forked from njh/EtherCard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
enc28j60.cpp
772 lines (670 loc) · 23.4 KB
/
enc28j60.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
// Microchip ENC28J60 Ethernet Interface Driver
// Author: Guido Socher
// Copyright: GPL V2
//
// Based on the enc28j60.c file from the AVRlib library by Pascal Stang.
// For AVRlib See http://www.procyonengineering.com/
// Used with explicit permission of Pascal Stang.
//
// 2010-05-20 <[email protected]>
#if ARDUINO >= 100
#include <Arduino.h> // Arduino 1.0
#else
#include <Wprogram.h> // Arduino 0022
#endif
#include "enc28j60.h"
uint16_t ENC28J60::bufferSize;
bool ENC28J60::broadcast_enabled = false;
bool ENC28J60::promiscuous_enabled = false;
// ENC28J60 Control Registers
// Control register definitions are a combination of address,
// bank number, and Ethernet/MAC/PHY indicator bits.
// - Register address (bits 0-4)
// - Bank number (bits 5-6)
// - MAC/PHY indicator (bit 7)
#define ADDR_MASK 0x1F
#define BANK_MASK 0x60
#define SPRD_MASK 0x80
// All-bank registers
#define EIE 0x1B
#define EIR 0x1C
#define ESTAT 0x1D
#define ECON2 0x1E
#define ECON1 0x1F
// Bank 0 registers
#define ERDPT (0x00|0x00)
#define EWRPT (0x02|0x00)
#define ETXST (0x04|0x00)
#define ETXND (0x06|0x00)
#define ERXST (0x08|0x00)
#define ERXND (0x0A|0x00)
#define ERXRDPT (0x0C|0x00)
// #define ERXWRPT (0x0E|0x00)
#define EDMAST (0x10|0x00)
#define EDMAND (0x12|0x00)
// #define EDMADST (0x14|0x00)
#define EDMACS (0x16|0x00)
// Bank 1 registers
#define EHT0 (0x00|0x20)
#define EHT1 (0x01|0x20)
#define EHT2 (0x02|0x20)
#define EHT3 (0x03|0x20)
#define EHT4 (0x04|0x20)
#define EHT5 (0x05|0x20)
#define EHT6 (0x06|0x20)
#define EHT7 (0x07|0x20)
#define EPMM0 (0x08|0x20)
#define EPMM1 (0x09|0x20)
#define EPMM2 (0x0A|0x20)
#define EPMM3 (0x0B|0x20)
#define EPMM4 (0x0C|0x20)
#define EPMM5 (0x0D|0x20)
#define EPMM6 (0x0E|0x20)
#define EPMM7 (0x0F|0x20)
#define EPMCS (0x10|0x20)
// #define EPMO (0x14|0x20)
#define EWOLIE (0x16|0x20)
#define EWOLIR (0x17|0x20)
#define ERXFCON (0x18|0x20)
#define EPKTCNT (0x19|0x20)
// Bank 2 registers
#define MACON1 (0x00|0x40|0x80)
#define MACON3 (0x02|0x40|0x80)
#define MACON4 (0x03|0x40|0x80)
#define MABBIPG (0x04|0x40|0x80)
#define MAIPG (0x06|0x40|0x80)
#define MACLCON1 (0x08|0x40|0x80)
#define MACLCON2 (0x09|0x40|0x80)
#define MAMXFL (0x0A|0x40|0x80)
#define MAPHSUP (0x0D|0x40|0x80)
#define MICON (0x11|0x40|0x80)
#define MICMD (0x12|0x40|0x80)
#define MIREGADR (0x14|0x40|0x80)
#define MIWR (0x16|0x40|0x80)
#define MIRD (0x18|0x40|0x80)
// Bank 3 registers
#define MAADR1 (0x00|0x60|0x80)
#define MAADR0 (0x01|0x60|0x80)
#define MAADR3 (0x02|0x60|0x80)
#define MAADR2 (0x03|0x60|0x80)
#define MAADR5 (0x04|0x60|0x80)
#define MAADR4 (0x05|0x60|0x80)
#define EBSTSD (0x06|0x60)
#define EBSTCON (0x07|0x60)
#define EBSTCS (0x08|0x60)
#define MISTAT (0x0A|0x60|0x80)
#define EREVID (0x12|0x60)
#define ECOCON (0x15|0x60)
#define EFLOCON (0x17|0x60)
#define EPAUS (0x18|0x60)
// ENC28J60 ERXFCON Register Bit Definitions
#define ERXFCON_UCEN 0x80
#define ERXFCON_ANDOR 0x40
#define ERXFCON_CRCEN 0x20
#define ERXFCON_PMEN 0x10
#define ERXFCON_MPEN 0x08
#define ERXFCON_HTEN 0x04
#define ERXFCON_MCEN 0x02
#define ERXFCON_BCEN 0x01
// ENC28J60 EIE Register Bit Definitions
#define EIE_INTIE 0x80
#define EIE_PKTIE 0x40
#define EIE_DMAIE 0x20
#define EIE_LINKIE 0x10
#define EIE_TXIE 0x08
#define EIE_WOLIE 0x04
#define EIE_TXERIE 0x02
#define EIE_RXERIE 0x01
// ENC28J60 EIR Register Bit Definitions
#define EIR_PKTIF 0x40
#define EIR_DMAIF 0x20
#define EIR_LINKIF 0x10
#define EIR_TXIF 0x08
#define EIR_WOLIF 0x04
#define EIR_TXERIF 0x02
#define EIR_RXERIF 0x01
// ENC28J60 ESTAT Register Bit Definitions
#define ESTAT_INT 0x80
#define ESTAT_LATECOL 0x10
#define ESTAT_RXBUSY 0x04
#define ESTAT_TXABRT 0x02
#define ESTAT_CLKRDY 0x01
// ENC28J60 ECON2 Register Bit Definitions
#define ECON2_AUTOINC 0x80
#define ECON2_PKTDEC 0x40
#define ECON2_PWRSV 0x20
#define ECON2_VRPS 0x08
// ENC28J60 ECON1 Register Bit Definitions
#define ECON1_TXRST 0x80
#define ECON1_RXRST 0x40
#define ECON1_DMAST 0x20
#define ECON1_CSUMEN 0x10
#define ECON1_TXRTS 0x08
#define ECON1_RXEN 0x04
#define ECON1_BSEL1 0x02
#define ECON1_BSEL0 0x01
// ENC28J60 MACON1 Register Bit Definitions
#define MACON1_LOOPBK 0x10
#define MACON1_TXPAUS 0x08
#define MACON1_RXPAUS 0x04
#define MACON1_PASSALL 0x02
#define MACON1_MARXEN 0x01
// ENC28J60 MACON3 Register Bit Definitions
#define MACON3_PADCFG2 0x80
#define MACON3_PADCFG1 0x40
#define MACON3_PADCFG0 0x20
#define MACON3_TXCRCEN 0x10
#define MACON3_PHDRLEN 0x08
#define MACON3_HFRMLEN 0x04
#define MACON3_FRMLNEN 0x02
#define MACON3_FULDPX 0x01
// ENC28J60 MICMD Register Bit Definitions
#define MICMD_MIISCAN 0x02
#define MICMD_MIIRD 0x01
// ENC28J60 MISTAT Register Bit Definitions
#define MISTAT_NVALID 0x04
#define MISTAT_SCAN 0x02
#define MISTAT_BUSY 0x01
// ENC28J60 EBSTCON Register Bit Definitions
#define EBSTCON_PSV2 0x80
#define EBSTCON_PSV1 0x40
#define EBSTCON_PSV0 0x20
#define EBSTCON_PSEL 0x10
#define EBSTCON_TMSEL1 0x08
#define EBSTCON_TMSEL0 0x04
#define EBSTCON_TME 0x02
#define EBSTCON_BISTST 0x01
// PHY registers
#define PHCON1 0x00
#define PHSTAT1 0x01
#define PHHID1 0x02
#define PHHID2 0x03
#define PHCON2 0x10
#define PHSTAT2 0x11
#define PHIE 0x12
#define PHIR 0x13
#define PHLCON 0x14
// ENC28J60 PHY PHCON1 Register Bit Definitions
#define PHCON1_PRST 0x8000
#define PHCON1_PLOOPBK 0x4000
#define PHCON1_PPWRSV 0x0800
#define PHCON1_PDPXMD 0x0100
// ENC28J60 PHY PHSTAT1 Register Bit Definitions
#define PHSTAT1_PFDPX 0x1000
#define PHSTAT1_PHDPX 0x0800
#define PHSTAT1_LLSTAT 0x0004
#define PHSTAT1_JBSTAT 0x0002
// ENC28J60 PHY PHCON2 Register Bit Definitions
#define PHCON2_FRCLINK 0x4000
#define PHCON2_TXDIS 0x2000
#define PHCON2_JABBER 0x0400
#define PHCON2_HDLDIS 0x0100
// ENC28J60 Packet Control Byte Bit Definitions
#define PKTCTRL_PHUGEEN 0x08
#define PKTCTRL_PPADEN 0x04
#define PKTCTRL_PCRCEN 0x02
#define PKTCTRL_POVERRIDE 0x01
// SPI operation codes
#define ENC28J60_READ_CTRL_REG 0x00
#define ENC28J60_READ_BUF_MEM 0x3A
#define ENC28J60_WRITE_CTRL_REG 0x40
#define ENC28J60_WRITE_BUF_MEM 0x7A
#define ENC28J60_BIT_FIELD_SET 0x80
#define ENC28J60_BIT_FIELD_CLR 0xA0
#define ENC28J60_SOFT_RESET 0xFF
// max frame length which the controller will accept:
// (note: maximum ethernet frame length would be 1518)
#define MAX_FRAMELEN 1500
#define FULL_SPEED 1 // switch to full-speed SPI for bulk transfers
static byte Enc28j60Bank;
static byte selectPin;
void ENC28J60::initSPI () {
pinMode(SS, OUTPUT);
digitalWrite(SS, HIGH);
pinMode(MOSI, OUTPUT);
pinMode(SCK, OUTPUT);
pinMode(MISO, INPUT);
digitalWrite(MOSI, HIGH);
digitalWrite(MOSI, LOW);
digitalWrite(SCK, LOW);
SPCR = bit(SPE) | bit(MSTR); // 8 MHz @ 16
bitSet(SPSR, SPI2X);
}
static void enableChip () {
cli();
digitalWrite(selectPin, LOW);
}
static void disableChip () {
digitalWrite(selectPin, HIGH);
sei();
}
static void xferSPI (byte data) {
SPDR = data;
while (!(SPSR&(1<<SPIF)))
;
}
static byte readOp (byte op, byte address) {
enableChip();
xferSPI(op | (address & ADDR_MASK));
xferSPI(0x00);
if (address & 0x80)
xferSPI(0x00);
byte result = SPDR;
disableChip();
return result;
}
static void writeOp (byte op, byte address, byte data) {
enableChip();
xferSPI(op | (address & ADDR_MASK));
xferSPI(data);
disableChip();
}
static void readBuf(uint16_t len, byte* data) {
uint8_t nextbyte;
enableChip();
if (len != 0) {
xferSPI(ENC28J60_READ_BUF_MEM);
SPDR = 0x00;
while (--len) {
while (!(SPSR & (1<<SPIF)))
;
nextbyte = SPDR;
SPDR = 0x00;
*data++ = nextbyte;
}
while (!(SPSR & (1<<SPIF)))
;
*data++ = SPDR;
}
disableChip();
}
static void writeBuf(uint16_t len, const byte* data) {
enableChip();
if (len != 0) {
xferSPI(ENC28J60_WRITE_BUF_MEM);
SPDR = *data++;
while (--len) {
uint8_t nextbyte = *data++;
while (!(SPSR & (1<<SPIF)))
;
SPDR = nextbyte;
};
while (!(SPSR & (1<<SPIF)))
;
}
disableChip();
}
static void SetBank (byte address) {
if ((address & BANK_MASK) != Enc28j60Bank) {
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_BSEL1|ECON1_BSEL0);
Enc28j60Bank = address & BANK_MASK;
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, Enc28j60Bank>>5);
}
}
static byte readRegByte (byte address) {
SetBank(address);
return readOp(ENC28J60_READ_CTRL_REG, address);
}
static uint16_t readReg(byte address) {
return readRegByte(address) + (readRegByte(address+1) << 8);
}
static void writeRegByte (byte address, byte data) {
SetBank(address);
writeOp(ENC28J60_WRITE_CTRL_REG, address, data);
}
static void writeReg(byte address, uint16_t data) {
writeRegByte(address, data);
writeRegByte(address + 1, data >> 8);
}
static uint16_t readPhyByte (byte address) {
writeRegByte(MIREGADR, address);
writeRegByte(MICMD, MICMD_MIIRD);
while (readRegByte(MISTAT) & MISTAT_BUSY)
;
writeRegByte(MICMD, 0x00);
return readRegByte(MIRD+1);
}
static void writePhy (byte address, uint16_t data) {
writeRegByte(MIREGADR, address);
writeReg(MIWR, data);
while (readRegByte(MISTAT) & MISTAT_BUSY)
;
}
byte ENC28J60::initialize (uint16_t size, const byte* macaddr, byte csPin) {
bufferSize = size;
if (bitRead(SPCR, SPE) == 0)
initSPI();
selectPin = csPin;
pinMode(selectPin, OUTPUT);
disableChip();
writeOp(ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
delay(2); // errata B7/2
while (!readOp(ENC28J60_READ_CTRL_REG, ESTAT) & ESTAT_CLKRDY)
;
writeReg(ERXST, RXSTART_INIT);
writeReg(ERXRDPT, RXSTART_INIT);
writeReg(ERXND, RXSTOP_INIT);
writeReg(ETXST, TXSTART_INIT);
writeReg(ETXND, TXSTOP_INIT);
// Stretch pulses for LED, LED_A=Link, LED_B=activity
writePhy(PHLCON, 0x476);
writeRegByte(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_PMEN|ERXFCON_BCEN);
writeReg(EPMM0, 0x303f);
writeReg(EPMCS, 0xf7f9);
writeRegByte(MACON1, MACON1_MARXEN);
writeOp(ENC28J60_BIT_FIELD_SET, MACON3,
MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
writeReg(MAIPG, 0x0C12);
writeRegByte(MABBIPG, 0x12);
writeReg(MAMXFL, MAX_FRAMELEN);
writeRegByte(MAADR5, macaddr[0]);
writeRegByte(MAADR4, macaddr[1]);
writeRegByte(MAADR3, macaddr[2]);
writeRegByte(MAADR2, macaddr[3]);
writeRegByte(MAADR1, macaddr[4]);
writeRegByte(MAADR0, macaddr[5]);
writePhy(PHCON2, PHCON2_HDLDIS);
SetBank(ECON1);
writeOp(ENC28J60_BIT_FIELD_SET, EIE, EIE_INTIE|EIE_PKTIE);
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
byte rev = readRegByte(EREVID);
// microchip forgot to step the number on the silicon when they
// released the revision B7. 6 is now rev B7. We still have
// to see what they do when they release B8. At the moment
// there is no B8 out yet
if (rev > 5) ++rev;
return rev;
}
bool ENC28J60::isLinkUp() {
return (readPhyByte(PHSTAT2) >> 2) & 1;
}
/*
struct __attribute__((__packed__)) transmit_status_vector {
uint16_t transmitByteCount;
byte transmitCollisionCount : 4;
byte transmitCrcError : 1;
byte transmitLengthCheckError : 1;
byte transmitLengthOutRangeError : 1;
byte transmitDone : 1;
byte transmitMulticast : 1;
byte transmitBroadcast : 1;
byte transmitPacketDefer : 1;
byte transmitExcessiveDefer : 1;
byte transmitExcessiveCollision : 1;
byte transmitLateCollision : 1;
byte transmitGiant : 1;
byte transmitUnderrun : 1;
uint16_t totalTransmitted;
byte transmitControlFrame : 1;
byte transmitPauseControlFrame : 1;
byte backpressureApplied : 1;
byte transmitVLAN : 1;
byte zero : 4;
};
*/
struct transmit_status_vector {
uint8_t bytes[7];
};
#if ETHERCARD_SEND_PIPELINING
#define BREAKORCONTINUE retry=0; continue;
#else
#define BREAKORCONTINUE break;
#endif
void ENC28J60::packetSend(uint16_t len) {
byte retry = 0;
#if ETHERCARD_SEND_PIPELINING
goto resume_last_transmission;
#endif
while (1) {
// latest errata sheet: DS80349C
// always reset transmit logic (Errata Issue 12)
// the Microchip TCP/IP stack implementation used to first check
// whether TXERIF is set and only then reset the transmit logic
// but this has been changed in later versions; possibly they
// have a reason for this; they don't mention this in the errata
// sheet
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST);
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
writeOp(ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF|EIR_TXIF);
// prepare new transmission
if (retry == 0) {
writeReg(EWRPT, TXSTART_INIT);
writeReg(ETXND, TXSTART_INIT+len);
writeOp(ENC28J60_WRITE_BUF_MEM, 0, 0x00);
writeBuf(len, buffer);
}
// initiate transmission
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
#if ETHERCARD_SEND_PIPELINING
if (retry == 0) return;
#endif
resume_last_transmission:
// wait until transmission has finished; referring to the data sheet and
// to the errata (Errata Issue 13; Example 1) you only need to wait until either
// TXIF or TXERIF gets set; however this leads to hangs; apparently Microchip
// realized this and in later implementations of their tcp/ip stack they introduced
// a counter to avoid hangs; of course they didn't update the errata sheet
uint16_t count = 0;
while ((readRegByte(EIR) & (EIR_TXIF | EIR_TXERIF)) == 0 && ++count < 1000U)
;
if (!(readRegByte(EIR) & EIR_TXERIF) && count < 1000U) {
// no error; start new transmission
BREAKORCONTINUE
}
// cancel previous transmission if stuck
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRTS);
#if ETHERCARD_RETRY_LATECOLLISIONS == 0
BREAKORCONTINUE
#endif
// Check whether the chip thinks that a late collision occurred; the chip
// may be wrong (Errata Issue 13); therefore we retry. We could check
// LATECOL in the ESTAT register in order to find out whether the chip
// thinks a late collision occurred but (Errata Issue 15) tells us that
// this is not working. Therefore we check TSV
transmit_status_vector tsv;
uint16_t etxnd = readReg(ETXND);
writeReg(ERDPT, etxnd+1);
readBuf(sizeof(transmit_status_vector), (byte*) &tsv);
// LATECOL is bit number 29 in TSV (starting from 0)
if (!((readRegByte(EIR) & EIR_TXERIF) && (tsv.bytes[3] & 1<<5) /*tsv.transmitLateCollision*/) || retry > 16U) {
// there was some error but no LATECOL so we do not repeat
BREAKORCONTINUE
}
retry++;
}
}
uint16_t ENC28J60::packetReceive() {
static uint16_t gNextPacketPtr = RXSTART_INIT;
static bool unreleasedPacket = false;
uint16_t len = 0;
if (unreleasedPacket) {
if (gNextPacketPtr == 0)
writeReg(ERXRDPT, RXSTOP_INIT);
else
writeReg(ERXRDPT, gNextPacketPtr - 1);
unreleasedPacket = false;
}
if (readRegByte(EPKTCNT) > 0) {
writeReg(ERDPT, gNextPacketPtr);
struct {
uint16_t nextPacket;
uint16_t byteCount;
uint16_t status;
} header;
readBuf(sizeof header, (byte*) &header);
gNextPacketPtr = header.nextPacket;
len = header.byteCount - 4; //remove the CRC count
if (len>bufferSize-1)
len=bufferSize-1;
if ((header.status & 0x80)==0)
len = 0;
else
readBuf(len, buffer);
buffer[len] = 0;
unreleasedPacket = true;
writeOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
}
return len;
}
void ENC28J60::copyout (byte page, const byte* data) {
uint16_t destPos = SCRATCH_START + (page << SCRATCH_PAGE_SHIFT);
if (destPos < SCRATCH_START || destPos > SCRATCH_LIMIT - SCRATCH_PAGE_SIZE)
return;
writeReg(EWRPT, destPos);
writeBuf(SCRATCH_PAGE_SIZE, data);
}
void ENC28J60::copyin (byte page, byte* data) {
uint16_t destPos = SCRATCH_START + (page << SCRATCH_PAGE_SHIFT);
if (destPos < SCRATCH_START || destPos > SCRATCH_LIMIT - SCRATCH_PAGE_SIZE)
return;
writeReg(ERDPT, destPos);
readBuf(SCRATCH_PAGE_SIZE, data);
}
byte ENC28J60::peekin (byte page, byte off) {
byte result = 0;
uint16_t destPos = SCRATCH_START + (page << SCRATCH_PAGE_SHIFT) + off;
if (SCRATCH_START <= destPos && destPos < SCRATCH_LIMIT) {
writeReg(ERDPT, destPos);
readBuf(1, &result);
}
return result;
}
// Contributed by Alex M. Based on code from: http://blog.derouineau.fr
// /2011/07/putting-enc28j60-ethernet-controler-in-sleep-mode/
void ENC28J60::powerDown() {
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_RXEN);
while(readRegByte(ESTAT) & ESTAT_RXBUSY);
while(readRegByte(ECON1) & ECON1_TXRTS);
writeOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_VRPS);
writeOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PWRSV);
}
void ENC28J60::powerUp() {
writeOp(ENC28J60_BIT_FIELD_CLR, ECON2, ECON2_PWRSV);
while(!readRegByte(ESTAT) & ESTAT_CLKRDY);
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
}
void ENC28J60::enableBroadcast (bool temporary) {
writeRegByte(ERXFCON, readRegByte(ERXFCON) | ERXFCON_BCEN);
if(!temporary)
broadcast_enabled = true;
}
void ENC28J60::disableBroadcast (bool temporary) {
if(!temporary)
broadcast_enabled = false;
if(!broadcast_enabled)
writeRegByte(ERXFCON, readRegByte(ERXFCON) & ~ERXFCON_BCEN);
}
void ENC28J60::enableMulticast () {
writeRegByte(ERXFCON, readRegByte(ERXFCON) | ERXFCON_MCEN);
}
void ENC28J60::disableMulticast () {
writeRegByte(ERXFCON, readRegByte(ERXFCON) & ~ERXFCON_MCEN);
}
void ENC28J60::enablePromiscuous (bool temporary) {
writeRegByte(ERXFCON, readRegByte(ERXFCON) & ERXFCON_CRCEN);
if(!temporary)
promiscuous_enabled = true;
}
void ENC28J60::disablePromiscuous (bool temporary) {
if(!temporary)
promiscuous_enabled = false;
if(!promiscuous_enabled) {
writeRegByte(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_PMEN|ERXFCON_BCEN);
}
}
uint8_t ENC28J60::doBIST ( byte csPin) {
#define RANDOM_FILL 0b0000
#define ADDRESS_FILL 0b0100
#define PATTERN_SHIFT 0b1000
#define RANDOM_RACE 0b1100
// init
if (bitRead(SPCR, SPE) == 0)
initSPI();
selectPin = csPin;
pinMode(selectPin, OUTPUT);
disableChip();
writeOp(ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
delay(2); // errata B7/2
while (!readOp(ENC28J60_READ_CTRL_REG, ESTAT) & ESTAT_CLKRDY) ;
// now we can start the memory test
uint16_t macResult;
uint16_t bitsResult;
// clear some of the registers registers
writeRegByte(ECON1, 0);
writeReg(EDMAST, 0);
// Set up necessary pointers for the DMA to calculate over the entire memory
writeReg(EDMAND, 0x1FFFu);
writeReg(ERXND, 0x1FFFu);
// Enable Test Mode and do an Address Fill
SetBank(EBSTCON);
writeRegByte(EBSTCON, EBSTCON_TME | EBSTCON_BISTST | ADDRESS_FILL);
// wait for BISTST to be reset, only after that are we actually ready to
// start the test
// this was undocumented :(
while (readOp(ENC28J60_READ_CTRL_REG, EBSTCON) & EBSTCON_BISTST);
writeOp(ENC28J60_BIT_FIELD_CLR, EBSTCON, EBSTCON_TME);
// now start the actual reading an calculating the checksum until the end is
// reached
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_DMAST | ECON1_CSUMEN);
SetBank(EDMACS);
while(readOp(ENC28J60_READ_CTRL_REG, ECON1) & ECON1_DMAST);
macResult = readReg(EDMACS);
bitsResult = readReg(EBSTCS);
// Compare the results
// 0xF807 should always be generated in Address fill mode
if ((macResult != bitsResult) || (bitsResult != 0xF807)) {
return 0;
}
// reset test flag
writeOp(ENC28J60_BIT_FIELD_CLR, EBSTCON, EBSTCON_TME);
// Now start the BIST with random data test, and also keep on swapping the
// DMA/BIST memory ports.
writeRegByte(EBSTSD, 0b10101010 | millis());
writeRegByte(EBSTCON, EBSTCON_TME | EBSTCON_PSEL | EBSTCON_BISTST | RANDOM_FILL);
// wait for BISTST to be reset, only after that are we actually ready to
// start the test
// this was undocumented :(
while (readOp(ENC28J60_READ_CTRL_REG, EBSTCON) & EBSTCON_BISTST);
writeOp(ENC28J60_BIT_FIELD_CLR, EBSTCON, EBSTCON_TME);
// now start the actual reading an calculating the checksum until the end is
// reached
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_DMAST | ECON1_CSUMEN);
SetBank(EDMACS);
while(readOp(ENC28J60_READ_CTRL_REG, ECON1) & ECON1_DMAST);
macResult = readReg(EDMACS);
bitsResult = readReg(EBSTCS);
// The checksum should be equal
return macResult == bitsResult;
}
void ENC28J60::memcpy_to_enc(uint16_t dest, void* source, int16_t num) {
writeReg(EWRPT, dest);
writeBuf(num, (uint8_t*) source);
}
void ENC28J60::memcpy_from_enc(void* dest, uint16_t source, int16_t num) {
writeReg(ERDPT, source);
readBuf(num, (uint8_t*) dest);
}
static uint16_t endRam = ENC_HEAP_END;
uint16_t ENC28J60::enc_malloc(uint16_t size) {
if (endRam-size >= ENC_HEAP_START) {
endRam -= size;
return endRam;
}
return 0;
}
uint16_t ENC28J60::enc_freemem() {
return endRam-ENC_HEAP_START;
}
uint16_t ENC28J60::readPacketSlice(char* dest, int16_t maxlength, int16_t packetOffset) {
uint16_t erxrdpt = readReg(ERXRDPT);
int16_t packetLength;
memcpy_from_enc((char*) &packetLength, (erxrdpt+3)%(RXSTOP_INIT+1), 2);
packetLength -= 4; // remove crc
int16_t bytesToCopy = packetLength - packetOffset;
if (bytesToCopy > maxlength) bytesToCopy = maxlength;
if (bytesToCopy <= 0) bytesToCopy = 0;
int16_t startofSlice = (erxrdpt+7+packetOffset)%(RXSTOP_INIT+1);
memcpy_from_enc(dest, startofSlice, bytesToCopy);
dest[bytesToCopy] = 0;
return bytesToCopy;
}