-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload.py
172 lines (138 loc) · 5.41 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Author: Daiwei (David) Lu
# A fully custom dataloader for the cellphone dataset
import os
import torch
import pandas as pd
from PIL import Image
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from torchvision import transforms
import torchvision.transforms.functional as TF
import random
import warnings
warnings.filterwarnings("ignore")
plt.ion()
class TumorDataset(Dataset):
def __init__(self, mode='test', transform=None, preload=False):
if mode == 'train':
data = pd.read_csv('labels/Train_labels.csv')
self.root = 'train'
else:
data = pd.read_csv('labels/Test_labels.csv')
self.root = 'test'
self.transform = transform
self.classes = data.columns[1:]
self.images = data.values[:,0]
self.labels = data.values[:, 1:]
self.preload = preload
if preload:
self.preloaded = []
for i in range(len(self.images)):
img_name = os.path.join(self.root, self.images[i] + '.jpg')
self.preloaded.append(io.imread(img_name))
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
if self.preload:
image = self.preloaded[idx]
else:
img_name = os.path.join(self.root, self.images[idx] + '.jpg')
image = io.imread(img_name)
if self.transform:
image = self.transform(image)
# sample = {'image': image, 'labels': self.labels[idx]}
return image, torch.from_numpy(np.uint8(self.labels[idx]))
class TumorImage(Dataset):
def __init__(self, path, transform=None):
img_name = os.path.join(path)
self.image = [io.imread(img_name)]
self.transform = transform
def __len__(self):
return len(self.image)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
image = self.image[idx]
if self.transform:
image = self.transform(image)
return image
class Rescale(object):
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
def __call__(self, sample):
image = sample
new_h, new_w = self.output_size, self.output_size
img = transform.resize(image, (new_h, new_w))
return img
class Normalize(object):
def __init__(self, inplace=False):
#dataset mean/std
# self.mean = (0.76964605, 0.54124683, 0.56347674)
# self.std = (0.1364224, 0.15036866, 0.1672849)
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
self.inplace = inplace
def __call__(self, sample):
return TF.normalize(sample, self.mean, self.std, self.inplace)
class ToTensor(object):
def __call__(self, sample):
dtype = torch.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
# image, labels = sample['image'], sample['labels']
# return {'image': TF.to_tensor(image), 'labels': labels}
return TF.to_tensor(sample)
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, sample):
image = sample
if random.random() < self.p:
image *= 255
image = Image.fromarray(np.uint8(image))
image = TF.hflip(image)
image = np.array(image)
image = np.double(image) / 255.
return image
class RandomVerticalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, sample):
image = sample
if random.random() < self.p:
image *= 255.
image = Image.fromarray(np.uint8(image))
image = TF.vflip(image)
image = np.array(image)
image = np.double(image) / 255.
return image
class RandomColorJitter(object):
def __init__(self, p=0.2, brightness=(0.5, 1.755), contrast=(0.5, 1.5), saturation=(0.5, 1.5), hue=(-0.1, 0.1)):
self.p = p
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
def __call__(self, sample):
image = sample
if random.random() < self.p:
image *= 255.
image = Image.fromarray(np.uint8(image))
modifications = []
brightness_factor = random.uniform(self.brightness[0], self.brightness[1])
modifications.append(transforms.Lambda(lambda img: TF.adjust_brightness(image, brightness_factor)))
contrast_factor = random.uniform(self.contrast[0], self.contrast[1])
modifications.append(transforms.Lambda(lambda img: TF.adjust_contrast(image, contrast_factor)))
saturation_factor = random.uniform(self.saturation[0], self.saturation[1])
modifications.append(transforms.Lambda(lambda img: TF.adjust_saturation(image, saturation_factor)))
hue_factor = random.uniform(self.hue[0], self.hue[1])
modifications.append(transforms.Lambda(lambda img: TF.adjust_hue(image, hue_factor)))
random.shuffle(modifications)
modification = transforms.Compose(modifications)
image = modification(image)
image = np.array(image)
image = np.double(image) / 255.
return image