From c0d851dc76f339e657fee198ccd86cee5492fcba Mon Sep 17 00:00:00 2001 From: Li Bo Date: Sun, 10 Dec 2023 18:01:39 +0800 Subject: [PATCH] Add files via upload --- pipeline/utils/convert_to_parquet.py | 107 +++++++++++++++++++++++++++ 1 file changed, 107 insertions(+) create mode 100644 pipeline/utils/convert_to_parquet.py diff --git a/pipeline/utils/convert_to_parquet.py b/pipeline/utils/convert_to_parquet.py new file mode 100644 index 00000000..0c3f077c --- /dev/null +++ b/pipeline/utils/convert_to_parquet.py @@ -0,0 +1,107 @@ +import pandas as pd +import os +import time +import json +from tqdm import tqdm +import argparse +import orjson +import dask.dataframe as dd +from concurrent.futures import ThreadPoolExecutor, as_completed + +def process_images(base64_str, resize_res=-1): + import base64 + from PIL import Image + from io import BytesIO + + if not base64_str: + print("Warning: Empty base64 string encountered.") + return None + + padding_needed = 4 - len(base64_str) % 4 + if padding_needed != 4: + base64_str += "=" * padding_needed + + try: + if resize_res == -1: + img = Image.open(BytesIO(base64.urlsafe_b64decode(base64_str))).convert("RGB") + else: + img = Image.open(BytesIO(base64.urlsafe_b64decode(base64_str))).convert("RGB").resize((resize_res, resize_res)) + except Exception as e: + print(f"Warning: Failed to open image. Error: {e}") + return None + + if img.mode == "RGBA": + img = img.convert("RGB") + + buffered = BytesIO() + img.save(buffered, format="PNG") + new_base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8") + return new_base64_str + + +def convert_json_to_parquet(input_path, output_path, max_partition_size): + start_time = time.time() + with open(input_path, "rb") as f: + data = f.read() + data_dict = orjson.loads(data) + + total_size = len(data) + print(f"Total size of the JSON data: {total_size} bytes") + + nparitions = int(max(1, total_size // max_partition_size)) + print(f"Number of partitions: {nparitions}") + + resized_data_dict = {} + dropped_keys = [] + + # Initialize the progress bar + progress_bar = tqdm(total=len(data_dict), unit="item", desc="Processing items") + + # Define a function to process a single item and update the progress bar + def process_item(key, value): + if isinstance(value, list): + value = value[0] + resized_base64 = process_images(value) + progress_bar.update(1) # Update the progress bar here + return key, resized_base64 + + with ThreadPoolExecutor(max_workers=256) as executor: + future_to_key = {executor.submit(process_item, key, value): key for key, value in data_dict.items()} + + for future in as_completed(future_to_key): + key = future_to_key[future] + try: + resized_data_dict[key] = future.result() + except Exception as e: + print(f"Warning: Failed to process key {key}. Error: {e}") + dropped_keys.append(key) + progress_bar.update(1) # Update the progress bar for failed items as well + + # Close the progress bar after all tasks are done + progress_bar.close() + + ddf = dd.from_pandas(pd.DataFrame.from_dict(resized_data_dict, orient="index", columns=["base64"]), npartitions=nparitions) + ddf.to_parquet(output_path, engine="pyarrow") + + end_time = time.time() + print(f"Converting {input_path} to parquet takes {end_time - start_time} seconds.") + return dropped_keys + + +def main(): + parser = argparse.ArgumentParser(description="Convert JSON to Parquet") + parser.add_argument("--input_path", help="Path to the input JSON file") + parser.add_argument("--output_path", help="Path for the output Parquet file") + parser.add_argument("--resize_res", type=int, default=-1) + parser.add_argument("--max_partition_size_gb", type=float, default=1.5, help="Maximum size of each partition in GB") + args = parser.parse_args() + + # Convert GB to bytes for max_partition_size + max_partition_size = args.max_partition_size_gb * 1024**3 + + dropped_keys = convert_json_to_parquet(args.input_path, args.output_path, max_partition_size) + print(f"Number of dropped keys: {len(dropped_keys)}") + print(f"Dropped keys: {dropped_keys}") + +if __name__ == "__main__": + main()