-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluator.py
893 lines (672 loc) · 30.6 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import inspect
import json
import hashlib
from datetime import datetime
from multiprocessing.pool import Pool
import numpy as np
import pandas as pd
import SimpleITK as sitk
from batchgenerators.utilities.file_and_folder_operations import save_json, subfiles, join
from collections import OrderedDict
import numpy as np
from medpy import metric
def assert_shape(test, reference):
assert test.shape == reference.shape, "Shape mismatch: {} and {}".format(
test.shape, reference.shape)
class ConfusionMatrix:
def __init__(self, test=None, reference=None):
self.tp = None
self.fp = None
self.tn = None
self.fn = None
self.size = None
self.reference_empty = None
self.reference_full = None
self.test_empty = None
self.test_full = None
self.set_reference(reference)
self.set_test(test)
def set_test(self, test):
self.test = test
self.reset()
def set_reference(self, reference):
self.reference = reference
self.reset()
def reset(self):
self.tp = None
self.fp = None
self.tn = None
self.fn = None
self.size = None
self.test_empty = None
self.test_full = None
self.reference_empty = None
self.reference_full = None
def compute(self):
if self.test is None or self.reference is None:
raise ValueError(
"'test' and 'reference' must both be set to compute confusion matrix.")
assert_shape(self.test, self.reference)
self.tp = int(((self.test != 0) * (self.reference != 0)).sum())
self.fp = int(((self.test != 0) * (self.reference == 0)).sum())
self.tn = int(((self.test == 0) * (self.reference == 0)).sum())
self.fn = int(((self.test == 0) * (self.reference != 0)).sum())
self.size = int(np.prod(self.reference.shape, dtype=np.int64))
self.test_empty = not np.any(self.test)
self.test_full = np.all(self.test)
self.reference_empty = not np.any(self.reference)
self.reference_full = np.all(self.reference)
def get_matrix(self):
for entry in (self.tp, self.fp, self.tn, self.fn):
if entry is None:
self.compute()
break
return self.tp, self.fp, self.tn, self.fn
def get_size(self):
if self.size is None:
self.compute()
return self.size
def get_existence(self):
for case in (self.test_empty, self.test_full, self.reference_empty, self.reference_full):
if case is None:
self.compute()
break
return self.test_empty, self.test_full, self.reference_empty, self.reference_full
def dice(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""2TP / (2TP + FP + FN)"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_empty and reference_empty:
if nan_for_nonexisting:
return float("NaN")
else:
return 0.
return float(2. * tp / (2 * tp + fp + fn))
def jaccard(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""TP / (TP + FP + FN)"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_empty and reference_empty:
if nan_for_nonexisting:
return float("NaN")
else:
return 0.
return float(tp / (tp + fp + fn))
def precision(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""TP / (TP + FP)"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_empty:
if nan_for_nonexisting:
return float("NaN")
else:
return 0.
return float(tp / (tp + fp))
def sensitivity(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""TP / (TP + FN)"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if reference_empty:
if nan_for_nonexisting:
return float("NaN")
else:
return 0.
return float(tp / (tp + fn))
def recall(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""TP / (TP + FN)"""
return sensitivity(test, reference, confusion_matrix, nan_for_nonexisting, **kwargs)
def specificity(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""TN / (TN + FP)"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if reference_full:
if nan_for_nonexisting:
return float("NaN")
else:
return 0.
return float(tn / (tn + fp))
def accuracy(test=None, reference=None, confusion_matrix=None, **kwargs):
"""(TP + TN) / (TP + FP + FN + TN)"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
return float((tp + tn) / (tp + fp + tn + fn))
def fscore(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, beta=1., **kwargs):
"""(1 + b^2) * TP / ((1 + b^2) * TP + b^2 * FN + FP)"""
precision_ = precision(
test, reference, confusion_matrix, nan_for_nonexisting)
recall_ = recall(test, reference, confusion_matrix, nan_for_nonexisting)
return (1 + beta*beta) * precision_ * recall_ /\
((beta*beta * precision_) + recall_)
def false_positive_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""FP / (FP + TN)"""
return 1 - specificity(test, reference, confusion_matrix, nan_for_nonexisting)
def false_omission_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""FN / (TN + FN)"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_full:
if nan_for_nonexisting:
return float("NaN")
else:
return 0.
return float(fn / (fn + tn))
def false_negative_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""FN / (TP + FN)"""
return 1 - sensitivity(test, reference, confusion_matrix, nan_for_nonexisting)
def true_negative_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""TN / (TN + FP)"""
return specificity(test, reference, confusion_matrix, nan_for_nonexisting)
def false_discovery_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""FP / (TP + FP)"""
return 1 - precision(test, reference, confusion_matrix, nan_for_nonexisting)
def negative_predictive_value(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
"""TN / (TN + FN)"""
return 1 - false_omission_rate(test, reference, confusion_matrix, nan_for_nonexisting)
def total_positives_test(test=None, reference=None, confusion_matrix=None, **kwargs):
"""TP + FP"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
return tp + fp
def total_negatives_test(test=None, reference=None, confusion_matrix=None, **kwargs):
"""TN + FN"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
return tn + fn
def total_positives_reference(test=None, reference=None, confusion_matrix=None, **kwargs):
"""TP + FN"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
return tp + fn
def total_negatives_reference(test=None, reference=None, confusion_matrix=None, **kwargs):
"""TN + FP"""
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
tp, fp, tn, fn = confusion_matrix.get_matrix()
return tn + fp
def hausdorff_distance(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_empty or test_full or reference_empty or reference_full:
if nan_for_nonexisting:
return float("NaN")
else:
return 0
test, reference = confusion_matrix.test, confusion_matrix.reference
return metric.hd(test, reference, voxel_spacing, connectivity)
def hausdorff_distance_95(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_empty or test_full or reference_empty or reference_full:
if nan_for_nonexisting:
return float("NaN")
else:
return 0
test, reference = confusion_matrix.test, confusion_matrix.reference
return metric.hd95(test, reference, voxel_spacing, connectivity)
def avg_surface_distance(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_empty or test_full or reference_empty or reference_full:
if nan_for_nonexisting:
return float("NaN")
else:
return 0
test, reference = confusion_matrix.test, confusion_matrix.reference
return metric.asd(test, reference, voxel_spacing, connectivity)
def avg_surface_distance_symmetric(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):
if confusion_matrix is None:
confusion_matrix = ConfusionMatrix(test, reference)
test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()
if test_empty or test_full or reference_empty or reference_full:
if nan_for_nonexisting:
return float("NaN")
else:
return 0
test, reference = confusion_matrix.test, confusion_matrix.reference
return metric.assd(test, reference, voxel_spacing, connectivity)
ALL_METRICS = {
"False Positive Rate": false_positive_rate,
"Dice": dice,
"Jaccard": jaccard,
"Hausdorff Distance": hausdorff_distance,
"Hausdorff Distance 95": hausdorff_distance_95,
"Precision": precision,
"Recall": recall,
"Avg. Symmetric Surface Distance": avg_surface_distance_symmetric,
"Avg. Surface Distance": avg_surface_distance,
"Accuracy": accuracy,
"False Omission Rate": false_omission_rate,
"Negative Predictive Value": negative_predictive_value,
"False Negative Rate": false_negative_rate,
"True Negative Rate": true_negative_rate,
"False Discovery Rate": false_discovery_rate,
"Total Positives Test": total_positives_test,
"Total Negatives Test": total_negatives_test,
"Total Positives Reference": total_positives_reference,
"total Negatives Reference": total_negatives_reference
}
class Evaluator:
"""Object that holds test and reference segmentations with label information
and computes a number of metrics on the two. 'labels' must either be an
iterable of numeric values (or tuples thereof) or a dictionary with string
names and numeric values.
"""
default_metrics = [
"False Positive Rate",
"Dice",
"Jaccard",
"Precision",
"Recall",
"Accuracy",
"False Omission Rate",
"Negative Predictive Value",
"False Negative Rate",
"True Negative Rate",
"False Discovery Rate",
"Total Positives Test",
"Total Positives Reference"
]
default_advanced_metrics = [
#"Hausdorff Distance",
"Hausdorff Distance 95",
#"Avg. Surface Distance",
#"Avg. Symmetric Surface Distance"
]
def __init__(self,
test=None,
reference=None,
labels=None,
metrics=None,
advanced_metrics=None,
nan_for_nonexisting=True):
self.test = None
self.reference = None
self.confusion_matrix = ConfusionMatrix()
self.labels = None
self.nan_for_nonexisting = nan_for_nonexisting
self.result = None
self.metrics = []
if metrics is None:
for m in self.default_metrics:
self.metrics.append(m)
else:
for m in metrics:
self.metrics.append(m)
self.advanced_metrics = []
if advanced_metrics is None:
for m in self.default_advanced_metrics:
self.advanced_metrics.append(m)
else:
for m in advanced_metrics:
self.advanced_metrics.append(m)
self.set_reference(reference)
self.set_test(test)
if labels is not None:
self.set_labels(labels)
else:
if test is not None and reference is not None:
self.construct_labels()
def set_test(self, test):
"""Set the test segmentation."""
self.test = test
def set_reference(self, reference):
"""Set the reference segmentation."""
self.reference = reference
def set_labels(self, labels):
"""Set the labels.
:param labels= may be a dictionary (int->str), a set (of ints), a tuple (of ints) or a list (of ints). Labels
will only have names if you pass a dictionary"""
if isinstance(labels, dict):
self.labels = collections.OrderedDict(labels)
elif isinstance(labels, set):
self.labels = list(labels)
elif isinstance(labels, np.ndarray):
self.labels = [i for i in labels]
elif isinstance(labels, (list, tuple)):
self.labels = labels
else:
raise TypeError(
"Can only handle dict, list, tuple, set & numpy array, but input is of type {}".format(type(labels)))
def construct_labels(self):
"""Construct label set from unique entries in segmentations."""
if self.test is None and self.reference is None:
raise ValueError("No test or reference segmentations.")
elif self.test is None:
labels = np.unique(self.reference)
else:
labels = np.union1d(np.unique(self.test),
np.unique(self.reference))
self.labels = list(map(lambda x: int(x), labels))
def set_metrics(self, metrics):
"""Set evaluation metrics"""
if isinstance(metrics, set):
self.metrics = list(metrics)
elif isinstance(metrics, (list, tuple, np.ndarray)):
self.metrics = metrics
else:
raise TypeError(
"Can only handle list, tuple, set & numpy array, but input is of type {}".format(type(metrics)))
def add_metric(self, metric):
if metric not in self.metrics:
self.metrics.append(metric)
def evaluate(self, test=None, reference=None, advanced=False, **metric_kwargs):
"""Compute metrics for segmentations."""
if test is not None:
self.set_test(test)
if reference is not None:
self.set_reference(reference)
if self.test is None or self.reference is None:
raise ValueError("Need both test and reference segmentations.")
if self.labels is None:
self.construct_labels()
self.metrics.sort()
# get functions for evaluation
# somewhat convoluted, but allows users to define additonal metrics
# on the fly, e.g. inside an IPython console
_funcs = {m: ALL_METRICS[m]
for m in self.metrics + self.advanced_metrics}
frames = inspect.getouterframes(inspect.currentframe())
for metric in self.metrics:
for f in frames:
if metric in f[0].f_locals:
_funcs[metric] = f[0].f_locals[metric]
break
else:
if metric in _funcs:
continue
else:
raise NotImplementedError(
"Metric {} not implemented.".format(metric))
# get results
self.result = OrderedDict()
eval_metrics = self.metrics
if advanced:
eval_metrics += self.advanced_metrics
if isinstance(self.labels, dict):
for label, name in self.labels.items():
k = str(name)
self.result[k] = OrderedDict()
if not hasattr(label, "__iter__"):
self.confusion_matrix.set_test(self.test == label)
self.confusion_matrix.set_reference(
self.reference == label)
else:
current_test = 0
current_reference = 0
for l in label:
current_test += (self.test == l)
current_reference += (self.reference == l)
self.confusion_matrix.set_test(current_test)
self.confusion_matrix.set_reference(current_reference)
for metric in eval_metrics:
self.result[k][metric] = _funcs[metric](confusion_matrix=self.confusion_matrix,
nan_for_nonexisting=self.nan_for_nonexisting,
**metric_kwargs)
else:
for i, l in enumerate(self.labels):
k = str(l)
self.result[k] = OrderedDict()
self.confusion_matrix.set_test(self.test == l)
self.confusion_matrix.set_reference(self.reference == l)
for metric in eval_metrics:
self.result[k][metric] = _funcs[metric](confusion_matrix=self.confusion_matrix,
nan_for_nonexisting=self.nan_for_nonexisting,
**metric_kwargs)
return self.result
def to_dict(self):
if self.result is None:
self.evaluate()
return self.result
def to_array(self):
"""Return result as numpy array (labels x metrics)."""
if self.result is None:
self.evaluate
result_metrics = sorted(
self.result[list(self.result.keys())[0]].keys())
a = np.zeros((len(self.labels), len(result_metrics)), dtype=np.float32)
if isinstance(self.labels, dict):
for i, label in enumerate(self.labels.keys()):
for j, metric in enumerate(result_metrics):
a[i][j] = self.result[self.labels[label]][metric]
else:
for i, label in enumerate(self.labels):
for j, metric in enumerate(result_metrics):
a[i][j] = self.result[label][metric]
return a
def to_pandas(self):
"""Return result as pandas DataFrame."""
a = self.to_array()
if isinstance(self.labels, dict):
labels = list(self.labels.values())
else:
labels = self.labels
result_metrics = sorted(
self.result[list(self.result.keys())[0]].keys())
return pd.DataFrame(a, index=labels, columns=result_metrics)
class NiftiEvaluator(Evaluator):
def __init__(self, *args, **kwargs):
self.test_nifti = None
self.reference_nifti = None
super(NiftiEvaluator, self).__init__(*args, **kwargs)
def set_test(self, test):
"""Set the test segmentation."""
if test is not None:
self.test_nifti = sitk.ReadImage(test)
super(NiftiEvaluator, self).set_test(
sitk.GetArrayFromImage(self.test_nifti))
else:
self.test_nifti = None
super(NiftiEvaluator, self).set_test(test)
def set_reference(self, reference):
"""Set the reference segmentation."""
if reference is not None:
self.reference_nifti = sitk.ReadImage(reference)
super(NiftiEvaluator, self).set_reference(
sitk.GetArrayFromImage(self.reference_nifti))
else:
self.reference_nifti = None
super(NiftiEvaluator, self).set_reference(reference)
def evaluate(self, test=None, reference=None, voxel_spacing=None, **metric_kwargs):
if voxel_spacing is None:
voxel_spacing = np.array(self.test_nifti.GetSpacing())[::-1]
metric_kwargs["voxel_spacing"] = voxel_spacing
return super(NiftiEvaluator, self).evaluate(test, reference, **metric_kwargs)
def run_evaluation(args):
test, ref, evaluator, metric_kwargs = args
# evaluate
evaluator.set_test(test)
evaluator.set_reference(ref)
if evaluator.labels is None:
evaluator.construct_labels()
current_scores = evaluator.evaluate(**metric_kwargs)
if type(test) == str:
current_scores["test"] = test
if type(ref) == str:
current_scores["reference"] = ref
return current_scores
def aggregate_scores(test_ref_pairs,
evaluator=NiftiEvaluator,
labels=None,
nanmean=True,
json_output_file=None,
json_name="",
json_description="",
json_author="Fabian",
json_task="",
num_threads=2,
**metric_kwargs):
"""
test = predicted image
:param test_ref_pairs:
:param evaluator:
:param labels: must be a dict of int-> str or a list of int
:param nanmean:
:param json_output_file:
:param json_name:
:param json_description:
:param json_author:
:param json_task:
:param metric_kwargs:
:return:
"""
if type(evaluator) == type:
evaluator = evaluator()
if labels is not None:
evaluator.set_labels(labels)
all_scores = OrderedDict()
all_scores["all"] = []
all_scores["mean"] = OrderedDict()
test = [i[0] for i in test_ref_pairs]
ref = [i[1] for i in test_ref_pairs]
p = Pool(num_threads)
all_res = p.map(run_evaluation, zip(
test, ref, [evaluator]*len(ref), [metric_kwargs]*len(ref)))
p.close()
p.join()
for i in range(len(all_res)):
all_scores["all"].append(all_res[i])
# append score list for mean
for label, score_dict in all_res[i].items():
if label in ("test", "reference"):
continue
if label not in all_scores["mean"]:
all_scores["mean"][label] = OrderedDict()
for score, value in score_dict.items():
if score not in all_scores["mean"][label]:
all_scores["mean"][label][score] = []
all_scores["mean"][label][score].append(value)
for label in all_scores["mean"]:
for score in all_scores["mean"][label]:
if nanmean:
all_scores["mean"][label][score] = float(
np.nanmean(all_scores["mean"][label][score]))
else:
all_scores["mean"][label][score] = float(
np.mean(all_scores["mean"][label][score]))
# save to file if desired
# we create a hopefully unique id by hashing the entire output dictionary
if json_output_file is not None:
json_dict = OrderedDict()
json_dict["name"] = json_name
json_dict["description"] = json_description
timestamp = datetime.today()
json_dict["timestamp"] = str(timestamp)
json_dict["task"] = json_task
json_dict["author"] = json_author
json_dict["results"] = all_scores
json_dict["id"] = hashlib.md5(json.dumps(
json_dict).encode("utf-8")).hexdigest()[:12]
save_json(json_dict, json_output_file)
return all_scores
def aggregate_scores_for_experiment(score_file,
labels=None,
metrics=Evaluator.default_metrics,
nanmean=True,
json_output_file=None,
json_name="",
json_description="",
json_author="Fabian",
json_task=""):
scores = np.load(score_file)
scores_mean = scores.mean(0)
if labels is None:
labels = list(map(str, range(scores.shape[1])))
results = []
results_mean = OrderedDict()
for i in range(scores.shape[0]):
results.append(OrderedDict())
for l, label in enumerate(labels):
results[-1][label] = OrderedDict()
results_mean[label] = OrderedDict()
for m, metric in enumerate(metrics):
results[-1][label][metric] = float(scores[i][l][m])
results_mean[label][metric] = float(scores_mean[l][m])
json_dict = OrderedDict()
json_dict["name"] = json_name
json_dict["description"] = json_description
timestamp = datetime.today()
json_dict["timestamp"] = str(timestamp)
json_dict["task"] = json_task
json_dict["author"] = json_author
json_dict["results"] = {"all": results, "mean": results_mean}
json_dict["id"] = hashlib.md5(json.dumps(
json_dict).encode("utf-8")).hexdigest()[:12]
if json_output_file is not None:
json_output_file = open(json_output_file, "w")
json.dump(json_dict, json_output_file,
indent=4, separators=(",", ": "))
json_output_file.close()
return json_dict
def evaluate_folder(folder_with_gts: str, folder_with_predictions: str, labels: tuple, **metric_kwargs):
"""
writes a summary.json to folder_with_predictions
:param folder_with_gts: folder where the ground truth segmentations are saved. Must be nifti files.
:param folder_with_predictions: folder where the predicted segmentations are saved. Must be nifti files.
:param labels: tuple of int with the labels in the dataset. For example (0, 1, 2, 3) for Task001_BrainTumour.
:return:
"""
files_gt = subfiles(folder_with_gts, suffix=".nii.gz", join=False)
files_pred = subfiles(folder_with_predictions,
suffix=".nii.gz", join=False)
assert all([i in files_pred for i in files_gt]
), "files missing in folder_with_predictions"
assert all([i in files_gt for i in files_pred]
), "files missing in folder_with_gts"
test_ref_pairs = [(join(folder_with_predictions, i),
join(folder_with_gts, i)) for i in files_pred]
res = aggregate_scores(test_ref_pairs, json_output_file=join(folder_with_predictions, "summary.json"),
num_threads=8, labels=labels, **metric_kwargs)
return res
def nnunet_evaluate_folder():
import argparse
parser = argparse.ArgumentParser("Evaluates the segmentations located in the folder pred. Output of this script is "
"a json file. At the very bottom of the json file is going to be a 'mean' "
"entry with averages metrics across all cases")
parser.add_argument('-ref', required=True, type=str, help="Folder containing the reference segmentations in nifti "
"format.")
parser.add_argument('-pred', required=True, type=str, help="Folder containing the predicted segmentations in nifti "
"format. File names must match between the folders!")
parser.add_argument('-l', nargs='+', type=int, required=True, help="List of label IDs (integer values) that should "
"be evaluated. Best practice is to use all int "
"values present in the dataset, so for example "
"for LiTS the labels are 0: background, 1: "
"liver, 2: tumor. So this argument "
"should be -l 1 2. You can if you want also "
"evaluate the background label (0) but in "
"this case that would not gie any useful "
"information.")
args = parser.parse_args()
return evaluate_folder(args.ref, args.pred, args.l)