_x(self, x):
# make sure it's a numpy.ndarray on the cpu
x = x.cpu().numpy()
# from [C, H, W] to [H, W, C] - only for RGB images.
if self.check_if_rgb(x):
x = np.moveaxis(x, source=0, destination=-1)
# Re-normalize
x = re_normalize(x)
return x
def transform_y(self, y):
# make sure it's a numpy.ndarray on the cpu
y = y.cpu().numpy()
return y
def check_if_rgb(self, x):
# checks if the shape of the first dim (channel dim) is 3
# TODO: Try other methods as a 3D grayscale input image can have 3 modalities -> 3 channels
# TODO: Also think about RGBA images with 4 channels or a combination of a RGB and a grayscale image -> 4 channels
return True if x.shape[0] == 3 else False
def plot_training(training_losses,
validation_losses,
learning_rate,
gaussian=True,
sigma=2,
figsize=(8, 6)
):
"""
Returns a loss plot with training loss, validation loss and learning rate.
"""
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy.ndimage import gaussian_filter
list_len = len(training_losses)
x_range = list(range(1, list_len + 1)) # number of x values
fig = plt.figure(figsize=figsize)
grid = gridspec.GridSpec(ncols=2, nrows=1, figure=fig)
subfig1 = fig.add_subplot(grid[0, 0])
subfig2 = fig.add_subplot(grid[0, 1])
subfigures = fig.get_axes()
for i, subfig in enumerate(subfigures, start=1):
subfig.spines['top'].set_visible(False)
subfig.spines['right'].set_visible(False)
if gaussian:
training_losses_gauss = gaussian_filter(training_losses, sigma=sigma)
validation_losses_gauss = gaussian_filter(validation_losses, sigma=sigma)
linestyle_original = '.'
color_original_train = 'lightcoral'
color_original_valid = 'lightgreen'
color_smooth_train = 'red'
color_smooth_valid = 'green'
alpha = 0.25
else:
linestyle_original = '-'
color_original_train = 'red'
color_original_valid = 'green'
alpha = 1.0
# Subfig 1
subfig1.plot(x_range, training_losses, linestyle_original, color=color_original_train, label='Training',
alpha=alpha)
subfig1.plot(x_range, validation_losses, linestyle_original, color=color_original_valid, label='Validation',
alpha=alpha)
if gaussian:
subfig1.plot(x_range, training_losses_gauss, '-', color=color_smooth_train, label='Training', alpha=0.75)
subfig1.plot(x_range, validation_losses_gauss, '-', color=color_smooth_valid, label='Validation', alpha=0.75)
subfig1.title.set_text('Training & validation loss')
subfig1.set_xlabel('Epoch')
subfig1.set_ylabel('Loss')
subfig1.legend(loc='upper right')
# Subfig 2
subfig2.plot(x_range, learning_rate, color='black')
subfig2.title.set_text('Learning rate')
subfig2.set_xlabel('Epoch')
subfig2.set_ylabel('LR')
return fig