-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranslate_benchmarking.py
executable file
·858 lines (808 loc) · 37.7 KB
/
translate_benchmarking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
#!/usr/bin/env python3
import os.path
import sys
import json
import torch
import numpy as np
import pandas as pd
from pathlib import Path
from argparse import ArgumentParser
from logging import warning
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
M2M100ForConditionalGeneration,
M2M100Tokenizer,
MarianMTModel,
MarianTokenizer,
StoppingCriteriaList,
StoppingCriteria,
)
from utils import timed
from collections import Counter
from sacrebleu.metrics import BLEU
DTYPE_MAP = {
'fp32': torch.float32,
'fp16': torch.float16,
'bf16': torch.bfloat16,
}
DMAP_CHOICES = ['auto', 'sequential']
# M2M language map
M2M_LANG_MAP = {
"eng": "en",
"fin": "fi",
"swe": "sv",
"dan": "da",
"isl": "is",
"nor": "no",
"nob": "no",
}
# Default user and assistant token strings
DEFAULT_USER_START = '<|im_start|>user\n'
DEFAULT_ASST_START = '<|im_start|>assistant\n'
DEFAULT_END = '<|im_end|>\n'
# Poro user and assistant token strings
PORO_USER_START = '<|user|>'
PORO_ASST_START = '<|assistant|>'
PORO_END = 'END'
# AI-Sweden models
LLAMA_3_END = "<|end_of_text|>"
GPT_SW3_END = "<|endoftext|>"
# TRANSLATION TEMPLATES
# Language-agnostic templates
SRC_EQUALS_TRG_TEMPLATE = '{src}={trg}\n{end}\n'
LLAMA3_SRC_EQUALS_TRG_TEMPLATE = '{src}={trg}{end}\n'
USER_ASSISTANT_TEMPLATE = '{user}{src}\n{asst}{trg}\n{end}\n'
# GPT-SW3 translator template
GPT_SW3_TRANSLATOR_TEMPLATES = {
'eng-swe': '<|endoftext|><s>User: Översätt till Svenska från Engelska\n{text}<s>Bot:',
'swe-eng': '<|endoftext|><s>User: Översätt till Engelska från Svenska\n{text}<s>Bot:'
}
# Viking Templates by language
VIKING_TEMPLATES = {
'dan': [
'{user}Oversæt til {trg_lang}: {src}{end}{asst}{trg}{end}'
],
'eng': [
'{user}Translate into {trg_lang}: {src}{end}{asst}{trg}{end}'
],
'fin': [
'{user}Käännä {trg_lang}: {src}{end}{asst}{trg}{end}'
],
'isl': [
'{user}Þýða á {trg_lang}: {src}{end}{asst}{trg}{end}'
],
'nor': [
'{user}Oversett til {trg_lang}: {src}{end}{asst}{trg}{end}'
],
'swe': [
'{user}Översätt till {trg_lang}: {src}{end}{asst}{trg}{end}'
]
}
# EuroLLM template
EUROLLM_TEMPLATE = "{src_lang}: {src} {trg_lang}: {trg}"
# EMMA-500 template
EMMA_500_TEMPLATE_SYSTEM_PROMPT = "Translate the following sentence from {src_lang} to {trg_lang}\n"
EMMA_500_TEMPLATE_EXAMPLES = "[{src_lang}]: {src}\n[{trg_lang}]: {trg}"
EMMA_500_TEMPLATE = "Translate the following sentence from {src_lang} to {trg_lang}\n[{src_lang}]: {src}\n[{trg_lang}]: {trg}"
# CPT templates
CPT_ENG_TEMPLATE = "## Translate into {trg_lang}: {src}\n{trg}"
CPT_FIN_TEMPLATE = "Käännä {trg_lang}: {src}\n{trg}"
# General template
GENERAL_PURPOSE_TEMPLATE = "## {src_lang}: {src}\n## {trg_lang}: {trg}"
TRG_LANGUAGE = {
'dan': {
'dan': 'dansk',
'eng': 'engelsk',
'fin': 'finsk',
'isl': 'islandsk',
'nor': 'norsk',
'swe': 'svensk',
},
'fin': {
'dan': 'tanskaksi',
'eng': 'englanniksi',
'fin': 'suomeksi',
'isl': 'islanniksi',
'nor': 'norjaksi',
'swe': 'ruotsiksi',
},
'eng': {
'bul': 'Bulgarian',
'hrv': 'Croatian',
'ces': 'Czech',
'dan': 'Danish',
'nld': 'Dutch',
'eng': 'English',
'est': 'Estonian',
'fin': 'Finnish',
'fra': 'French',
'deu': 'German',
'ell': 'Greek',
'hun': 'Hungarian',
'gle': 'Irish',
'isl': 'Icelandic',
'ita': 'Italian',
'lav': 'Latvian',
'lit': 'Lithuanian',
'mlt': 'Maltese',
'nor': 'Norwegian',
'pol': 'Polish',
'por': 'Portuguese',
'ron': 'Romanian',
'slk': 'Slovak',
'slv': 'Slovenian',
'spa': 'Spanish',
'swe': 'Swedish'
},
'isl': {
'dan': 'dönsku',
'eng': 'ensku',
'fin': 'finnsku',
'isl': 'íslensku',
'nor': 'norsku',
'swe': 'sænsku',
},
'nor': {
'dan': 'dansk',
'eng': 'engelsk',
'fin': 'finsk',
'isl': 'islandsk',
'nor': 'norsk',
'swe': 'svensk',
},
'swe': {
'dan': 'danska',
'eng': 'engelska',
'fin': 'finska',
'isl': 'isländska',
'nor': 'norska',
'swe': 'svenska',
},
}
# ICL examples per language (samples from FLORES-101 and Tatoeba dev sets)
FLORES_SENT_INDICES = [532, 136, 51, 587, 356, 119, 152, 381]
ICL_EXAMPLES = {
'tatoeba': {
'eng-fin': {
'src': ["Jesus was a carpenter.",
"According to some historians, Napoleon was an enlightened despot because of improvements he made in the social institutions of France. Others denounce him as an egocentric dictator because of the large number of people who died in his wars.",
"My grandmother ran off with a cowboy.",
"There must be something in the box.",
"This animal is the size of a beaver.",
"A lot of people around here like country music.",
"It's just a minor problem.",
"Tom lives in a brown house."],
'trg': ["Jeesus oli puuseppä.",
"Toisten historijoitsijoiden mukaan Napoleon oli valistunut yksinvaltias, sillä hän teki useita parannuksia Ranskan yhteiskuntarakenteeseen. Toiset julistavat hänet itsekeskeiseksi hirmuvaltiaaksi hänen sodissaan kuolleen ihmismäärän johdosta.",
"Isoäitini karkasi lehmipojan matkaan.",
"Laatikossa on oltava jotakin.",
"Eläin on majavan kokoinen.",
"Monet ihmiset täällä päin pitävät country-musiikista.",
"Se on vain vähäpätöinen ongelma.",
"Tomi asuu ruskeassa talossa."]
},
'eng-swe': {
'src': [
"Everyone wants to meet you. You're famous!",
"We'll win.",
"He likes animals.",
"You have got to be kidding me.",
"Columbus discovered America in 1492.",
"My wedding has to be perfect.",
"Melanie thinks that the situation is very bad.",
"Give me a bottle of wine."
],
'trg': [
"Alla vill träffa dig. Du är känd!",
"Vi ska vinna.",
"Han tycker om djur.",
"Du måste skämta!",
"Columbus upptäckte Amerika 1492.",
"Mitt bröllop måste vara perfekt.",
"Melanie tycker att situationen är mycket dålig.",
"Ge mig en flaska vin."
]
},
"eng-dan": {
"src": [
"I have two books.",
"The weather being fine, we went on a picnic.",
"Will you be ready by 2:30?",
"My father was about to leave when the phone rang.",
"He had a near-death experience.",
"You didn't vote, did you?",
"Blah.",
"Isn't that unconstitutional?"
],
"trg": [
"Jeg har to bøger.",
"Fordi vejret var godt, tog vi på picnic.",
"Vil du være klar klokken halv tre?",
"Min far skulle til at gå da telefonen ringede.",
"Han havde en nærdødsoplevelse.",
"Du stemte ikke, gjorde du vel?",
"Bla.",
"Er det ikke forfatningsstridigt?"
]
},
"eng-isl": {
"src": [
"I can't keep up with you if you walk so fast.",
"Stop beating on the door!",
"I will finish it by tomorrow afternoon.",
"I can't stand it anymore.",
"This tea is called green tea.",
"The traveler reached his destination at last.",
"I'll never tell this to anyone.",
"Thanks for the dinner."
],
"trg": [
"Ég get ekki haldið í við þig ef þú gengur svona hratt.",
"Hættu að berja á dyrnar!",
"Ég mun klára það fyrir eftirmiðdaginn á morgun.",
"Ég þoli það ekki lengur!",
"Þetta te kallast grænt te.",
"Ferðalangurinn náði að lokum áfangastað sínum.",
"Ég mun aldrei segja neinum þetta.",
"Takk fyrir matinn."
]
},
"eng-nor": {
"src": [
"She made her mother happy.",
"Can you take me to Boston with you?",
"She lived a lonely life.",
"Tom doesn't know the answer yet.",
"I don't like early morning meetings.",
"Last year, he was at sea for three months.",
"I'm proud to be a part of this project.",
"I will miss you all."
],
"trg": [
"Hun gjorde sin mor glad.",
"Kan du ta meg med til Boston?",
"Hun levde et ensomt liv.",
"Tom vet ikke svaret ennå.",
"Jeg liker ikke tidlige morgenmøter.",
"I fjor var han tre måneder på sjøen.",
"Jeg er stolt av å være en del av dette prosjektet.",
"Jeg vil savne dere alle sammen."
]
}
},
'flores-101': {
'eng': ["The player who takes the fewest strokes, or swings of the club, to complete the course wins.",
"The algae produces a neurotoxin that can disable nerves in both humans and fish.",
"In April this year, a temporary restaining order was issued by Judge Glynn against the facility to enforce the release of those held more than 24 hours after their intake who did not receive a hearing by a court commissioner.",
"Greed and selfishness will always be with us and it is the nature of cooperation that when the majority benefit there will always be more to gain in the short term by acting selfishly",
"This causes the skater to turn. If the skates tilt to the right, the skater turns right, if the skates tilt to the left, the skater turns left.",
"The game is based on the Second Battle of Fallujah, a vicious battle between American and Iraqi forces.",
"Virgin have only purchased the ‘good bank’ of Northern Rock, not the asset management company.",
"England had experienced a long period of peace after the reconquest of the Danelaw."]
}
}
def argparser():
ap = ArgumentParser()
ap.add_argument('--min_new_tokens', default=10, type=int)
ap.add_argument('--max_new_tokens', default=1024, type=int)
ap.add_argument('--temperature', default=1.0, type=float)
ap.add_argument('--memory-usage', action='store_true')
ap.add_argument('--show-devices', action='store_true')
ap.add_argument('--dtype', choices=DTYPE_MAP.keys(), default='bf16')
ap.add_argument('--device-map', choices=DMAP_CHOICES, default='auto')
ap.add_argument('--trust-remote-code', default=None, action='store_true')
# ap.add_argument('--transformers_cache',type=str, default="/scratch/project_462000319/transformers_cache")
ap.add_argument('--model', type=str)
ap.add_argument('--tokenizer', type=str)
ap.add_argument('--src_file', type=str)
ap.add_argument('--trg_file', type=str)
ap.add_argument('--max_sentences', type=int, default=None)
ap.add_argument('--output_file', type=str, default=None)
ap.add_argument('--lang_pair', default="eng-fin", type=str)
ap.add_argument('--test_data', default="tatoeba", type=str)
ap.add_argument('--format_type', default="equals", type=str, help="chatml, user_assistant, equals")
ap.add_argument('--num_examples', type=int, default=8, help="examples in few-shot prompt")
ap.add_argument('--flores_path', type=str, default="/scratch/project_462000444/finetuning_data/FLORES-200", help="path to FLORES dev sents for few-shot prompt")
ap.add_argument('--skip_lines', type=int, default=None)
return ap
class Llama3StopOnTokenCriteria(StoppingCriteria):
def __init__(self, stop_token_id):
self.stop_token_id = stop_token_id
def __call__(self, input_ids, scores, **kwargs):
return input_ids[0, -1] == self.stop_token_id
class EuroLLMStoppingCriteria(StoppingCriteria):
def __init__(self, stops = []):
StoppingCriteria.__init__(self),
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops = []):
self.stops = stops
for i in range(len(stops)):
self.stops = self.stops[i]
def report_memory_usage(message, out=sys.stderr):
print(f'max memory allocation {message}:', file=out)
total = 0
for i in range(torch.cuda.device_count()):
mem = torch.cuda.max_memory_allocated(i)
print(f' cuda:{i}: {mem/2**30:.1f}G', file=out)
total += mem
print(f' TOTAL: {total/2**30:.1f}G', file=out)
def generate(prompt, model, tokenizer, args, end_token, skip_special_tokens=False):
eos_token_id = tokenizer.eos_token_id
if end_token:
if "emma-500" in args.model.lower():
eos_token_id = [eos_token_id, tokenizer.encode(end_token)[0], 29961]
elif "llama" in args.model.lower():
eos_token_id = [tokenizer.convert_tokens_to_ids("##"), tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
# print("llama eos_token_id:", eos_token_id)
elif "salamandra" in args.model.lower() or "mistral" in args.model.lower() or "eurollm" in args.model.lower():
eos_token_id = [eos_token_id]
end_token_ids = [tokenizer.encode(end_token), tokenizer.convert_tokens_to_ids("##")]
eos_token_id.extend(end_token_ids)
else:
end_token_ids = tokenizer.encode(end_token)[0]
eos_token_id = [eos_token_id]
eos_token_id.append(end_token_ids)
print("eos_token_id:", eos_token_id)
print("--"*30)
print(f"PROMPT:\n{prompt}")
print("--"*30)
temperature = args.temperature
print("temperature=", temperature)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
if "llama-3-8b" in args.model.lower():
stop_on_token_criteria = Llama3StopOnTokenCriteria(stop_token_id=tokenizer.bos_token_id)
input_tokens = tokenizer(prompt, return_tensors="pt").input_ids
dynamic_max_length = 4096 - input_tokens.shape[1]
output = model.generate(
input_ids,
eos_token_id=eos_token_id,
# max_new_tokens=args.max_new_tokens,
max_length=dynamic_max_length,
stopping_criteria=StoppingCriteriaList([stop_on_token_criteria]),
temperature=temperature
)
else:
output = model.generate(
input_ids,
eos_token_id=eos_token_id,
max_new_tokens=args.max_new_tokens,
temperature=temperature
)
result = tokenizer.decode(output[0], skip_special_tokens=skip_special_tokens)
if "gpt-sw3" in args.model:
# print("GPT-SW3 RESULT 1:", result)
result = result.split("<s> Bot: ")[-1].strip()
if result.endswith(end_token):
result = result[:-len(end_token)]
elif "llama" in args.model.lower() or "salamandra" in args.model.lower() or "mistral" in args.model.lower() or "eurollm" in args.model.lower():
print(f"\nRAW RESULT:\n{result}")
result = result.strip().split("\n")[25].strip()
else:
if result.endswith(end_token):
result = result[:-len(end_token)]
if result.endswith(tokenizer.eos_token):
result = result[:-len(tokenizer.eos_token)]
# result includes the prompt, remove the prompt from the output
result = result.replace(prompt, '', 1).strip()
print(f"\nRESULT:\n{result}")
return result
@timed
def translate_sentences(model, tokenizer, src_sentences, trg_sentences, args):
if args.max_sentences is not None:
src_sentences = src_sentences[:args.max_sentences]
elif args.skip_lines is not None:
src_sentences = src_sentences[args.skip_lines:]
trg_sentences = trg_sentences[args.skip_lines:]
src_lang = args.lang_pair.split("-")[0]
trg_lang = args.lang_pair.split("-")[1]
# if src_lang == "nob":
# src_lang = "nor"
# if trg_lang == "nob":
# trg_lang = "nor"
predictions = []
print(f"trg_lang: {trg_lang}")
print(f"src_lang: {src_lang}")
with open(args.output_file, "w", encoding="utf-8") as f:
for i, src_sent in enumerate(src_sentences):
result = ""
if "nllb" in args.model:
if trg_lang == "nor":
trg_lang = "nob"
if trg_lang != 'bul':
lang_code_and_script = trg_lang + "_Latn"
else:
lang_code_and_script = trg_lang + "_Cyrl"
input_ids = tokenizer.encode(src_sent, return_tensors="pt", padding = True).to('cuda')
output = model.generate(input_ids=input_ids,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=args.max_new_tokens,
forced_bos_token_id=tokenizer.convert_tokens_to_ids(lang_code_and_script)
# forced_bos_token_id=tokenizer.lang_code_to_id[trg_lang + "_Latn"]
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
print(i+1, "src:", src_sent)
print("pred:", result)
print("-"*50)
elif "m2m" in args.model:
tokenizer.src_lang = M2M_LANG_MAP[src_lang]
input_ids = tokenizer.encode(src_sent, return_tensors="pt").to('cuda')
output = model.generate(input_ids=input_ids,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=args.max_new_tokens,
forced_bos_token_id=tokenizer.get_lang_id(M2M_LANG_MAP[trg_lang]))
result = tokenizer.decode(output[0], skip_special_tokens=True)
print(i+1, "src:", src_sent)
print("\npred:", result)
print("-"*50)
elif "opus" in args.model:
input_ids = tokenizer.encode(src_sent, return_tensors="pt").to('cuda')
output = model.generate(input_ids=input_ids,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=args.max_new_tokens)
result = tokenizer.decode(output[0], skip_special_tokens=True)
print(i+1, "src:", src_sent)
print("\npred:", result)
print("-"*50)
else:
# LLMs
# Tatoeba examples
if args.test_data == "tatoeba":
if args.lang_pair == "eng-fin":
src_sents = ICL_EXAMPLES[args.test_data]['eng-fin']['src']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-fin']['trg']
elif args.lang_pair == "fin-eng":
src_sents = ICL_EXAMPLES[args.test_data]['eng-fin']['trg']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-fin']['src']
elif args.lang_pair == "eng-swe":
src_sents = ICL_EXAMPLES[args.test_data]['eng-swe']['src']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-swe']['trg']
elif args.lang_pair == "swe-eng":
src_sents = ICL_EXAMPLES[args.test_data]['eng-swe']['trg']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-swe']['src']
elif args.lang_pair == "eng-dan":
src_sents = ICL_EXAMPLES[args.test_data]['eng-dan']['src']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-dan']['trg']
elif args.lang_pair == "dan-eng":
src_sents = ICL_EXAMPLES[args.test_data]['eng-dan']['trg']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-dan']['src']
elif args.lang_pair == "eng-isl":
src_sents = ICL_EXAMPLES[args.test_data]['eng-isl']['src']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-isl']['trg']
elif args.lang_pair == "isl-eng":
src_sents = ICL_EXAMPLES[args.test_data]['eng-isl']['trg']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-isl']['src']
elif args.lang_pair == "eng-nor":
src_sents = ICL_EXAMPLES[args.test_data]['eng-nor']['src']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-nor']['trg']
elif args.lang_pair == "nor-eng":
src_sents = ICL_EXAMPLES[args.test_data]['eng-nor']['trg']
trg_sents = ICL_EXAMPLES[args.test_data]['eng-nor']['src']
elif args.lang_pair == "fin-swe":
src_sents = ICL_EXAMPLES[args.test_data]['fin-swe']['src']
trg_sents = ICL_EXAMPLES[args.test_data]['fin-swe']['trg']
elif args.lang_pair == "swe-fin":
src_sents = ICL_EXAMPLES[args.test_data]['fin-swe']['trg']
trg_sents = ICL_EXAMPLES[args.test_data]['fin-swe']['src']
else:
# FLORES examples
flores_src_sentences = open(os.path.join(args.flores_path, src_lang+"-dev.txt")).readlines()
flores_trg_sentences = open(os.path.join(args.flores_path, trg_lang+"-dev.txt")).readlines()
src_sents = [flores_src_sentences[sent_index].strip() for sent_index in FLORES_SENT_INDICES]
trg_sents = [flores_trg_sentences[sent_index].strip() for sent_index in FLORES_SENT_INDICES]
# src_sents = ICL_EXAMPLES[args.test_data][src_lang]
# trg_sents = ICL_EXAMPLES[args.test_data][trg_lang]
src_sents = src_sents[:args.num_examples]
trg_sents = trg_sents[:args.num_examples]
# Europa / Viking / Poro
if "europa" in args.model.lower() or "viking" in args.model.lower() or "poro" in args.model.lower():
if args.format_type == "chatml":
prompt = format_prompt_chatml(src_sent, src_sents, trg_sents, src_lang, trg_lang)
result = generate(prompt, model, tokenizer, args, end_token="<|im_end|>", skip_special_tokens=False)
elif args.format_type == "user_assistant":
prompt = format_prompt_user_assistant(src_sent, src_sents, trg_sents)
result = generate(prompt, model, tokenizer, args, end_token="END", skip_special_tokens=True)
else:
prompt = format_prompt_src_equals_trg(src_sent, src_sents, trg_sents, template=SRC_EQUALS_TRG_TEMPLATE, end_token="END")
result = generate(prompt, model, tokenizer, args, end_token="END", skip_special_tokens=False)
else:
# AI-Sweden models
if "AI-Sweden" in args.model.lower():
if "gpt-sw3-6.7b-v2-translator" in args.model:
prompt = format_prompt_gpt_swe_translator(src_sent, src_lang, trg_lang)
result = generate(prompt, model, tokenizer, args, end_token="<s>", skip_special_tokens=False)
else:
prompt = format_prompt_src_equals_trg(src_sent, src_sents, trg_sents, template=LLAMA3_SRC_EQUALS_TRG_TEMPLATE, end_token = LLAMA_3_END)
result = generate(prompt, model, tokenizer, args, end_token=LLAMA_3_END, skip_special_tokens=True)
# elif "eurollm" in args.model.lower():
# # print("EuroLLM model -- use EuroLLM prompt format")
# prompt = format_prompt_eurollm(src_sent, src_sents, trg_sents, src_lang, trg_lang)
# result = generate(prompt, model, tokenizer, args, end_token="<s>", skip_special_tokens=True)
elif "emma-500" in args.model.lower():
prompt = format_prompt_emma500(src_sent, src_sents, trg_sents, src_lang, trg_lang)
result = generate(prompt, model, tokenizer, args, end_token="[", skip_special_tokens=True)
elif "cpt" in args.model.lower():
prompt = format_prompt_cpt(src_sent, src_sents, trg_sents, src_lang, trg_lang)
result = generate(prompt, model, tokenizer, args, end_token="\n", skip_special_tokens=True)
elif "salamandra" in args.model.lower() or "llama" in args.model.lower() or "mistral" in args.model.lower() or "eurollm" in args.model.lower():
prompt = format_prompt_cpt(src_sent, src_sents, trg_sents, src_lang, trg_lang)
result = generate(prompt, model, tokenizer, args, end_token="\n\n", skip_special_tokens=True)
# print(i+1, "src:", src_sent)
# print("\n pred:", result)
# print("\n trg:", trg_sentences[i])
print("-"*50)
# remove \n from translation
result = result.replace("\n", " ")
f.write( result + "\n")
predictions.append(result)
with open(args.output_file.replace(".txt", ".jsonl"), "w", encoding="utf-8") as f:
for pred in predictions:
f.write(
json.dumps(
{
"src": src_sent,
"trg": trg_sentences[i],
"prediction": pred,
},
ensure_ascii=False
)
+ "\n"
)
return predictions
def format_general_prompt(new_sent, src_sents, trg_sents, src_lang, trg_lang):
template = GENERAL_PURPOSE_TEMPLATE
prompts = []
for src, trg in zip(src_sents, trg_sents):
text = template.format(src_lang=TRG_LANGUAGE['eng'][src_lang],
trg_lang=TRG_LANGUAGE['eng'][trg_lang],
src=src,
trg=trg
).strip()
prompts.append(text)
assistant_prompt = template.format(src_lang=TRG_LANGUAGE['eng'][src_lang],
trg_lang=TRG_LANGUAGE['eng'][trg_lang],
src=new_sent,
trg=""
).strip()
prompt = "\n\n".join(prompts).strip()
prompt += "\n\n" + assistant_prompt + "\n"
return prompt
def format_prompt_cpt(new_sent, src_sents, trg_sents, src_lang, trg_lang):
template = CPT_ENG_TEMPLATE
prompts = []
for src, trg in zip(src_sents, trg_sents):
text = template.format(trg_lang=TRG_LANGUAGE['eng'][trg_lang],
src=src,
trg=trg
).strip()
prompts.append(text)
assistant_prompt = template.format(trg_lang=TRG_LANGUAGE['eng'][trg_lang],
src=new_sent,
trg=""
).strip()
prompt = "\n\n".join(prompts).strip()
prompt += "\n\n" + assistant_prompt + "\n"
return prompt
def format_prompt_emma500(new_sent, src_sents, trg_sents, src_lang, trg_lang):
system_template = EMMA_500_TEMPLATE_SYSTEM_PROMPT
examples_template = EMMA_500_TEMPLATE_EXAMPLES
prompt = system_template.format(src_lang=src_lang,
trg_lang=trg_lang,
).strip()
examples_prompts = []
for src, trg in zip(src_sents, trg_sents):
text = examples_template.format(src_lang=src_lang,
src=src,
trg_lang=trg_lang,
trg=trg
).strip()
examples_prompts.append(text)
assistant_prompt = examples_template.format(src_lang=src_lang,
src=new_sent,
trg_lang=trg_lang,
trg=""
).strip()
examples_prompts.append(assistant_prompt)
examples_prompt = "\n".join(examples_prompts).strip()
prompt += "\n" + examples_prompt
return prompt
def format_prompt_eurollm(new_sent, src_sents, trg_sents, src_lang, trg_lang):
template = EUROLLM_TEMPLATE
prompts = []
assistant_prompt = template.format(src_lang=TRG_LANGUAGE['eng'][src_lang],
src=new_sent,
trg_lang=TRG_LANGUAGE['eng'][trg_lang],
trg=""
).strip()
return assistant_prompt
def format_prompt_gpt_swe(new_sent, src_sents, trg_sents, src_lang, trg_lang):
template = VIKING_TEMPLATES[src_lang][0]
prompts = []
for src, trg in zip(src_sents, trg_sents):
text = template.format(
src=src,
trg=trg,
trg_lang=TRG_LANGUAGE[src_lang][trg_lang],
user=DEFAULT_USER_START,
asst=DEFAULT_ASST_START,
end=DEFAULT_END,
)
prompts.append(text)
assistant_prompt = template.format(
src=new_sent,
trg="",
trg_lang=TRG_LANGUAGE[src_lang][trg_lang],
user=DEFAULT_USER_START,
asst=DEFAULT_ASST_START,
end=DEFAULT_END)
prompt = "\n".join(prompts)
assistant_prompt = assistant_prompt[:-len(DEFAULT_END)]
prompt = prompt + "\n" + assistant_prompt
return prompt
def format_prompt_gpt_swe_translator(new_sent, src_lang, trg_lang):
template = GPT_SW3_TRANSLATOR_TEMPLATES[f"{src_lang}-{trg_lang}"]
prompt = template.format(text=new_sent)
return prompt
def format_prompt_chatml(new_sent, src_sents, trg_sents, src_lang, trg_lang):
template = VIKING_TEMPLATES[src_lang][0]
prompts = []
for src, trg in zip(src_sents, trg_sents):
text = template.format(
src=src,
trg=trg,
trg_lang=TRG_LANGUAGE[src_lang][trg_lang],
user=DEFAULT_USER_START,
asst=DEFAULT_ASST_START,
end=DEFAULT_END,
)
prompts.append(text)
assistant_prompt = template.format(
src=new_sent,
trg="",
trg_lang=TRG_LANGUAGE[src_lang][trg_lang],
user=DEFAULT_USER_START,
asst=DEFAULT_ASST_START,
end=DEFAULT_END)
prompt = "\n".join(prompts)
assistant_prompt = assistant_prompt[:-len(DEFAULT_END)]
prompt = prompt + "\n" + assistant_prompt
return prompt
def format_prompt_src_equals_trg(new_sent, src_sents, trg_sents, template, end_token="END"):
prompts = []
for src, trg in zip(src_sents, trg_sents):
text = template.format(
src=src,
trg=trg,
end=end_token,
)
prompts.append(text)
assistant_prompt = template.format(src=new_sent,
trg="",
end="")
prompt = "\n".join(prompts)
prompt = prompt + "\n" + assistant_prompt.strip()
return prompt
def format_prompt_user_assistant(new_sent, src_sents, trg_sents):
template = USER_ASSISTANT_TEMPLATE
prompts = []
for src, trg in zip(src_sents, trg_sents):
text = template.format(
src=src,
trg=trg,
user=PORO_USER_START,
asst=PORO_ASST_START,
end=PORO_END
)
prompts.append(text)
assistant_prompt = template.format(src=new_sent,
trg="",
user=PORO_USER_START,
asst=PORO_ASST_START,
end="")
prompt = "\n".join(prompts)
prompt = prompt + "\n" + assistant_prompt.strip()
return prompt
def compute_spbleu_score(preds, refs, tokenize='flores101'):
refs = [refs]
bleu = BLEU(tokenize=tokenize)
bleu_score = bleu.corpus_score(preds, refs)
bleu_score = np.round(bleu_score.score, 1)
return bleu_score
@timed
def load_model(args):
print("Loading model:", args.model)
if "opus" in args.model:
model = MarianMTModel.from_pretrained(
args.model,
# cache_dir=args.transformers_cache,
)
model.to('cuda')
elif "nllb" in args.model or "m2m" in args.model:
model = M2M100ForConditionalGeneration.from_pretrained(
args.model,
# cache_dir=args.transformers_cache
)
model.to('cuda')
else:
if "poro" not in args.model.lower():
model = AutoModelForCausalLM.from_pretrained(
args.model,
device_map=args.device_map,
torch_dtype=DTYPE_MAP[args.dtype],
# trust_remote_code=args.trust_remote_code,
attn_implementation='flash_attention_2',
)
else:
model = AutoModelForCausalLM.from_pretrained(
args.model,
device_map=args.device_map,
torch_dtype=DTYPE_MAP[args.dtype],
)
model.eval()
return model
def check_devices(model, args):
if args.show_devices:
print(f'devices:', file=sys.stderr)
for name, module in model.named_modules():
for param_name, param in module.named_parameters(recurse=False):
if args.show_devices:
print(f' {name}.{param_name}:{param.device}', file=sys.stderr)
elif param.device.type != 'cuda':
warning(f'{name}.{param_name} on device {param.device}')
def main(argv):
args = argparser().parse_args(argv[1:])
if args.tokenizer is None:
args.tokenizer = args.model
if "opus" in args.tokenizer:
tokenizer = MarianTokenizer.from_pretrained(args.tokenizer)
elif "m2m" in args.tokenizer:
tokenizer = tokenizer = M2M100Tokenizer.from_pretrained(args.tokenizer)
else:
if "nllb" in args.model:
src_lang = args.lang_pair.split("-")[0]
if src_lang == "nor":
src_lang = "nob"
if src_lang == 'bul':
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer, token=True, src_lang=src_lang + "_Cyrl")
else:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer, token=True, src_lang=src_lang + "_Latn")
else:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
model = load_model(args)
if args.memory_usage:
report_memory_usage('after model load')
if ".jsonl" in args.src_file:
src_sentences = [json.loads(line) for line in open(args.src_file)]
src_sentences = [sent['sentence'].rstrip() for sent in src_sentences]
else:
src_sentences = open(args.src_file).readlines()
src_sentences = [src.rstrip() for src in src_sentences]
print("src_sentences:", len(src_sentences))
if ".jsonl" in args.trg_file:
trg_sentences = [json.loads(line) for line in open(args.trg_file)]
trg_sentences = [sent['sentence'].rstrip() for sent in trg_sentences]
else:
trg_sentences = open(args.trg_file).readlines()
trg_sentences = [trg.rstrip() for trg in trg_sentences]
print("trg_sentences:", len(trg_sentences))
temperature = args.temperature
print("temperature=", temperature)
predictions = translate_sentences(model, tokenizer, src_sentences, trg_sentences, args)
print("--- Done translating. Outputs saved to", args.output_file, "---")
print("predictions:", len(predictions))
print("trg_sentences:", len(trg_sentences))
spbleu_score = compute_spbleu_score(predictions, trg_sentences[:len(predictions)])
print("-"*20)
print(f"|{args.lang_pair} spBLEU score: {spbleu_score} |")
print("-"*20)
# compute score for first 100 FLORES sentences
# if args.test_data == "flores-101" and len(predictions) > 100:
# spbleu_score = compute_spbleu_score(predictions[:100], trg_sentences[:100])
# print("-"*20)
# print("| First 100 sentences |")
# print("| spBLEU score:", spbleu_score, "|")
# print("-"*20)
if __name__ == '__main__':
sys.exit(main(sys.argv))