-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_supcon_mixup.py
428 lines (341 loc) · 16 KB
/
main_supcon_mixup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os
import argparse
import torch
import warnings
warnings.filterwarnings('ignore')
import numpy as np
from torch import nn
import sys
from utils import *
from tqdm import tqdm
from dataset1 import Lung3D_eccv_patient_supcon
from torch.utils.data import DataLoader
import torch.nn.functional as F
from visualize import Visualizer
from torchnet import meter
from datetime import datetime
from sklearn.metrics import precision_score, recall_score, f1_score
from models.ResNet import SupConResNet
import torch.backends.cudnn as cudnn
import random
import math
print("torch = {}".format(torch.__version__))
IMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
parser = argparse.ArgumentParser()
parser.add_argument('--visname', '-vis', default='try2', help='visname')
parser.add_argument('--batch_size', '-bs', default=8, type=int, help='batch_size')
parser.add_argument('--lr', '-lr', default=1e-4, type=float, help='lr')
parser.add_argument('--epochs', '-eps', default=100, type=int, help='epochs')
parser.add_argument('--n_classes', '-n_cls', default=2, type=int, help='n_classes')
parser.add_argument('--pretrain', '-pre', default=True, type=bool, help='use pretrained')
parser.add_argument('--supcon', '-con', default=False, type=bool, help='use supcon')
parser.add_argument('--mixup', '-mix', default=False, type=bool, help='use mix')
parser.add_argument('--box_lung', '-box_lung', default=False, type=bool, help='data box lung')
parser.add_argument('--seg_sth', '-seg_something', default=None, type=str, help='lung or lesion, cat to input')
parser.add_argument('--iccv_test', '-iccv_test', default=False, type=bool, help='use iccv test as train')
parser.add_argument('--weighted_loss', '-wl', default=True, type=bool, help='weighted ce loss')
parser.add_argument('--mosmed', '-mm', default=False, type=bool, help='use mosmed in challenge 2')
parser.add_argument('--model', '-model', default='resnest50_3D', type=str, help='use mosmed in challenge 2')
parser.add_argument('--val_certain_epoch', '-val_certain_epoch', default=False, type=str, help='use mosmed in challenge 2')
parser.add_argument('--optimizer', '-optim', default='adam', type=str, help='use mosmed in challenge 2')
best_f1 = 0
val_epoch = 1
save_epoch = 10
my_whole_seed = 0
torch.manual_seed(my_whole_seed)
torch.cuda.manual_seed_all(my_whole_seed)
torch.cuda.manual_seed(my_whole_seed)
np.random.seed(my_whole_seed)
random.seed(my_whole_seed)
cudnn.deterministic = True
cudnn.benchmark = False
def parse_args():
global args
args = parser.parse_args()
def get_lr(cur, epochs):
if cur < int(epochs * 0.3):
lr = args.lr
elif cur < int(epochs * 0.8):
lr = args.lr * 0.1
else:
lr = args.lr * 0.01
return lr
def get_dynamic_lr(cur, epochs):
power = 0.9
lr = args.lr * (1 - cur / epochs) ** power
return lr
def mixup_data(x, y, alpha=1.0, use_cuda=True):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.
batch_size = x.size()[0]
device = x.get_device()
if use_cuda:
index = torch.randperm(batch_size).to(device).long()
else:
index = torch.randperm(batch_size).long()
mixed_x = (lam * x + (1 - lam) * x[index,:]).clone()
y_a, y_b = y, y[index]
return mixed_x, y_a.long(), y_b.long(), lam
def mixup_criterion(y_a, y_b, lam):
return lambda criterion, pred: lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)/1048576
def main():
print(torch.cuda.device_count())
global best_f1
global save_dir
parse_args()
if args.seg_sth:
ipt_dim=2
else:
ipt_dim=1
# prepare the model
target_model = SupConResNet(name=args.model, ipt_dim=ipt_dim, head='mlp', feat_dim=128,
n_classes=2, supcon=args.supcon)
if args.supcon:
s1 = target_model.sigma1
s2 = target_model.sigma2
if args.n_classes == 4:
if args.model == 'P3DCResNet50' or args.model == 'medicalnet_resnet50':
target_model.encoder.classifier = nn.Linear(2048,4)
elif args.model == 'medicalnet_resnet34':
target_model.encoder.classifier = nn.Linear(512,4)
else:
target_model.encoder.fc = nn.Linear(2048,4)
if args.pretrain:
ckpt = torch.load(' path to pth')
state_dict = ckpt['net']
unParalled_state_dict = {}
for key in state_dict.keys():
unParalled_state_dict[key.replace("module.", "")] = state_dict[key]
target_model.load_state_dict(unParalled_state_dict,strict=False)
print('Params: ', count_parameters(target_model))
target_model = nn.DataParallel(target_model)
target_model = target_model.cuda()
# prepare data
train_data = Lung3D_eccv_patient_supcon(train=True,val=False,n_classes=args.n_classes, supcon=args.supcon,
box_lung=args.box_lung, seg_sth=args.seg_sth, iccv_test=args.iccv_test, add_mosmed=args.mosmed)
val_data = Lung3D_eccv_patient_supcon(train=False,val=True,n_classes=args.n_classes, supcon=args.supcon,
box_lung=args.box_lung, seg_sth=args.seg_sth, iccv_test=args.iccv_test, add_mosmed=args.mosmed)
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=8,pin_memory=True,drop_last=True)
val_loader = DataLoader(val_data, batch_size=args.batch_size, shuffle=False, num_workers=8,pin_memory=True)
criterion = SupConLoss(temperature=0.1)
criterion = criterion.cuda()
if args.n_classes==4:
if args.weighted_loss:
if args.mosmed:
weight = torch.tensor([0.0931, 0.0985, 0.1433, 0.6651]).cuda() #add mosmed
# weight = torch.tensor([1., 1., 1., 2.]).cuda() #add mosmed
else:
weight = torch.tensor([0.1506, 0.2065, 0.1506, 0.4923]).cuda()
# weight = torch.tensor([1., 1., 1., 2.]).cuda()
else:
weight=None
else:
weight = None
print(weight)
criterion_clf = nn.CrossEntropyLoss(weight=weight)
criterion_clf = criterion_clf.cuda()
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(target_model.parameters(), args.lr, weight_decay=1e-5)
elif args.optimizer == 'sgd':
optimizer = torch.optim.SGD(target_model.parameters(), args.lr, momentum=0.9, weight_decay=1e-5)
con_matx = meter.ConfusionMeter(args.n_classes)
save_dir = './checkpoints/con/'+ str(args.visname)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
test_log=open('./logs/'+args.visname+'.txt','w')
if args.val_certain_epoch:
# weight_dir = 'checkpoints/con/*grade_resnest50_con64_mix_catlesion/62.pkl'
weight_dir = 'checkpoints/con/grade_resnest50_con64_mix_catlung_1/58.pkl'
epoch = int(weight_dir.split('/')[-1].split('.')[0])
checkpoint = torch.load(weight_dir)
state_dict = checkpoint['net']
target_model.load_state_dict(state_dict, strict=True)
val_log=open('./logs/val.txt','w')
val1(target_model,val_loader,epoch,val_log,args.optimizer)
exit()
# train the model
initial_epoch = 0
for epoch in range(initial_epoch, args.epochs):
target_model.train()
con_matx.reset()
total_loss1 = .0
total_loss2 = .0
total_loss3 = .0
total = .0
correct = .0
count = .0
total_num = .0
# lr = args.lr
lr = get_lr(epoch, args.epochs)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
pred_list = []
label_list = []
pbar = tqdm(train_loader, ascii=True)
for i, (imgs, masks, labels, ID) in enumerate(pbar):
if args.supcon:
imgs = torch.cat([imgs[0],imgs[1]],dim=0) #2*bsz,256,256
#lqq: img.shape - [8, 1, 64, 256, 256]
imgs = imgs.unsqueeze(1).float().cuda() #2*bsz,1,256,256 ?
# imgs = imgs.repeat(1,3,1,1,1)
if args.seg_sth:
if args.supcon:
masks = torch.cat([masks[0], masks[1]],dim=0) #2*bsz,256,256
masks = masks.unsqueeze(1).float().cuda() #2*bsz,1,256,256
imgs = torch.cat([imgs, masks], dim=1) # 2*bs, 2, 128,256,256
# lqq: label.shape - [8]
labels = labels.float().cuda()
bsz = labels.shape[0]
## mixup
if args.mixup:
if args.supcon:
lam = 0.4
target_labels = torch.cat([labels, labels],dim=0)
mix_imgs, targets_a, targets_b, lam = mixup_data(imgs, target_labels, lam)
_, _, mix_pred = target_model(mix_imgs)
mix_pred1, mix_pred2 = torch.split(mix_pred, [bsz, bsz], dim=0) #bsz,n_classs
targets_a1, targets_a2 = torch.split(targets_a, [bsz, bsz], dim=0) #bsz,n_classs
targets_b1, targets_b2 = torch.split(targets_b, [bsz, bsz], dim=0) #bsz,n_classs
mix_pred1 = F.softmax(mix_pred1)
mix_pred2 = F.softmax(mix_pred2)
_, mix_predicted1 = mix_pred1.max(1)
_, mix_predicted2 = mix_pred2.max(1)
loss_func1 = mixup_criterion(targets_a1, targets_b1, lam)
loss_mixup1 = loss_func1(criterion_clf, mix_pred1)
loss_func2 = mixup_criterion(targets_a2, targets_b2, lam)
loss_mixup2 = loss_func1(criterion_clf, mix_pred2)
loss_mix = 0.5*loss_mixup1+0.5*loss_mixup2
else:
lam = 0.4
target_labels = labels
#print(imgs.shape)
mix_imgs, targets_a, targets_b, lam = mixup_data(imgs, target_labels, lam)
_, mix_pred = target_model(mix_imgs)
mix_pred = F.softmax(mix_pred)
_, predicted = mix_pred.max(1)
loss_func = mixup_criterion(targets_a, targets_b, lam)
loss_mixup = loss_func(criterion_clf, mix_pred)
loss_mix = loss_mixup
# pred_list.append(predicted.cpu().detach())
# label_list.append(labels.cpu().detach())
# if not args.mixup: # mixup only
#lqq: pred.shape - [8,2]
_, features, pred = target_model(imgs) #2*bsz,128 #2*bsz,n_class
if args.supcon:
f1, f2 = torch.split(features, [bsz, bsz], dim=0) #bsz,128
features = torch.cat([f1.unsqueeze(1),f2.unsqueeze(1)],dim=1) #bsz,2,128
loss_con = criterion(features,labels)
pred1, pred2 = torch.split(pred, [bsz, bsz], dim=0) #bsz,n_classs
pred1 = F.softmax(pred1)
pred2 = F.softmax(pred2)
con_matx.add(pred1.detach(),labels.detach())
con_matx.add(pred2.detach(),labels.detach())
_, predicted1 = pred1.max(1)
_, predicted2 = pred2.max(1)
loss_clf = 0.5*criterion_clf(pred1,labels.long())+0.5*criterion_clf(pred2,labels.long())
pred_list.append(predicted1.cpu().detach())
label_list.append(labels.cpu().detach())
pred_list.append(predicted2.cpu().detach())
label_list.append(labels.cpu().detach())
else:
pred = F.softmax(pred)
con_matx.add(pred.detach(),labels.detach())
# predicted.shape - [8]
_, predicted = pred.max(1)
loss_clf = criterion_clf(pred,labels.long())
pred_list.append(predicted.cpu().detach())
label_list.append(labels.cpu().detach())
if args.mixup and not args.supcon:
loss = loss_mix #+ loss_clf
loss_con = torch.zeros_like(loss)
loss_clf = torch.zeros_like(loss)
elif args.supcon and not args.mixup:
loss = torch.exp(-s1)*loss_con+s1+torch.exp(-s2)*loss_clf+s2
loss_mix = torch.zeros_like(loss)
elif args.supcon and args.mixup:
loss = torch.exp(-s1)*loss_con+s1+torch.exp(-s2)*(loss_mix + loss_clf)+s2
else:
loss = loss_clf
loss_con = torch.zeros_like(loss)
loss_mix = torch.zeros_like(loss)
total_loss1 += loss_con.item()
total_loss2 += loss_clf.item()
total_loss3 += loss_mix.item()
if args.supcon:
total += 2 * bsz
correct += predicted1.eq(labels.long()).sum().item()
correct += predicted2.eq(labels.long()).sum().item()
else:
total += bsz
correct += predicted.eq(labels.long()).sum().item()
count += 1
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_description('loss: %.3f' % (total_loss3 / (i+1))+' acc: %.3f' % (correct/total))
test_log.write('Epoch:%d lr:%.5f Loss_con:%.4f Loss_clf:%.4f Loss_mix:%.4f acc:%.4f \n'%(epoch, lr, total_loss1 / count, total_loss2 / count, total_loss3 / count, correct/total))
test_log.flush()
if (epoch + 1) % val_epoch == 0:
val1(target_model,val_loader,epoch,test_log, optimizer)
if args.supcon:
print(torch.exp(-s1).item(),torch.exp(-s2).item())
@torch.no_grad()
def val1(net, val_loader, epoch,test_log, optimizer):
global best_f1
parse_args()
net = net.eval()
correct = .0
total = .0
con_matx = meter.ConfusionMeter(args.n_classes)
pred_list = []
label_list = []
# total_ = []
# label_ = []
pbar = tqdm(val_loader, ascii=True)
for i, (data, masks, label,id) in enumerate(pbar):
data = data.unsqueeze(1)
# data = data.repeat(1,3,1,1,1)
data = data.float().cuda()
label = label.float().cuda()
if args.seg_sth:
masks = masks.unsqueeze(1)
masks = masks.float().cuda()
data = torch.cat([data, masks], dim=1)
_, feat, pred = net(data)
pred = F.softmax(pred)
_, predicted = pred.max(1)
pred_list.append(predicted.cpu().detach())
label_list.append(label.cpu().detach())
total += data.size(0)
correct += predicted.eq(label.long()).sum().item()
con_matx.add(predicted.detach(),label.detach())
pbar.set_description(' acc: %.3f'% (100.* correct / total))
recall = recall_score(torch.cat(label_list).numpy(), torch.cat(pred_list).numpy(),average=None)
precision = precision_score(torch.cat(label_list).numpy(), torch.cat(pred_list).numpy(),average=None)
f1 = f1_score(torch.cat(label_list).numpy(), torch.cat(pred_list).numpy(),average='macro')
f1_4 = f1_score(torch.cat(label_list).numpy(), torch.cat(pred_list).numpy(),average=None)
print(correct, total)
acc = 100.* correct/total
print('val epoch:', epoch, ' val acc: ', acc, 'recall:', recall, "precision:", precision, "f1_macro:",f1, 'f1:', f1_4)
print(str(con_matx.value()))
test_log.write('Val Epoch:%d Accuracy:%.4f f1:%.4f con:%s \n'%(epoch,acc, f1, str(con_matx.value())))
test_log.flush()
if not args.val_certain_epoch:
if f1 >= best_f1:
print('Saving..')
state = {
'net': net.state_dict(),
'f1': f1,
'epoch': epoch,
'optimizer': optimizer.state_dict()
}
save_name = os.path.join(save_dir, str(epoch) + '.pkl')
torch.save(state, save_name)
best_f1 = f1
if __name__ == "__main__":
main()