-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_n_tosfb.py
175 lines (143 loc) · 6.34 KB
/
run_n_tosfb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gym
from environment import TSCEnv
from world import World
from generator import LaneVehicleGenerator, StateOfThreeGenerator,PressureRewardGenerator
from agent.dqn_agent import DQNAgent
from agent.n_tosfb import TOSFB
from metric import TravelTimeMetric, ThroughputMetric, SpeedScoreMetric,MaxWaitingTimeMetric
import argparse
import os
import numpy as np
import logging
from datetime import datetime
import wandb
# parse args
parser = argparse.ArgumentParser(description='Run Example')
parser.add_argument('config_file', type=str, help='path of config file')
parser.add_argument('--thread', type=int, default=1, help='number of threads')
parser.add_argument('--steps', type=int, default=3600, help='number of steps')
parser.add_argument('--action_interval', type=int, default=20, help='how often agent make decisions')
parser.add_argument('--episodes', type=int, default=200, help='training episodes')
parser.add_argument('--save_model', action="store_true", default=False)
parser.add_argument('--load_model', action="store_true", default=False)
parser.add_argument("--save_rate", type=int, default=20, help="save model once every time this many episodes are completed")
parser.add_argument('--save_dir', type=str, default="model/tosfb", help='directory in which model should be saved')
parser.add_argument('--log_dir', type=str, default="log/tosfb", help='directory in which logs should be saved')
args = parser.parse_args()
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
logger = logging.getLogger('main')
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(os.path.join(args.log_dir, datetime.now().strftime('%Y%m%d-%H%M%S') + ".log"))
fh.setLevel(logging.DEBUG)
sh = logging.StreamHandler()
sh.setLevel(logging.INFO)
logger.addHandler(fh)
logger.addHandler(sh)
# create world
world = World(args.config_file, thread_num=args.thread)
# create agents
agents = []
for i in world.intersections:
# define tempo de amarelo
action_space = gym.spaces.Discrete(len(i.phases))
agents.append(TOSFB(
action_space,
LaneVehicleGenerator(world, i, ["lane_count"], in_only=True, average=None),
PressureRewardGenerator(world, i, scale=.005, negative=True),
i,
world
))
if args.load_model:
agents[-1].load_model(args.save_dir)
wandb.init(project='TLC - Results C2',
name='tosfb',
save_code=True,
config={'lr': agents[-1].alpha,
'fourier_order': agents[-1].fourier_order,
'gamma': agents[-1].gamma,
'min_epsilon': agents[-1].min_epsilon,
'lambda': agents[-1].lamb,
'max_nonzero_fourier': agents[-1].max_non_zero_fourier,
'epsilon_decay': agents[-1].epsilon_decay},
group='tosfb')
# Create metric
metric = [TravelTimeMetric(world), ThroughputMetric(world), SpeedScoreMetric(world), MaxWaitingTimeMetric(world)]
# create env
env = TSCEnv(world, agents, metric)
# train dqn_agent
def train(args, env):
total_decision_num = 0
for e in range(args.episodes):
for agent in agents:
agent.reset_traces()
obs = env.reset()
last_obs = obs
for agent_id, agent in enumerate(agents):
last_obs[agent_id] = np.array(last_obs[agent_id], dtype=np.float32)*0.01
if e % args.save_rate == args.save_rate - 1:
env.eng.set_save_replay(True)
env.eng.set_replay_file("replay_%s.txt" % e)
else:
env.eng.set_save_replay(False)
#for agent_id, agent in enumerate(agents):
# agent.obs = obs[agent_id]
episodes_rewards = [0 for i in agents]
td_errors = [0 for i in agents]
episodes_decision_num = 0
i = 0
while i < args.steps:
if i % args.action_interval == 0:
actions = []
for agent_id, agent in enumerate(agents):
if total_decision_num > agent.learning_start:
actions.append(agents[0].get_action(last_obs[agent_id]))
else:
actions.append(agents[0].sample())
rewards_list = []
for _ in range(args.action_interval):
obs, rewards, dones, _ = env.step(actions)
for agent_id, agent in enumerate(agents):
obs[agent_id] = np.array(obs[agent_id], dtype=np.float32)*0.01
i += 1
rewards_list.append(rewards)
rewards = np.mean(rewards_list, axis=0)
for agent_id, agent in enumerate(agents):
agents[0].remember(last_obs[agent_id], actions[agent_id], rewards[agent_id], obs[agent_id])
episodes_rewards[agent_id] += rewards[agent_id]
episodes_decision_num += 1
total_decision_num += 1
td_errors[agent_id] += agent.td_error
last_obs = obs
#if all(dones):
# break
if e % args.save_rate == args.save_rate - 1:
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
#for agent in agents:
agents[0].save_model(args.save_dir)
print(f"episode:{e}/{args.episodes}, epi total decisions: {episodes_decision_num}")
eval_dict = {}
eval_dict["episode"]=e
eval_dict["steps"]=i
for metric in env.metric:
print(f"\t{metric.name}: {metric.eval()}")
eval_dict[metric.name]=metric.eval()
mean_reward = {}
mean_td_error = {}
for agent_id, agent in enumerate(agents):
mean_reward[agent_id] = episodes_rewards[agent_id] / episodes_decision_num
mean_td_error[agent_id] = td_errors[agent_id] / episodes_decision_num
print(f"\tmean reward: {mean_reward[agent_id]}")
print(f"\tmean td error: {mean_td_error[agent_id]}")
eval_dict["epsilon"]=agent.epsilon
eval_dict["mean_episode_reward"]=np.mean(list(mean_reward.values()))
eval_dict['mean_td_error']= np.mean(list(mean_td_error.values()))
wandb.log(eval_dict)
wandb.run.finish()
if __name__ == '__main__':
# simulate
# import os
# os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1'
train(args, env)
#test()