-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_check.py
124 lines (93 loc) · 3.41 KB
/
data_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: utf-8 -*-
import resampy
import numpy as np
import torch
import torchaudio
from librosa.util import normalize
from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn
MAX_WAV_VALUE = 32768.0
def load_wav(full_path):
sampling_rate, data = read(full_path)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(
y,
n_fft=1024,
num_mels=80,
sampling_rate=24000,
hop_size=240,
win_size=1024,
fmin=0,
fmax=8000,
center=False,
output_energy=False,
):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
# version 1
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True,
return_complex=True)
spec = torch.view_as_real(spec)
#spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
# center=center, pad_mode='reflect', normalized=False, onesided=True)
# version 2
mel_spec = torchaudio.transforms.MelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
hop_length=hop_size,
n_mels=num_mels,
center=center,
power=1,
f_min=fmin, # to match matcha :X
f_max=fmax,
norm='slaney',
mel_scale='slaney',
)
Mel_Spec = mel_spec(y)
#spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) # 1e-9 ??
spec = torch.sqrt(spec.pow(2).sum(-1))
mel_spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
mel_spec = spectral_normalize_torch(mel_spec)
print(mel_spec)
mel_spec = spectral_normalize_torch(Mel_Spec)
print(mel_spec)
if output_energy:
energy = torch.norm(spec, dim=1)
return mel_spec, energy
else:
return mel_spec
wav_path = 'f577cc4acd0f11ed835900163e124273+纸上的姐妹+纸上的姐妹第96集+00000120+00665350+00667850.wav'
audio, sr = load_wav(wav_path)
if sr != 24000:
audio = resampy.resample(audio, sr, 24000)
audio = audio / MAX_WAV_VALUE
audio = normalize(audio) * 0.95
audio = torch.FloatTensor(audio).unsqueeze(0)
mel = mel_spectrogram(audio)
#print(mel.shape, mel)