-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcst_bert_seq.py
278 lines (225 loc) · 10.8 KB
/
cst_bert_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import random
import time
import warnings
import sys
import argparse
import copy
import torch
import torch.nn.parallel
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD
import torch.utils.data
from torch.utils.data import DataLoader
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torch.nn.functional as F
from transformers import BertModel, BertTokenizer
sys.path.append('.')
from thl_utils_srcacc import MarginDisparityDiscrepancy, BertClassifier_seq
from dataloader import Amazon_Dataset
import dalib.vision.models as models
from tools.utils import AverageMeter, ProgressMeter, accuracy, ForeverDataIterator
from tools.transforms import ResizeImage
from tools.lr_scheduler import StepwiseLR
import os
torch.cuda.set_device(3)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def EntropyLoss(predict_prob, class_level_weight=None, instance_level_weight=None, epsilon=1e-20):
N, C = predict_prob.size()
if class_level_weight is None:
class_level_weight = 1.0
else:
if len(class_level_weight.size()) == 1:
class_level_weight = class_level_weight.view(1, class_level_weight.size(0))
assert class_level_weight.size(1) == C, 'fatal error: dimension mismatch!'
if instance_level_weight is None:
instance_level_weight = 1.0
else:
if len(instance_level_weight.size()) == 1:
instance_level_weight = instance_level_weight.view(instance_level_weight.size(0), 1)
assert instance_level_weight.size(0) == N, 'fatal error: dimension mismatch!'
entropy = -predict_prob*torch.log(predict_prob + epsilon)
return torch.sum(instance_level_weight * entropy * class_level_weight) / float(N)
def main(args: argparse.Namespace):
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_source_dataset = Amazon_Dataset(root=args.root, domain=args.source)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
train_target_dataset = Amazon_Dataset(root=args.root, domain=args.target)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
val_dataset = Amazon_Dataset(root=args.root, domain=args.target)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
train_source_iter = ForeverDataIterator(train_source_loader)
train_target_iter = ForeverDataIterator(train_target_loader)
# create model
backbone = BertModel.from_pretrained('bert-base-uncased')
num_classes = train_source_dataset.num_classes
classifier = BertClassifier_seq(backbone, num_classes, bottleneck_dim=args.bottleneck_dim,
width=args.bottleneck_dim).to(device)
mdd = MarginDisparityDiscrepancy(args.margin).to(device)
# define optimizer and lr_scheduler
# The learning rate of the classifiers are set 10 times to that of the feature extractor by default.
optimizer = SGD(classifier.get_parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd, nesterov=True)
lr_scheduler = StepwiseLR(optimizer, init_lr=args.lr, gamma=args.lr_gamma, decay_rate=0.75)
# start training
best_acc1 = 0.
best_model = classifier.state_dict()
for epoch in range(args.epochs):
# train for one epoch
train(train_source_iter, train_target_iter, classifier, mdd, optimizer,
lr_scheduler, epoch, args)
# evaluate on validation set
acc1 = validate(val_loader, classifier, args)
# remember best acc@1 and save checkpoint
if acc1 > best_acc1:
best_model = copy.deepcopy(classifier.state_dict())
best_acc1 = max(acc1, best_acc1)
print("best_acc1 = {:3.1f}".format(best_acc1))
# evaluate on test set
classifier.load_state_dict(best_model)
acc1 = validate(test_loader, classifier, args)
print("test_acc1 = {:3.1f}".format(acc1))
def train(train_source_iter: ForeverDataIterator, train_target_iter: ForeverDataIterator,
classifier: BertClassifier_seq, mdd: MarginDisparityDiscrepancy, optimizer: SGD,
lr_scheduler: StepwiseLR, epoch: int, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':3.1f')
data_time = AverageMeter('Data', ':3.1f')
losses = AverageMeter('Loss', ':3.2f')
trans_losses = AverageMeter('Trans Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
tgt_accs = AverageMeter('Tgt Acc', ':3.1f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, trans_losses, cls_accs, tgt_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
classifier.train()
mdd.train()
criterion = nn.CrossEntropyLoss().to(device)
end = time.time()
for i in range(args.iters_per_epoch):
lr_scheduler.step()
optimizer.zero_grad()
# measure data loading time
data_time.update(time.time() - end)
x_s, labels_s = next(train_source_iter)
x_t, labels_t = next(train_target_iter)
x_s = x_s.to(device)
x_t = x_t.to(device)
labels_s = labels_s.to(device)
labels_t = labels_t.to(device)
# print(x_s.shape)
# print(labels_s)
# compute output
x = torch.cat((x_s, x_t), dim=0)
outputs, outputs_adv, outputs_s = classifier(x)
y_s, y_t = outputs.chunk(2, dim=0)
y_s_adv, y_t_adv = outputs_adv.chunk(2, dim=0)
y_s_s, y_t_s = outputs_s.chunk(2, dim=0)
# compute cross entropy loss on source domain
cls_loss = criterion(y_s, labels_s) + 0.1 * criterion(y_s_s, labels_s)
# compute margin disparity discrepancy between domains
transfer_loss = mdd(y_s, y_s_adv, y_t, y_t_adv)
loss = cls_loss + transfer_loss * args.trade_off
classifier.step()
cls_acc = accuracy(y_s, labels_s)[0]
tgt_acc = accuracy(y_t, labels_t)[0]
losses.update(loss.item(), x_s.size(0))
cls_accs.update(cls_acc.item(), x_s.size(0))
tgt_accs.update(tgt_acc.item(), x_t.size(0))
trans_losses.update(transfer_loss.item(), x_s.size(0))
# compute gradient and do SGD step
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def validate(val_loader: DataLoader, model: BertClassifier_seq, args: argparse.Namespace) -> float:
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.to(device)
target = target.to(device)
# compute output
output, _,_ = model(images)
loss = F.cross_entropy(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 1))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
if __name__ == '__main__':
architecture_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])
)
parser = argparse.ArgumentParser(description='PyTorch Domain Adaptation')
parser.add_argument('root', metavar='DIR',
help='root path of dataset')
parser.add_argument('-s', '--source', help='source domain(s)')
parser.add_argument('-t', '--target', help='target domain(s)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=architecture_names,
help='backbone architecture: ' +
' | '.join(architecture_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N',
help='mini-batch size (default: 32)')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0.0, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('-i', '--iters-per-epoch', default=1000, type=int,
help='Number of iterations per epoch')
parser.add_argument('--margin', type=float, default=4., help="margin gamma")
parser.add_argument('--bottleneck-dim', default=1024, type=int)
parser.add_argument('--center-crop', default=False, action='store_true')
parser.add_argument('--trade-off', default=1., type=float,
help='the trade-off hyper-parameter for transfer loss')
parser.add_argument('--lr-gamma', default=0.0002, type=float)
args = parser.parse_args()
print(args)
main(args)