-
Notifications
You must be signed in to change notification settings - Fork 4
/
default_data_augmentation.py
257 lines (209 loc) · 12.5 KB
/
default_data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from copy import deepcopy
import numpy as np
from batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter
from batchgenerators.transforms.abstract_transforms import Compose
from batchgenerators.transforms.channel_selection_transforms import DataChannelSelectionTransform, \
SegChannelSelectionTransform
from batchgenerators.transforms.color_transforms import GammaTransform
from batchgenerators.transforms.spatial_transforms import SpatialTransform, MirrorTransform
from batchgenerators.transforms.utility_transforms import RemoveLabelTransform, RenameTransform, NumpyToTensor
from custom_transforms import Convert3DTo2DTransform, Convert2DTo3DTransform, \
MaskTransform, ConvertSegmentationToRegionsTransform
from pyramid_augmentations import MoveSegAsOneHotToData, \
ApplyRandomBinaryOperatorTransform, \
RemoveRandomConnectedComponentFromOneHotEncodingTransform
try:
from batchgenerators.dataloading.nondet_multi_threaded_augmenter import NonDetMultiThreadedAugmenter
except ImportError as ie:
NonDetMultiThreadedAugmenter = None
default_3D_augmentation_params = {
"selected_data_channels": None,
"selected_seg_channels": None,
"do_elastic": True,
"elastic_deform_alpha": (0., 900.),
"elastic_deform_sigma": (9., 13.),
"p_eldef": 0.2,
"do_scaling": True,
"scale_range": (0.85, 1.25),
"independent_scale_factor_for_each_axis": False,
"p_independent_scale_per_axis": 1,
"p_scale": 0.2,
"do_rotation": True,
"rotation_x": (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi),
"rotation_y": (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi),
"rotation_z": (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi),
"rotation_p_per_axis": 1,
"p_rot": 0.2,
"random_crop": False,
"random_crop_dist_to_border": None,
"do_gamma": True,
"gamma_retain_stats": True,
"gamma_range": (0.7, 1.5),
"p_gamma": 0.3,
"do_mirror": True,
"mirror_axes": (0, 1, 2),
"dummy_2D": False,
"mask_was_used_for_normalization": None,
"border_mode_data": "constant",
"all_segmentation_labels": None, # used for cascade
"move_last_seg_chanel_to_data": False, # used for cascade
"cascade_do_cascade_augmentations": False, # used for cascade
"cascade_random_binary_transform_p": 0.4,
"cascade_random_binary_transform_p_per_label": 1,
"cascade_random_binary_transform_size": (1, 8),
"cascade_remove_conn_comp_p": 0.2,
"cascade_remove_conn_comp_max_size_percent_threshold": 0.15,
"cascade_remove_conn_comp_fill_with_other_class_p": 0.0,
"do_additive_brightness": False,
"additive_brightness_p_per_sample": 0.15,
"additive_brightness_p_per_channel": 0.5,
"additive_brightness_mu": 0.0,
"additive_brightness_sigma": 0.1,
"num_threads": 12 if 'nnUNet_n_proc_DA' not in os.environ else int(os.environ['nnUNet_n_proc_DA']),
"num_cached_per_thread": 1,
}
default_2D_augmentation_params = deepcopy(default_3D_augmentation_params)
default_2D_augmentation_params["elastic_deform_alpha"] = (0., 200.)
default_2D_augmentation_params["elastic_deform_sigma"] = (9., 13.)
default_2D_augmentation_params["rotation_x"] = (-180. / 360 * 2. * np.pi, 180. / 360 * 2. * np.pi)
default_2D_augmentation_params["rotation_y"] = (-0. / 360 * 2. * np.pi, 0. / 360 * 2. * np.pi)
default_2D_augmentation_params["rotation_z"] = (-0. / 360 * 2. * np.pi, 0. / 360 * 2. * np.pi)
# sometimes you have 3d data and a 3d net but cannot augment them properly in 3d due to anisotropy (which is currently
# not supported in batchgenerators). In that case you can 'cheat' and transfer your 3d data into 2d data and
# transform them back after augmentation
default_2D_augmentation_params["dummy_2D"] = False
default_2D_augmentation_params["mirror_axes"] = (0, 1) # this can be (0, 1, 2) if dummy_2D=True
def get_patch_size(final_patch_size, rot_x, rot_y, rot_z, scale_range):
if isinstance(rot_x, (tuple, list)):
rot_x = max(np.abs(rot_x))
if isinstance(rot_y, (tuple, list)):
rot_y = max(np.abs(rot_y))
if isinstance(rot_z, (tuple, list)):
rot_z = max(np.abs(rot_z))
rot_x = min(90 / 360 * 2. * np.pi, rot_x)
rot_y = min(90 / 360 * 2. * np.pi, rot_y)
rot_z = min(90 / 360 * 2. * np.pi, rot_z)
from batchgenerators.augmentations.utils import rotate_coords_3d, rotate_coords_2d
coords = np.array(final_patch_size)
final_shape = np.copy(coords)
if len(coords) == 3:
final_shape = np.max(np.vstack((np.abs(rotate_coords_3d(coords, rot_x, 0, 0)), final_shape)), 0)
final_shape = np.max(np.vstack((np.abs(rotate_coords_3d(coords, 0, rot_y, 0)), final_shape)), 0)
final_shape = np.max(np.vstack((np.abs(rotate_coords_3d(coords, 0, 0, rot_z)), final_shape)), 0)
elif len(coords) == 2:
final_shape = np.max(np.vstack((np.abs(rotate_coords_2d(coords, rot_x)), final_shape)), 0)
final_shape /= min(scale_range)
return final_shape.astype(int)
def get_default_augmentation(dataloader_train, dataloader_val, patch_size, params=default_3D_augmentation_params,
border_val_seg=-1, pin_memory=True,
seeds_train=None, seeds_val=None, regions=None):
assert params.get('mirror') is None, "old version of params, use new keyword do_mirror"
tr_transforms = []
if params.get("selected_data_channels") is not None:
tr_transforms.append(DataChannelSelectionTransform(params.get("selected_data_channels")))
if params.get("selected_seg_channels") is not None:
tr_transforms.append(SegChannelSelectionTransform(params.get("selected_seg_channels")))
# don't do color augmentations while in 2d mode with 3d data because the color channel is overloaded!!
if params.get("dummy_2D") is not None and params.get("dummy_2D"):
tr_transforms.append(Convert3DTo2DTransform())
patch_size_spatial = patch_size[1:]
else:
patch_size_spatial = patch_size
tr_transforms.append(SpatialTransform(
patch_size_spatial, patch_center_dist_from_border=None, do_elastic_deform=params.get("do_elastic"),
alpha=params.get("elastic_deform_alpha"), sigma=params.get("elastic_deform_sigma"),
do_rotation=params.get("do_rotation"), angle_x=params.get("rotation_x"), angle_y=params.get("rotation_y"),
angle_z=params.get("rotation_z"), do_scale=params.get("do_scaling"), scale=params.get("scale_range"),
border_mode_data=params.get("border_mode_data"), border_cval_data=0, order_data=3, border_mode_seg="constant",
border_cval_seg=border_val_seg,
order_seg=1, random_crop=params.get("random_crop"), p_el_per_sample=params.get("p_eldef"),
p_scale_per_sample=params.get("p_scale"), p_rot_per_sample=params.get("p_rot"),
independent_scale_for_each_axis=params.get("independent_scale_factor_for_each_axis")
))
if params.get("dummy_2D") is not None and params.get("dummy_2D"):
tr_transforms.append(Convert2DTo3DTransform())
if params.get("do_gamma"):
tr_transforms.append(
GammaTransform(params.get("gamma_range"), False, True, retain_stats=params.get("gamma_retain_stats"),
p_per_sample=params["p_gamma"]))
if params.get("do_mirror"):
tr_transforms.append(MirrorTransform(params.get("mirror_axes")))
if params.get("mask_was_used_for_normalization") is not None:
mask_was_used_for_normalization = params.get("mask_was_used_for_normalization")
tr_transforms.append(MaskTransform(mask_was_used_for_normalization, mask_idx_in_seg=0, set_outside_to=0))
tr_transforms.append(RemoveLabelTransform(-1, 0))
if params.get("move_last_seg_chanel_to_data") is not None and params.get("move_last_seg_chanel_to_data"):
tr_transforms.append(MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"), 'seg', 'data'))
if params.get("cascade_do_cascade_augmentations") and not None and params.get(
"cascade_do_cascade_augmentations"):
tr_transforms.append(ApplyRandomBinaryOperatorTransform(
channel_idx=list(range(-len(params.get("all_segmentation_labels")), 0)),
p_per_sample=params.get("cascade_random_binary_transform_p"),
key="data",
strel_size=params.get("cascade_random_binary_transform_size")))
tr_transforms.append(RemoveRandomConnectedComponentFromOneHotEncodingTransform(
channel_idx=list(range(-len(params.get("all_segmentation_labels")), 0)),
key="data",
p_per_sample=params.get("cascade_remove_conn_comp_p"),
fill_with_other_class_p=params.get("cascade_remove_conn_comp_max_size_percent_threshold"),
dont_do_if_covers_more_than_X_percent=params.get("cascade_remove_conn_comp_fill_with_other_class_p")))
tr_transforms.append(RenameTransform('seg', 'target', True))
if regions is not None:
tr_transforms.append(ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))
tr_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
tr_transforms = Compose(tr_transforms)
# from batchgenerators.dataloading import SingleThreadedAugmenter
# batchgenerator_train = SingleThreadedAugmenter(dataloader_train, tr_transforms)
# import IPython;IPython.embed()
batchgenerator_train = MultiThreadedAugmenter(dataloader_train, tr_transforms, params.get('num_threads'),
params.get("num_cached_per_thread"), seeds=seeds_train,
pin_memory=pin_memory)
val_transforms = []
val_transforms.append(RemoveLabelTransform(-1, 0))
if params.get("selected_data_channels") is not None:
val_transforms.append(DataChannelSelectionTransform(params.get("selected_data_channels")))
if params.get("selected_seg_channels") is not None:
val_transforms.append(SegChannelSelectionTransform(params.get("selected_seg_channels")))
if params.get("move_last_seg_chanel_to_data") is not None and params.get("move_last_seg_chanel_to_data"):
val_transforms.append(MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"), 'seg', 'data'))
val_transforms.append(RenameTransform('seg', 'target', True))
if regions is not None:
val_transforms.append(ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))
val_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
val_transforms = Compose(val_transforms)
# batchgenerator_val = SingleThreadedAugmenter(dataloader_val, val_transforms)
batchgenerator_val = MultiThreadedAugmenter(dataloader_val, val_transforms, max(params.get('num_threads') // 2, 1),
params.get("num_cached_per_thread"), seeds=seeds_val,
pin_memory=pin_memory)
return batchgenerator_train, batchgenerator_val
if __name__ == "__main__":
from nnunet.training.dataloading.dataset_loading import DataLoader3D, load_dataset
from nnunet.paths import preprocessing_output_dir
import os
import pickle
t = "Task002_Heart"
p = os.path.join(preprocessing_output_dir, t)
dataset = load_dataset(p, 0)
with open(os.path.join(p, "plans.pkl"), 'rb') as f:
plans = pickle.load(f)
basic_patch_size = get_patch_size(np.array(plans['stage_properties'][0].patch_size),
default_3D_augmentation_params['rotation_x'],
default_3D_augmentation_params['rotation_y'],
default_3D_augmentation_params['rotation_z'],
default_3D_augmentation_params['scale_range'])
dl = DataLoader3D(dataset, basic_patch_size, np.array(plans['stage_properties'][0].patch_size).astype(int), 1)
tr, val = get_default_augmentation(dl, dl, np.array(plans['stage_properties'][0].patch_size).astype(int))