-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhw2.tex
258 lines (182 loc) · 12.1 KB
/
hw2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
\documentclass[a4paper,12pt]{article}
\usepackage{mypreamble}
%% Page setup
\geometry{
margin=2cm,
includehead,
% includefoot,
headsep=\baselineskip,
}
\pagestyle{fancy}
\fancyfoot{}
\MakeDoubleHeader% {<l1>}{<l2>}{<r1>}{<r2>}
{\TextHomeworkEng~\#2}
{Binary Relations}
{\TextDiscreteMathEng}
{\IconFall~Fall 2024}
%% Add custom setup below
%% Macros from physics
\usepackage{physics}
%% Math enquote
\newcommand{\mathenquote}[1]{\text{\enquote{$#1$\kern.3ex}}}
%% Jaccard index
\newcommand{\Jac}{%
\mathrm{Jac}}
%% Colors for the prime factorization
\colorlet{my-green}{green!60!black}
\colorlet{my-blue}{blue!60!black}
%% Definitions
\declaretheorem[numbered=unless unique]{definition}
%% Algorithms
\usepackage[ruled,linesnumbered,vlined]{algorithm2e}
\begin{document}
\selectlanguage{english}
\setlength{\epigraphwidth}{0.4\textwidth}
\epigraph{\textpzc{In der Mathematik ist die Kunst Fragen zu stellen wertvoller als Probleme zu lösen}}{--- Georg Cantor}
\begin{tasks}
%% Task: Check properties of relations.
\item For each given relation $R_i \subseteq {M_i}^2$, determine whether it is \textit{reflexive, irreflexive, coreflexive, symmetric, antisymmetric, asymmetric, transitive, left/right Euclidean, connex}.
Provide a counterexample for each non-complying property (\eg \enquote{transitivity does not hold for $x,y,z = (3,1,2)$}).
Organize your answer in a table (\eg columns \--- relations, rows \--- properties).
\newcommand{\myindex}{\arabic{subtasksi}}
\begin{multicols}{2}
\begin{subtasks}
\item $M_{\myindex} = \Real$ \\
$x \rel[R_{\myindex}] y \iff \abs{x - y} \leq 1$
\item $M_{\myindex} = \powerset{\Set{a,b,c}}$ \\
$R_{\myindex} = \mathenquote{\subseteq}$
\item $M_{\myindex} = \Set{a,b,c,d}$\quad
$\relmatrix{R_{\myindex}} = \begin{bsmallmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bsmallmatrix}$
\item $M_{\myindex} = \Set{\text{\enquote{rock}}, \text{\enquote{scissors}}, \text{\enquote{paper}}}$ \\
$R_{\myindex} = \Set{\Pair{x,y} \given x \text{ beats } y}$
% \item $M_{\myindex} = \Natural$ \\
% $R_{\myindex} = \Set{\Pair{x,y} \given x \equiv y \pmod{7}}$
% \item $M_{\myindex} = \Set{1,2,3,4}$ \\
% $R_{\myindex} = \Set{\Pair{1,3}, \Pair{1,4}, \Pair{2,3}, \Pair{2,4}, \Pair{3,1}, \Pair{3,4}}$
% \item $R_{\relindex} = \Set{\Pair{1,1}, \Pair{2,2}, \Pair{3,3}}$
% \item $R_{\relindex} = \Set{\Pair{3,1}, \Pair{3,2}, \Pair{1,2}}$
% \item $R_{\relindex} = \Set{\Pair{x,y} \given x < y}$
% \item $\relmatrix{R_{\relindex}} = \begin{bsmallmatrix}
% 1 & 0 & 1 \\
% 1 & 1 & 0 \\
% 0 & 0 & 1 \\
% \end{bsmallmatrix}$
% \item $R_{\relindex} = \Set{\Pair{1,3}, \Pair{2,3}, \Pair{3,1}, \Pair{1,2}}$
% \item $R_{\relindex} = \Set{\Pair{3,2}, \Pair{2,2}, \Pair{2,3}, \Pair{3,3}}$
% \item $R_{\relindex} = \Set{\Pair{x,y} \given x^2 + (-y)^3 \congruent[3] 2}$
% \item $\relmatrix{R_{\relindex}} = \begin{bsmallmatrix}
% 0 & 0 & 0 \\
% 0 & 0 & 0 \\
% 1 & 1 & 0 \\
% \end{bsmallmatrix}$
\end{subtasks}
\end{multicols}
%% Task: Prove some statements about relation properties.
\item Prove (rigorously) or disprove (by providing a counterexample) the following statements about arbitrary homogeneous relations $R \subseteq M^2$ and $S \subseteq M^2$:
\begin{multicols}{2}
\begin{subtasks}
\item If $R$ and $S$ are \textit{reflexive}, then $R \intersection S$ is so.
\item If $R$ and $S$ are \textit{symmetric}, then $R \intersection S$ is so.
\item If $R$ and $S$ are \textit{transitive}, then $R \intersection S$ is so.
\item If $R$ and $S$ are \textit{reflexive}, then $R \union S$ is so.
\item If $R$ and $S$ are \textit{symmetric}, then $R \union S$ is so.
\item If $R$ and $S$ are \textit{transitive}, then $R \union S$ is so.
\end{subtasks}
\end{multicols}
%% Task: Explore the equinumerosity relation and quotient set.
\item An equinumerosity relation $\sim$ over sets is defined as follows: $A \sim B \iff \card{A} =\nobreak \card{B}$.
\begin{subtasks}
\item Show that $\sim$ is an equivalence relation over finite sets.
\item Show that $\sim$ is an equivalence relation over infinite sets\footnote{For infinite sets, $\card{A} = \card{B}$ means there is a bijection between $A$ and $B$.}.
\item Find the quotient set of $\powerset{\Set{a,b,c,d}}$ by $\sim$.
\end{subtasks}
%% Task: Explore the Jaccard index.
\item Let $R_{\theta}$ be a relation of $\theta$-similarity (clearly, $\theta \in [0; 1] \subseteq \Real$) of finite non-empty sets defined as follows: a set~$A$ is said to be \textit{$\theta$-similar} to~$B$ \textit{iff} the Jaccard index $\Jac(A,B) = \frac{\card{A \intersection B}}{\card{A \union B}}$ for these sets is at least~$\theta$, \ie $\Pair{A, B} \in R_{\theta} \iff \Jac(A,B) \geq \theta$.
\begin{subtasks}
\item Determine whether $\theta$-similarity is a tolerance relation\footnote{A tolerance relation is a \textit{reflexive} and \textit{symmetric} relation.}.
\item Determine whether $\theta$-similarity is an equivalence relation.
\item Draw the graph of a relation $R_{\theta} \subseteq \Set{A_i}^2$, where $\theta = 0.25$, $A_1 = \Set{1,2,5,6}$, $A_2 = \Set{2,3,4,5,7,9}$, $A_3 = \Set{1,4,5,6}$, $A_4 = \Set{3,7,9}$, $A_5 = \Set{1,5,6,8,9}$.
\end{subtasks}
% % Task: Explore the characteristic function.
% \item The characteristic function~$f_S$ of a set~$S$ is defined as follows:
% \[
% f_S(x) = \begin{cases}
% 1 &\text{if } x \in S \\
% 0 &\text{if } x \notin S
% \end{cases}
% \]
% Let~$A$~and~$B$ be finite sets.
% Show that for all $x \in \universalset$:
% \begin{subtasks}
% \item $f_{\,\overline{A}} (x) = 1 - f_A(x)$
% \item $f_{A \intersection B} (x) = f_A(x) \cdot f_B(x)$
% \item $f_{A \union B} (x) = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x)$
% \item $f_{A \xor B} (x) = f_A(x) + f_B(x) - 2 f_A(x) \cdot f_B(x)$
% \end{subtasks}
% Task: Explore the Boolean product of matrices.
\item Any binary relation $R \subseteq M^2$ can be represented as a zero-one matrix~$\relmatrix{R} = [r_{ij}]$, where the element~$r_{ij}$ is equal to~1 if $\Pair{m_i, m_j} \in R$ and 0~otherwise.
Boolean product of two square matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ is a matrix $C = A \odot B = [c_{ij}]$ defined as follows: $c_{ij} = \biglornolim_{k} (a_{ik} \land b_{kj})$.
A~composition of relations $R$ and~$S$ is a relation $S \circ R$ defined as follows: $\Pair{a,b} \in S \circ R \iff \exists c : \Pair{a,c} \in R \land \Pair{c,b} \in S$.
Show that the matrix representation of the composition of relations $R$ and~$S$ is equal to the Boolean product of the corresponding matrices, \ie $\relmatrix{S \circ R} = \relmatrix{R} \odot \relmatrix{S}$.
% Task: Find the error in the "proof".
\item Find the error in the \enquote{proof} of the following \enquote{theorem}.
\smallskip
\enquote{\textit{Theorem}}: Let $R$ be a relation on a set $A$ that is symmetric and transitive. Then $R$ is reflexive.
\smallskip
\enquote{\textit{Proof}}: Let $a \in A$. Take an element $b \in A$ such that $\Pair{a, b} \in R$. Because $R$ is symmetric, we also have $\Pair{b, a} \in R$. Now using the transitive property, we can conclude that $\Pair{a, a} \in R$ because $\Pair{a, b} \in R$ and $\Pair{b, a} \in R$.
% Task: Explore the closures.
\item Give an example of a relation $R$ on the set $\Set{a, b, c}$ such that the symmetric closure of the reflexive closure of the
transitive closure of~$R$ is not transitive.
% Task: Explore the equivalence classes.
\item Let R be the relation on the set of all colorings of the $2 \times 2$ checkerboard where each of the four squares is colored either \textit{red} or \textit{blue} so that $\Pair{C_1, C_2}$, where $C_1$ and~$C_2$ are $2 \times 2$ checkerboards with each of their four squares colored blue or red, belongs to~$R$ if and only if $C_2$ can be obtained from~$C_1$ either by rotating the checkerboard or by rotating it and then reflecting it.
\begin{subtasks}
\item Show that $R$ is an equivalence relation.
\item What are the equivalence classes of $R$?
\end{subtasks}
% Task: Explore the inverse of a composition.
\item Consider two relations $R \subseteq A \times B$ and $S \subseteq B \times C$.
Prove that $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.
% Task: Composition of injections and surjections.
\item Prove or disprove the following statements about the functions $f$ and $g$:
\begin{subtasks}
\item If $f$ and $g$ are injections, then $g \circ f$ is also an injection.
\item If $f$ and $g$ are surjections, then $g \circ f$ is also a surjection.
\item If $f$ and $f \circ g$ are injections, then $g$ is also an injection.
\item If $f$ and $f \circ g$ are surjections, then $g$ is also a surjection.
\end{subtasks}
%% Task: Explore the divisibility relation.
\item Let $H = \Set{1, 2, 4, 5, 10, 12, 20}$.
Consider a divisibility relation $R \subseteq H^2$ defined as follows: $x \rel y \iff y \divby x$.
\begin{subtasks}
\item Sort $R$ (as a set of pairs) lexicographically\footnote{Lexicographic order for pairs: $\Pair{a,b} \preceq \Pair{a',b'} \iff (a < a') \lor ((a = a') \land (b \leq b'))$. For example, $\Pair{1,2} \preceq \Pair{1,3} \preceq \Pair{2,1}$.}.
\item Show that $R$ is a partial order.
\item Determine whether $R$ is a linear (total) order.
\item Draw the Hasse diagram for a graded poset $\Triple{H, R, \rho}$, where $\rho \colon H \to \NaturalZero$ is a grading function which maps a number $n \in H$ to the sum of all exponents appearing in its prime factorization, \eg $\rho(20) = \rho(2^{\mathcolor{my-green}{2}} \cdot 5^{\textcolor{my-blue}{1}}) = \mathcolor{my-green}{2} + \textcolor{my-blue}{1} = 3$, so the number 20 would have the 3rd rank (bottom-up).
\item Find the minimal, minimum (least), maximal and maximum (greatest) elements in the poset~$\Pair{H, R}$.
If there are multiple or none, explain why.
\item Perform a topological sort\Href{https://en.wikipedia.org/wiki/Topological_sorting} of the poset $\Pair{H, R}$.
\end{subtasks}
% Task: Explore the transitive closure.
\item Prove that the transitive closure $R^{+}$ is in fact transitive.
\begin{definition}
$R^{+} = \bigunionclap{n \in \NaturalPlus} R^n$ is a \textit{transitive closure} of $R \subseteq M^2$, where
\begin{terms}
\item $R^{k+1} = R^k \circ R$ is a compositional (functional) power\footnote{Note: this \emph{is not a Cartesian power}, despite of the same notation~$R^n$. Another possible notation for compositional power~is~$R^{\circ n}$, but it is too wild to use it here.},
\item $R^1 = R$,
\item $S \circ R = \Set{\Pair{x,y} \given \exists z : (x \rel[R] z) \land (z \rel[S] y)}$ is a composition (relative product) of relations $R$ and $S$.
\end{terms}
\end{definition}
% Task: Refinement relation over partitions is a lattice.
\item Given a set $S$ and two partitions $P_1$ and $P_2$ of~$S$, we define the relation $P_1 \preceq P_2$ as follows: partition~$P_1$ is considered a \textit{refinement} of the partition~$P_2$ if every set in~$P_1$ is a subset of one of the sets in~$P_2$.
Show that the set of all partitions of a set~$S$ with the refinement relation~$\preceq$ is a lattice.
% Task: Well-founded relation.
\item A poset $\Pair{R, \preceq}$ is \emph{well-founded} if there is no infinite decreasing sequence of elements in the poset, that is, elements $x_1, x_2, \dots, x_n$ such that $\dots \prec x_n \prec \dots \prec x_2 \prec x_1$.
Determine whether the set of strings of lowercase English letters with lexicographic order is well-founded.
% \item \dots
\end{tasks}
\end{document}