forked from 935963004/LaBraM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeling_vqnsp.py
272 lines (216 loc) · 10.4 KB
/
modeling_vqnsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# --------------------------------------------------------
# Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI
# By Wei-Bang Jiang
# Based on BEiT-v2, timm, DeiT, and DINO code bases
# https://github.com/microsoft/unilm/tree/master/beitv2
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# ---------------------------------------------------------
import torch
from torch import nn
import torch.nn.functional as F
from functools import partial
from einops import rearrange
from timm.models.layers import trunc_normal_
from timm.models.registry import register_model
from modeling_finetune import NeuralTransformer
from norm_ema_quantizer import NormEMAVectorQuantizer
class VQNSP(nn.Module):
def __init__(self,
encoder_config,
decoder_config,
n_embed=8192,
embed_dim=32,
decay=0.99,
quantize_kmeans_init=True,
decoder_out_dim=200,
smooth_l1_loss = False,
**kwargs
):
super().__init__()
print(kwargs)
if decoder_config['in_chans'] != embed_dim:
print(f"Rewrite the in_chans in decoder from {decoder_config['in_chans']} to {embed_dim}")
decoder_config['in_chans'] = embed_dim
# encoder & decode params
print('Final encoder config', encoder_config)
self.encoder = NeuralTransformer(**encoder_config)
print('Final decoder config', decoder_config)
self.decoder = NeuralTransformer(**decoder_config)
self.quantize = NormEMAVectorQuantizer(
n_embed=n_embed, embedding_dim=embed_dim, beta=1.0, kmeans_init=quantize_kmeans_init, decay=decay,
)
self.patch_size = encoder_config['patch_size']
self.token_shape = (62, encoder_config['EEG_size'] // self.patch_size)
self.decoder_out_dim = decoder_out_dim
# task layer
self.encode_task_layer = nn.Sequential(
nn.Linear(encoder_config['embed_dim'], encoder_config['embed_dim']),
nn.Tanh(),
nn.Linear(encoder_config['embed_dim'], embed_dim) # for quantize
)
self.decode_task_layer = nn.Sequential(
nn.Linear(decoder_config['embed_dim'], decoder_config['embed_dim']),
nn.Tanh(),
nn.Linear(decoder_config['embed_dim'], self.decoder_out_dim),
)
self.decode_task_layer_angle = nn.Sequential(
nn.Linear(decoder_config['embed_dim'], decoder_config['embed_dim']),
nn.Tanh(),
nn.Linear(decoder_config['embed_dim'], self.decoder_out_dim),
)
self.kwargs = kwargs
self.encode_task_layer.apply(self._init_weights)
self.decode_task_layer.apply(self._init_weights)
self.decode_task_layer_angle.apply(self._init_weights)
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'quantize.embedding.weight', 'decoder.cls_token', 'decoder.pos_embed', 'decoder.time_embed',
'encoder.cls_token', 'encoder.pos_embed', 'encoder.time_embed'}
@property
def device(self):
return self.decoder.cls_token.device
def get_number_of_tokens(self):
return self.quantize.n_e
def get_tokens(self, data, input_chans=None, **kwargs):
quantize, embed_ind, loss = self.encode(data, input_chans=input_chans)
output = {}
output['token'] = embed_ind.view(data.shape[0], -1)
output['input_img'] = data
output['quantize'] = rearrange(quantize, 'b d a c -> b (a c) d')
return output
def encode(self, x, input_chans=None):
batch_size, n, a, t = x.shape
encoder_features = self.encoder(x, input_chans, return_patch_tokens=True)
with torch.cuda.amp.autocast(enabled=False):
to_quantizer_features = self.encode_task_layer(encoder_features.type_as(self.encode_task_layer[-1].weight))
N = to_quantizer_features.shape[1]
h, w = n, N // n
to_quantizer_features = rearrange(to_quantizer_features, 'b (h w) c -> b c h w', h=h, w=w) # reshape for quantizer
quantize, loss, embed_ind = self.quantize(to_quantizer_features)
return quantize, embed_ind, loss
def decode(self, quantize, input_chans=None, **kwargs):
# reshape tokens to feature maps for patch embed in decoder
# quantize = rearrange(quantize, 'b (h w) c -> b c h w', h=self.token_shape[0], w=self.token_shape[1])
decoder_features = self.decoder(quantize, input_chans, return_patch_tokens=True)
rec = self.decode_task_layer(decoder_features)
rec_angle = self.decode_task_layer_angle(decoder_features)
return rec, rec_angle
def get_codebook_indices(self, x, input_chans=None, **kwargs):
# for LaBraM pre-training
return self.get_tokens(x, input_chans, **kwargs)['token']
def calculate_rec_loss(self, rec, target):
target = rearrange(target, 'b n a c -> b (n a) c')
rec_loss = self.loss_fn(rec, target)
return rec_loss
def std_norm(self, x):
mean = torch.mean(x, dim=(1, 2, 3), keepdim=True)
std = torch.std(x, dim=(1, 2, 3), keepdim=True)
x = (x - mean) / std
return x
def forward(self, x, input_chans=None, **kwargs):
"""
x: shape [B, N, T]
"""
x = rearrange(x, 'B N (A T) -> B N A T', T=200)
x_fft = torch.fft.fft(x, dim=-1)
amplitude = torch.abs(x_fft)
amplitude = self.std_norm(amplitude)
angle = torch.angle(x_fft)
angle = self.std_norm(angle)
quantize, embed_ind, emb_loss = self.encode(x, input_chans)
xrec, xrec_angle = self.decode(quantize, input_chans)
rec_loss = self.calculate_rec_loss(xrec, amplitude)
rec_angle_loss = self.calculate_rec_loss(xrec_angle, angle)
loss = emb_loss + rec_loss + rec_angle_loss
log = {}
split="train" if self.training else "val"
log[f'{split}/quant_loss'] = emb_loss.detach().mean()
log[f'{split}/rec_loss'] = rec_loss.detach().mean()
log[f'{split}/rec_angle_loss'] = rec_angle_loss.detach().mean()
log[f'{split}/total_loss'] = loss.detach().mean()
return loss, log
def get_model_default_params():
return dict(EEG_size=1600, patch_size=200, in_chans=1, num_classes=1000, embed_dim=200, depth=12, num_heads=10,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0., use_abs_pos_emb=True,
use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001)
@register_model
def vqnsp_encoder_base_decoder_3x200x12(pretrained=False, pretrained_weight=None, as_tokenzer=False, EEG_size=1600,
n_code=8192, code_dim=32, **kwargs):
encoder_config, decoder_config = get_model_default_params(), get_model_default_params()
# encoder settings
encoder_config['EEG_size'] = EEG_size
encoder_config['num_classes'] = 0
# decoder settings
decoder_config['EEG_size'] = EEG_size // decoder_config['patch_size']
decoder_config['patch_size'] = 1
decoder_config['in_chans'] = code_dim
decoder_config['num_classes'] = 0
decoder_config['depth'] = 3
decoder_out_dim = 200
model = VQNSP(encoder_config, decoder_config, n_code, code_dim,
decoder_out_dim=decoder_out_dim, **kwargs)
if as_tokenzer:
assert pretrained
assert pretrained_weight is not None
if pretrained_weight.startswith('https'):
weights = torch.hub.load_state_dict_from_url(pretrained_weight, map_location='cpu', check_hash=True)
else:
weights = torch.load(pretrained_weight, map_location='cpu')
if 'model' in weights:
weights = weights['model']
else:
weights = weights["state_dict"]
keys = list(weights.keys())
for k in keys:
if k.startswith("loss") or k.startswith("teacher") or k.startswith("scaling"):
del weights[k]
model.load_state_dict(weights)
return model
@register_model
def vqnsp_encoder_large_decoder_3x200x24(pretrained=False, pretrained_weight=None, as_tokenzer=False, EEG_size=1600,
n_code=8192, code_dim=32, **kwargs):
encoder_config, decoder_config = get_model_default_params(), get_model_default_params()
# encoder settings
encoder_config['EEG_size'] = EEG_size
encoder_config['num_classes'] = 0
encoder_config['depth'] = 24
# decoder settings
decoder_config['EEG_size'] = EEG_size // decoder_config['patch_size']
decoder_config['patch_size'] = 1
decoder_config['in_chans'] = code_dim
decoder_config['num_classes'] = 0
decoder_config['depth'] = 3
decoder_out_dim = 200
model = VQNSP(encoder_config, decoder_config, n_code, code_dim,
decoder_out_dim=decoder_out_dim, **kwargs)
if as_tokenzer:
assert pretrained
assert pretrained_weight is not None
if pretrained_weight.startswith('https'):
weights = torch.hub.load_state_dict_from_url(pretrained_weight, map_location='cpu', check_hash=True)
else:
weights = torch.load(pretrained_weight, map_location='cpu')
if 'model' in weights:
weights = weights['model']
else:
weights = weights["state_dict"]
keys = list(weights.keys())
for k in keys:
if k.startswith("loss") or k.startswith("teacher") or k.startswith("scaling"):
del weights[k]
model.load_state_dict(weights)
return model
if __name__ == '__main__':
pass