-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdownsampling.py
104 lines (85 loc) · 4.04 KB
/
downsampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from batchgenerators.augmentations.utils import convert_seg_image_to_one_hot_encoding_batched, resize_segmentation
from batchgenerators.transforms.abstract_transforms import AbstractTransform
from torch.nn.functional import avg_pool2d, avg_pool3d
import numpy as np
class DownsampleSegForDSTransform3(AbstractTransform):
'''
returns one hot encodings of the segmentation maps if downsampling has occured (no one hot for highest resolution)
downsampled segmentations are smooth, not 0/1
returns torch tensors, not numpy arrays!
always uses seg channel 0!!
you should always give classes! Otherwise weird stuff may happen
'''
def __init__(self, ds_scales=(1, 0.5, 0.25), input_key="seg", output_key="seg", classes=None):
self.classes = classes
self.output_key = output_key
self.input_key = input_key
self.ds_scales = ds_scales
def __call__(self, **data_dict):
data_dict[self.output_key] = downsample_seg_for_ds_transform3(data_dict[self.input_key][:, 0], self.ds_scales, self.classes)
return data_dict
def downsample_seg_for_ds_transform3(seg, ds_scales=((1, 1, 1), (0.5, 0.5, 0.5), (0.25, 0.25, 0.25)), classes=None):
output = []
one_hot = torch.from_numpy(convert_seg_image_to_one_hot_encoding_batched(seg, classes)) # b, c,
for s in ds_scales:
if all([i == 1 for i in s]):
output.append(torch.from_numpy(seg))
else:
kernel_size = tuple(int(1 / i) for i in s)
stride = kernel_size
pad = tuple((i-1) // 2 for i in kernel_size)
if len(s) == 2:
pool_op = avg_pool2d
elif len(s) == 3:
pool_op = avg_pool3d
else:
raise RuntimeError()
pooled = pool_op(one_hot, kernel_size, stride, pad, count_include_pad=False, ceil_mode=False)
output.append(pooled)
return output
class DownsampleSegForDSTransform2(AbstractTransform):
'''
data_dict['output_key'] will be a list of segmentations scaled according to ds_scales
'''
def __init__(self, ds_scales=(1, 0.5, 0.25), order=0, input_key="seg", output_key="seg", axes=None):
self.axes = axes
self.output_key = output_key
self.input_key = input_key
self.order = order
self.ds_scales = ds_scales
def __call__(self, **data_dict):
data_dict[self.output_key] = downsample_seg_for_ds_transform2(data_dict[self.input_key], self.ds_scales,
self.order, self.axes)
return data_dict
def downsample_seg_for_ds_transform2(seg, ds_scales=((1, 1, 1), (0.5, 0.5, 0.5), (0.25, 0.25, 0.25)), order=0, axes=None):
if axes is None:
axes = list(range(2, len(seg.shape)))
output = []
for s in ds_scales:
if all([i == 1 for i in s]):
output.append(seg)
else:
new_shape = np.array(seg.shape).astype(float)
for i, a in enumerate(axes):
new_shape[a] *= s[i]
new_shape = np.round(new_shape).astype(int)
out_seg = np.zeros(new_shape, dtype=seg.dtype)
for b in range(seg.shape[0]):
for c in range(seg.shape[1]):
out_seg[b, c] = resize_segmentation(seg[b, c], new_shape[2:], order)
output.append(out_seg)
return output