forked from wangzhecheng/deepsolar_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinception_modified.py
151 lines (140 loc) · 5.62 KB
/
inception_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision
from torchvision import datasets, models, transforms, utils
import torchvision.transforms.functional as TF
from tqdm import tqdm
import numpy as np
import json
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import skimage
import skimage.io
import skimage.transform
from PIL import Image
import time
import os
from os.path import join, exists
import copy
import random
from collections import OrderedDict
from sklearn.metrics import r2_score
import torch.nn.functional as F
from torchvision.models import Inception3
from collections import namedtuple
_InceptionOuputs = namedtuple('InceptionOuputs', ['logits', 'aux_logits'])
class InceptionSegmentation(nn.Module):
def __init__(self, num_outputs=2, level=1):
super(InceptionSegmentation, self).__init__()
assert level in [1, 2]
self.level = level
self.inception3 = Inception3_modified(num_classes=num_outputs, aux_logits=False, transform_input=False)
self.convolution1 = nn.Conv2d(288, 512, bias=True, kernel_size=3, padding=1)
if self.level == 1:
self.linear1 = nn.Linear(512, num_outputs, bias=False)
else:
self.convolution2 = nn.Conv2d(512, 512, bias=True, kernel_size=3, padding=1)
self.linear2 = nn.Linear(512, num_outputs, bias=False)
def forward(self, x, testing=False):
logits, intermediate = self.inception3(x)
feature_map = self.convolution1(intermediate) # N x 512 x 35 x 35
feature_map = F.relu(feature_map) # N x 512 x 35 x 35
if self.level == 1:
y = F.adaptive_avg_pool2d(feature_map, (1, 1))
y = y.view(y.size(0), -1) # N x 512
y = self.linear1(y) # N x 2
if testing:
CAM = self.linear1.weight.data[1, :] * feature_map.permute(0, 2, 3, 1)
CAM = CAM.sum(dim=3)
else:
feature_map = self.convolution2(feature_map) # N x 512 x 35 x 35
feature_map = F.relu(feature_map) # N x 512 x 35 x 35
y = F.adaptive_avg_pool2d(feature_map, (1, 1))
y = y.view(y.size(0), -1) # N x 512
y = self.linear2(y) # N x 2
if testing:
CAM = self.linear2.weight.data[1, :] * feature_map.permute(0, 2, 3, 1)
CAM = CAM.sum(dim=3)
if testing:
return y, logits, CAM
else:
return y
def load_basic_params(self, model_path, device=torch.device('cpu')):
"""Only load the parameters from main branch."""
old_params = torch.load(model_path, map_location=device)
if model_path[-4:] == '.tar': # The file is not a model state dict, but a checkpoint dict
old_params = old_params['model_state_dict']
self.inception3.load_state_dict(old_params, strict=False)
print('Loaded basic model parameters from: ' + model_path)
def load_existing_params(self, model_path, device=torch.device('cpu')):
"""Load the parameters of main branch and parameters of level-1 layers (and perhaps level-2 layers.)"""
old_params = torch.load(model_path, map_location=device)
if model_path[-4:] == '.tar': # The file is not a model state dict, but a checkpoint dict
old_params = old_params['model_state_dict']
self.load_state_dict(old_params, strict=False)
print('Loaded existing model parameters from: ' + model_path)
class Inception3_modified(Inception3):
def forward(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
# N x 3 x 299 x 299
x = self.Conv2d_1a_3x3(x)
# N x 32 x 149 x 149
x = self.Conv2d_2a_3x3(x)
# N x 32 x 147 x 147
x = self.Conv2d_2b_3x3(x)
# N x 64 x 147 x 147
x = F.max_pool2d(x, kernel_size=3, stride=2)
# N x 64 x 73 x 73
x = self.Conv2d_3b_1x1(x)
# N x 80 x 73 x 73
x = self.Conv2d_4a_3x3(x)
# N x 192 x 71 x 71
x = F.max_pool2d(x, kernel_size=3, stride=2)
# N x 192 x 35 x 35
x = self.Mixed_5b(x)
# N x 256 x 35 x 35
x = self.Mixed_5c(x)
# N x 288 x 35 x 35
x = self.Mixed_5d(x)
# N x 288 x 35 x 35
intermediate = x.clone()
x = self.Mixed_6a(x)
# N x 768 x 17 x 17
x = self.Mixed_6b(x)
# N x 768 x 17 x 17
x = self.Mixed_6c(x)
# N x 768 x 17 x 17
x = self.Mixed_6d(x)
# N x 768 x 17 x 17
x = self.Mixed_6e(x)
# N x 768 x 17 x 17
if self.training and self.aux_logits:
aux = self.AuxLogits(x)
# N x 768 x 17 x 17
x = self.Mixed_7a(x)
# N x 1280 x 8 x 8
x = self.Mixed_7b(x)
# N x 2048 x 8 x 8
x = self.Mixed_7c(x)
# N x 2048 x 8 x 8
# Adaptive average pooling
x = F.adaptive_avg_pool2d(x, (1, 1))
# N x 2048 x 1 x 1
x = F.dropout(x, training=self.training)
# N x 2048 x 1 x 1
x = x.view(x.size(0), -1)
# N x 2048
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits:
return _InceptionOuputs(x, aux)
return x, intermediate