-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
58 lines (46 loc) · 1.85 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import imageio
import torch
import torch.nn.functional as F
import numpy as np
import os, argparse
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from lib.DCNet import Net
from utils.dataloader_edge import test_dataset
import time
size_rates = [100]
model_name = 'DCNet'
times = []
for rate in size_rates:
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=384, help='testing size')
parser.add_argument('--pth_path', type=str, default='your_path/{}/Net-{}.pth'.format(model_name, rate))
for _data_name in ['CAMO','CHAMELEON','COD10K','NC4K']:
data_path = '/your_path/{}/'.format(_data_name)
save_path = '/your_path/{}/Net-{}.pth/{}/'.format(model_name, rate, _data_name)
opt = parser.parse_args()
model = Net()
model.load_state_dict(torch.load(opt.pth_path))
model.cuda()
model.eval()
os.makedirs(save_path, exist_ok=True)
image_root = '{}/Imgs/'.format(data_path)
gt_root = '{}/GT/'.format(data_path)
test_loader = test_dataset(image_root, gt_root, opt.testsize)
for i in range(test_loader.size):
image, gt, name = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
start = time.time()
result = model(image)
end = time.time()
times.append(end - start)
res = result[3]
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
imageio.imwrite(save_path+name, (res*255).astype(np.uint8))
time_sum = 0
for i in times:
time_sum += i
print("FPS: %f" % (len(times)/time_sum))