-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocmt_translate.py
272 lines (240 loc) · 9.43 KB
/
docmt_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import argparse
import os
import tqdm
import sys
import torch
from fairseq import utils, hub_utils
import sentencepiece as sp
sys.path.append("/project/jonmay_231/linghaoj/reproduce/concat_models")
import concat_models # noqa: F401
from concat_dataset import collate
from concat_sequence_generator import ConcatSequenceGenerator
from utils import encode, decode, create_context, parse_documents
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--source-file", required=True, help="file to be translated")
parser.add_argument("--docids-file", required=True, help="file with document ids")
parser.add_argument(
"--predictions-file", required=True, help="file to save the predictions"
)
parser.add_argument(
"--reference-file",
default=None,
help="reference file, used if with --gold-target-context",
)
parser.add_argument("--source-lang", default=None)
parser.add_argument("--target-lang", default=None)
parser.add_argument(
"--path", required=True, metavar="FILE", help="path to model file"
)
parser.add_argument(
"--checkpoint_file", default="checkpoint_best.pt", type=str, help="name of the model file"
)
parser.add_argument("--beam", default=5, type=int, metavar="N", help="beam size")
parser.add_argument(
"--max-len-a",
default=0,
type=float,
metavar="N",
help=(
"generate sequences of maximum length ax + b, "
"where x is the source length"
),
)
parser.add_argument(
"--max-len-b",
default=200,
type=int,
metavar="N",
help=(
"generate sequences of maximum length ax + b, "
"where x is the source length"
),
)
parser.add_argument(
"--min-len",
default=1,
type=float,
metavar="N",
help=("minimum generation length"),
)
parser.add_argument(
"--lenpen",
default=1,
type=float,
help="length penalty: <1.0 favors shorter, >1.0 favors longer sentences",
)
parser.add_argument(
"--batch-size",
type=int,
default=8,
help=("number of sentences to inference in parallel"),
)
parser.add_argument(
"--gold-target-context",
default=False,
action="store_true",
help="if set, model will use ground-truth targets as context",
)
parser.add_argument(
"--next-sent-ctx",
default=False,
action="store_true",
help="if set, turn model to 3-1",
)
parser.add_argument("--source-context-size", default=None, type=int)
parser.add_argument("--target-context-size", default=None, type=int)
args = parser.parse_args()
if args.gold_target_context:
assert args.reference_file is not None
# load pretrained model, set eval and send to cuda
pretrained = hub_utils.from_pretrained(
args.path, checkpoint_file=args.checkpoint_file
)
models = pretrained["models"]
for model in models:
model.cuda()
model.eval()
# load dict, params and generator from task
src_dict = pretrained["task"].src_dict
tgt_dict = pretrained["task"].tgt_dict
source_context_size = (
pretrained["task"].args.source_context_size
if args.source_context_size is None
else args.source_context_size
)
target_context_size = (
pretrained["task"].args.target_context_size
if args.target_context_size is None
else args.target_context_size
)
generator = pretrained["task"].build_generator(
models, args, seq_gen_cls=ConcatSequenceGenerator
)
# load sentencepiece models (assume they are in the checkpoint dirs)
if os.path.exists(os.path.join(args.path, "spm.model")):
spm = sp.SentencePieceProcessor()
spm.Load(os.path.join(args.path, "spm.model"))
src_spm = spm
tgt_spm = spm
else:
assert args.source_lang is not None and args.target_lang is not None
src_spm = sp.SentencePieceProcessor()
src_spm.Load(os.path.join(args.path, f"spm.{args.source_lang}.model"))
tgt_spm = sp.SentencePieceProcessor()
tgt_spm.Load(os.path.join(args.path, f"spm.{args.target_lang}.model"))
# load files needed
with open(args.source_file, "r", encoding="utf-8") as src_f:
srcs = [line.strip() for line in src_f]
with open(args.docids_file, "r", encoding="utf-8") as docids_f:
docids = [int(idx) for idx in docids_f]
if args.reference_file is not None:
with open(args.reference_file, "r", encoding="utf-8") as tgt_f:
refs = [line.strip() for line in tgt_f]
else:
refs = [None for _ in srcs]
documents = parse_documents(srcs, refs, docids)
preds = []
ids = []
scores = []
bar = tqdm.tqdm(total=sum(1 for _ in srcs))
src_context_lines = [[] for _ in range(args.batch_size)]
tgt_context_lines = [[] for _ in range(args.batch_size)]
# info necessary to create batches and recreate docs
doc_idx = 0
current_docs = [None for _ in range(args.batch_size)]
current_docs_ids = [-1 for _ in range(args.batch_size)]
current_docs_pos = [0 for _ in range(args.batch_size)]
while True:
batch_map = []
batch_targets = []
samples = []
for idx in range(args.batch_size):
# if any of the docs in the batch has finished replace by a new one
if current_docs[idx] is None or current_docs_pos[idx] >= len(
current_docs[idx]
):
if doc_idx < len(documents):
current_docs[idx] = documents[doc_idx]
current_docs_ids[idx] = doc_idx
current_docs_pos[idx] = 0
src_context_lines[idx] = []
tgt_context_lines[idx] = []
doc_idx += 1
else:
current_docs[idx] = None
continue
src_l, tgt_l = current_docs[idx][current_docs_pos[idx]]
# this is need to be able to remap to
# the correct objects if true batch size < batch_size
# and in order to save the correct target context
batch_map.append(idx)
if args.reference_file is not None:
batch_targets.append(encode(tgt_l, tgt_spm, tgt_dict))
ids.append((current_docs_ids[idx], current_docs_pos[idx]))
# binarize source and create input with context and target
source_noeos = encode(src_l, src_spm, src_dict)
source = torch.stack([*source_noeos, torch.tensor(src_dict.eos())])
src_context = create_context(
src_context_lines[idx],
source_context_size,
break_id=src_dict.index("<brk>"),
eos_id=src_dict.eos(),
)
tgt_context = create_context(
tgt_context_lines[idx],
target_context_size,
break_id=tgt_dict.index("<brk>"),
eos_id=tgt_dict.eos(),
)
if args.next_sent_ctx:
prev_noeos = torch.tensor([]).long()
after_noeos = torch.tensor([]).long()
if current_docs_pos[idx] > 1:
prev_l, _ = current_docs[idx][current_docs_pos[idx]-1]
prev_noeos = encode(prev_l, src_spm, src_dict)
if current_docs_pos[idx] < len(current_docs[idx])-1:
after_l, _ = current_docs[idx][current_docs_pos[idx]+1]
after_noeos = encode(after_l, src_spm, src_dict)
source = torch.stack([*prev_noeos, torch.tensor(src_dict.index("<brk>")), \
*source_noeos, torch.tensor(src_dict.index("<brk>")), \
*after_noeos, torch.tensor(src_dict.eos())])
samples.append(
{
"id": 0,
"src_context": src_context,
"source": source,
"tgt_context": tgt_context,
}
)
src_context_lines[idx].append(source_noeos)
current_docs_pos[idx] += 1
# while exit condition
if all(chat is None for chat in current_docs):
break
# create batch
sample = collate(samples, src_dict.pad(), src_dict.eos())
sample = utils.move_to_cuda(sample)
output = pretrained["task"].inference_step(generator, models, sample)
for batch_idx in range(len(samples)):
# decode hypothesis
hyp_ids = output[batch_idx][0]["tokens"].cpu()
preds.append(decode(hyp_ids, tgt_spm, tgt_dict))
scores.append(output[batch_idx][0]["positional_scores"].cpu().tolist())
# collect output to be prefix for next utterance
idx = batch_map[batch_idx]
if args.gold_target_context:
tgt_context_lines[idx].append(batch_targets[batch_idx])
else:
tgt_context_lines[idx].append(
hyp_ids[:-1] if hyp_ids[-1] == tgt_dict.eos() else hyp_ids
)
bar.update(len(samples))
bar.close()
assert len(preds) == len(ids)
_, preds = zip(*sorted(zip(ids, preds)))
with open(args.predictions_file, "w", encoding="utf-8") as f:
for pred in preds:
print(pred, file=f)
if __name__ == "__main__":
main()