-
Notifications
You must be signed in to change notification settings - Fork 15
/
demo.py
82 lines (73 loc) · 3.63 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
import yaml
import json
import os
from Simulation.TP_with_recovery import TokenPassingRecovery
import RoothPath
from Simulation.tasks_and_delays_maker import *
from Simulation.simulation_new_recovery import SimulationNewRecovery
import subprocess
import sys
if __name__ == '__main__':
#random.seed(1234)
parser = argparse.ArgumentParser()
parser.add_argument('-k', help='Robustness parameter for k-TP', default=None, type=int)
parser.add_argument('-p', help='Robustness parameter for p-TP', default=None, type=float)
parser.add_argument('-pd', help='Expected probability of an agent of being delayed at any time step (p-TP)',
default=0.02, type=float)
parser.add_argument('-p_iter', help='Number of times a new path can be recalculated if the one calculated '
'before exceeds the probability threshold (p-TP)',
default=1, type=int)
parser.add_argument('-a_star_max_iter', help='Maximum number of states explored by the low-level algorithm',
default=5000, type=int)
parser.add_argument('-slow_factor', help='Slow factor of visualization', default=1, type=int)
parser.add_argument('-not_rand', help='Use if input has fixed tasks and delays', action='store_true')
args = parser.parse_args()
if args.k is None:
args.k = 0
if args.p is None:
args.p = 1
with open(os.path.join(RoothPath.get_root(), 'config.json'), 'r') as json_file:
config = json.load(json_file)
args.param = os.path.join(RoothPath.get_root(), os.path.join(config['input_path'], config['input_name']))
args.output = os.path.join(RoothPath.get_root(), 'output.yaml')
# Read from input file
with open(args.param, 'r') as param_file:
try:
param = yaml.load(param_file, Loader=yaml.FullLoader)
except yaml.YAMLError as exc:
print(exc)
dimensions = param['map']['dimensions']
obstacles = param['map']['obstacles']
non_task_endpoints = param['map']['non_task_endpoints']
agents = param['agents']
if args.not_rand:
# Old fixed tasks and delays
tasks = param['tasks']
delays = param['delays']
else:
# Generate random tasks and delays
tasks, delays = gen_tasks_and_delays(agents, param['map']['start_locations'], param['map']['goal_locations'],
param['n_tasks'], param['task_freq'], param['n_delays_per_agent'])
param['tasks'] = tasks
param['delays'] = delays
with open(args.param + config['visual_postfix'], 'w') as param_file:
yaml.safe_dump(param, param_file)
# Simulate
simulation = SimulationNewRecovery(tasks, agents, delays=delays)
tp = TokenPassingRecovery(agents, dimensions, obstacles, non_task_endpoints, simulation,
a_star_max_iter=args.a_star_max_iter, k=args.k,
replan_every_k_delays=False, pd=args.pd, p_max=args.p, p_iter=args.p_iter,
new_recovery=True)
while tp.get_completed_tasks() != len(tasks):
simulation.time_forward(tp)
cost = 0
for path in simulation.actual_paths.values():
cost = cost + len(path)
output = {'schedule': simulation.actual_paths, 'cost': cost,
'completed_tasks_times': tp.get_completed_tasks_times(),
'n_replans': tp.get_n_replans()}
with open(args.output, 'w') as output_yaml:
yaml.safe_dump(output, output_yaml)
create = [sys.executable, '-m', 'Utils.Visualization.visualize', '-slow_factor', str(args.slow_factor)]
subprocess.call(create)