-
Notifications
You must be signed in to change notification settings - Fork 4
/
generic_UNet.py
498 lines (430 loc) · 22.6 KB
/
generic_UNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from torch import nn
import torch
import numpy as np
import torch.nn.functional as F
from neural_network import SegmentationNetwork
import torch.nn.functional
softmax_helper = lambda x: F.softmax(x, 1)
class InitWeights_He(object):
def __init__(self, neg_slope=1e-2):
self.neg_slope = neg_slope
def __call__(self, module):
if isinstance(module, nn.Conv3d) or isinstance(module, nn.Conv2d) or isinstance(module,
nn.ConvTranspose2d) or isinstance(
module, nn.ConvTranspose3d):
module.weight = nn.init.kaiming_normal_(
module.weight, a=self.neg_slope)
if module.bias is not None:
module.bias = nn.init.constant_(module.bias, 0)
class ConvDropoutNormNonlin(nn.Module):
"""
fixes a bug in ConvDropoutNormNonlin where lrelu was used regardless of nonlin. Bad.
"""
def __init__(self, input_channels, output_channels,
conv_op=nn.Conv2d, conv_kwargs=None,
norm_op=nn.BatchNorm2d, norm_op_kwargs=None,
dropout_op=nn.Dropout2d, dropout_op_kwargs=None,
nonlin=nn.LeakyReLU, nonlin_kwargs=None):
super(ConvDropoutNormNonlin, self).__init__()
if nonlin_kwargs is None:
nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
if dropout_op_kwargs is None:
dropout_op_kwargs = {'p': 0.5, 'inplace': True}
if norm_op_kwargs is None:
norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1}
if conv_kwargs is None:
conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True}
self.nonlin_kwargs = nonlin_kwargs
self.nonlin = nonlin
self.dropout_op = dropout_op
self.dropout_op_kwargs = dropout_op_kwargs
self.norm_op_kwargs = norm_op_kwargs
self.conv_kwargs = conv_kwargs
self.conv_op = conv_op
self.norm_op = norm_op
# print(input_channels, output_channels, self.conv_kwargs)
if torch.__version__ == "parrots":
self.conv = self.conv_op(input_channels, output_channels, kernel_size=conv_kwargs['kernel_size'][0],
stride=conv_kwargs['stride'], padding=conv_kwargs['padding'][0],
dilation=conv_kwargs['dilation'], bias=conv_kwargs['bias'])
else:
self.conv = self.conv_op(input_channels, output_channels, **self.conv_kwargs)
if self.dropout_op is not None and self.dropout_op_kwargs['p'] is not None and self.dropout_op_kwargs[
'p'] > 0:
self.dropout = self.dropout_op(**self.dropout_op_kwargs)
else:
self.dropout = None
self.instnorm = self.norm_op(output_channels, **self.norm_op_kwargs)
self.lrelu = self.nonlin(**self.nonlin_kwargs)
def forward(self, x):
x = self.conv(x)
if self.dropout is not None:
x = self.dropout(x)
return self.lrelu(self.instnorm(x))
class ConvDropoutNonlinNorm(ConvDropoutNormNonlin):
def forward(self, x):
x = self.conv(x)
if self.dropout is not None:
x = self.dropout(x)
return self.instnorm(self.lrelu(x))
class StackedConvLayers(nn.Module):
def __init__(self, input_feature_channels, output_feature_channels, num_convs,
conv_op=nn.Conv2d, conv_kwargs=None,
norm_op=nn.BatchNorm2d, norm_op_kwargs=None,
dropout_op=nn.Dropout2d, dropout_op_kwargs=None,
nonlin=nn.LeakyReLU, nonlin_kwargs=None, first_stride=None, basic_block=ConvDropoutNormNonlin):
'''
stacks ConvDropoutNormLReLU layers. initial_stride will only be applied to first layer in the stack. The other parameters affect all layers
:param input_feature_channels:
:param output_feature_channels:
:param num_convs:
:param dilation:
:param kernel_size:
:param padding:
:param dropout:
:param initial_stride:
:param conv_op:
:param norm_op:
:param dropout_op:
:param inplace:
:param neg_slope:
:param norm_affine:
:param conv_bias:
'''
self.input_channels = input_feature_channels
self.output_channels = output_feature_channels
if nonlin_kwargs is None:
nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
if dropout_op_kwargs is None:
dropout_op_kwargs = {'p': 0.5, 'inplace': True}
if norm_op_kwargs is None:
norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1}
if conv_kwargs is None:
conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True}
self.nonlin_kwargs = nonlin_kwargs
self.nonlin = nonlin
self.dropout_op = dropout_op
self.dropout_op_kwargs = dropout_op_kwargs
self.norm_op_kwargs = norm_op_kwargs
self.conv_kwargs = conv_kwargs
self.conv_op = conv_op
self.norm_op = norm_op
if first_stride is not None:
self.conv_kwargs_first_conv = deepcopy(conv_kwargs)
self.conv_kwargs_first_conv['stride'] = first_stride
else:
self.conv_kwargs_first_conv = conv_kwargs
super(StackedConvLayers, self).__init__()
self.blocks = nn.Sequential(
*([basic_block(input_feature_channels, output_feature_channels, self.conv_op,
self.conv_kwargs_first_conv,
self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs,
self.nonlin, self.nonlin_kwargs)] +
[basic_block(output_feature_channels, output_feature_channels, self.conv_op,
self.conv_kwargs,
self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs,
self.nonlin, self.nonlin_kwargs) for _ in range(num_convs - 1)]))
def forward(self, x):
return self.blocks(x)
def print_module_training_status(module):
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d) or isinstance(module, nn.Dropout3d) or \
isinstance(module, nn.Dropout2d) or isinstance(module, nn.Dropout) or isinstance(module, nn.InstanceNorm3d) \
or isinstance(module, nn.InstanceNorm2d) or isinstance(module, nn.InstanceNorm1d) \
or isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d) or isinstance(module,
nn.BatchNorm1d):
print(str(module), module.training)
class Upsample(nn.Module):
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=False):
super(Upsample, self).__init__()
self.align_corners = align_corners
self.mode = mode
self.scale_factor = scale_factor
self.size = size
def forward(self, x):
return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode,
align_corners=self.align_corners)
class Generic_UNet(SegmentationNetwork):
DEFAULT_BATCH_SIZE_3D = 2
DEFAULT_PATCH_SIZE_3D = (64, 192, 160)
SPACING_FACTOR_BETWEEN_STAGES = 2
BASE_NUM_FEATURES_3D = 30
MAX_NUMPOOL_3D = 999
MAX_NUM_FILTERS_3D = 320
DEFAULT_PATCH_SIZE_2D = (256, 256)
BASE_NUM_FEATURES_2D = 30
DEFAULT_BATCH_SIZE_2D = 50
MAX_NUMPOOL_2D = 999
MAX_FILTERS_2D = 480
use_this_for_batch_size_computation_2D = 19739648
use_this_for_batch_size_computation_3D = 520000000 # 505789440
def __init__(self, input_channels, base_num_features, num_classes, num_pool, num_conv_per_stage=2,
feat_map_mul_on_downscale=2, conv_op=nn.Conv2d,
norm_op=nn.BatchNorm2d, norm_op_kwargs=None,
dropout_op=nn.Dropout2d, dropout_op_kwargs=None,
nonlin=nn.LeakyReLU, nonlin_kwargs=None, deep_supervision=True, dropout_in_localization=False,
final_nonlin=softmax_helper, weightInitializer=InitWeights_He(1e-2), pool_op_kernel_sizes=None,
conv_kernel_sizes=None,
upscale_logits=False, convolutional_pooling=False, convolutional_upsampling=False,
max_num_features=None, basic_block=ConvDropoutNormNonlin,
seg_output_use_bias=False):
"""
basically more flexible than v1, architecture is the same
Does this look complicated? Nah bro. Functionality > usability
This does everything you need, including world peace.
Questions? -> [email protected]
"""
super(Generic_UNet, self).__init__()
self.convolutional_upsampling = convolutional_upsampling
self.convolutional_pooling = convolutional_pooling
self.upscale_logits = upscale_logits
if nonlin_kwargs is None:
nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
if dropout_op_kwargs is None:
dropout_op_kwargs = {'p': 0.5, 'inplace': True}
if norm_op_kwargs is None:
norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1}
self.conv_kwargs = {'stride': 1, 'dilation': 1, 'bias': True}
self.nonlin = nonlin
self.nonlin_kwargs = nonlin_kwargs
self.dropout_op_kwargs = dropout_op_kwargs
self.norm_op_kwargs = norm_op_kwargs
self.weightInitializer = weightInitializer
self.conv_op = conv_op
self.norm_op = norm_op
self.dropout_op = dropout_op
self.num_classes = num_classes
self.final_nonlin = final_nonlin
self._deep_supervision = deep_supervision
self.do_ds = deep_supervision
if conv_op == nn.Conv2d:
upsample_mode = 'bilinear'
pool_op = nn.MaxPool2d
transpconv = nn.ConvTranspose2d
if pool_op_kernel_sizes is None:
pool_op_kernel_sizes = [(2, 2)] * num_pool
if conv_kernel_sizes is None:
conv_kernel_sizes = [(3, 3)] * (num_pool + 1)
elif conv_op == nn.Conv3d:
upsample_mode = 'trilinear'
pool_op = nn.MaxPool3d
transpconv = nn.ConvTranspose3d
if pool_op_kernel_sizes is None:
pool_op_kernel_sizes = [(2, 2, 2)] * num_pool
if conv_kernel_sizes is None:
conv_kernel_sizes = [(3, 3, 3)] * (num_pool + 1)
else:
raise ValueError("unknown convolution dimensionality, conv op: %s" % str(conv_op))
self.input_shape_must_be_divisible_by = np.prod(pool_op_kernel_sizes, 0, dtype=np.int64)
self.pool_op_kernel_sizes = pool_op_kernel_sizes
self.conv_kernel_sizes = conv_kernel_sizes
self.conv_pad_sizes = []
for krnl in self.conv_kernel_sizes:
self.conv_pad_sizes.append([1 if i == 3 else 0 for i in krnl])
if max_num_features is None:
if self.conv_op == nn.Conv3d:
self.max_num_features = self.MAX_NUM_FILTERS_3D
else:
self.max_num_features = self.MAX_FILTERS_2D
else:
self.max_num_features = max_num_features
self.conv_blocks_context = []
self.conv_blocks_localization = []
self.td = []
self.tu = []
self.seg_outputs = []
output_features = base_num_features
input_features = input_channels
for d in range(num_pool):
# determine the first stride
if d != 0 and self.convolutional_pooling:
first_stride = pool_op_kernel_sizes[d - 1]
else:
first_stride = None
self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[d]
self.conv_kwargs['padding'] = self.conv_pad_sizes[d]
# add convolutions
self.conv_blocks_context.append(StackedConvLayers(input_features, output_features, num_conv_per_stage,
self.conv_op, self.conv_kwargs, self.norm_op,
self.norm_op_kwargs, self.dropout_op,
self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs,
first_stride, basic_block=basic_block))
if not self.convolutional_pooling:
self.td.append(pool_op(pool_op_kernel_sizes[d]))
input_features = output_features
output_features = int(np.round(output_features * feat_map_mul_on_downscale))
output_features = min(output_features, self.max_num_features)
# now the bottleneck.
# determine the first stride
if self.convolutional_pooling:
first_stride = pool_op_kernel_sizes[-1]
else:
first_stride = None
# the output of the last conv must match the number of features from the skip connection if we are not using
# convolutional upsampling. If we use convolutional upsampling then the reduction in feature maps will be
# done by the transposed conv
if self.convolutional_upsampling:
final_num_features = output_features
else:
final_num_features = self.conv_blocks_context[-1].output_channels
self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[num_pool]
self.conv_kwargs['padding'] = self.conv_pad_sizes[num_pool]
self.conv_blocks_context.append(nn.Sequential(
StackedConvLayers(input_features, output_features, num_conv_per_stage - 1, self.conv_op, self.conv_kwargs,
self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin,
self.nonlin_kwargs, first_stride, basic_block=basic_block),
StackedConvLayers(output_features, final_num_features, 1, self.conv_op, self.conv_kwargs,
self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin,
self.nonlin_kwargs, basic_block=basic_block)))
# if we don't want to do dropout in the localization pathway then we set the dropout prob to zero here
if not dropout_in_localization:
old_dropout_p = self.dropout_op_kwargs['p']
self.dropout_op_kwargs['p'] = 0.0
# now lets build the localization pathway
for u in range(num_pool):
nfeatures_from_down = final_num_features
nfeatures_from_skip = self.conv_blocks_context[
-(2 + u)].output_channels # self.conv_blocks_context[-1] is bottleneck, so start with -2
n_features_after_tu_and_concat = nfeatures_from_skip * 2
# the first conv reduces the number of features to match those of skip
# the following convs work on that number of features
# if not convolutional upsampling then the final conv reduces the num of features again
if u != num_pool - 1 and not self.convolutional_upsampling:
final_num_features = self.conv_blocks_context[-(3 + u)].output_channels
else:
final_num_features = nfeatures_from_skip
if not self.convolutional_upsampling:
self.tu.append(Upsample(scale_factor=pool_op_kernel_sizes[-(u + 1)], mode=upsample_mode))
else:
self.tu.append(transpconv(nfeatures_from_down, nfeatures_from_skip, pool_op_kernel_sizes[-(u + 1)],
pool_op_kernel_sizes[-(u + 1)], bias=False))
self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[- (u + 1)]
self.conv_kwargs['padding'] = self.conv_pad_sizes[- (u + 1)]
self.conv_blocks_localization.append(nn.Sequential(
StackedConvLayers(n_features_after_tu_and_concat, nfeatures_from_skip, num_conv_per_stage - 1,
self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op,
self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, basic_block=basic_block),
StackedConvLayers(nfeatures_from_skip, final_num_features, 1, self.conv_op, self.conv_kwargs,
self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs,
self.nonlin, self.nonlin_kwargs, basic_block=basic_block)
))
for ds in range(len(self.conv_blocks_localization)):
self.seg_outputs.append(conv_op(self.conv_blocks_localization[ds][-1].output_channels, num_classes,
1, 1, 0, 1, 1, seg_output_use_bias))
self.upscale_logits_ops = []
cum_upsample = np.cumprod(np.vstack(pool_op_kernel_sizes), axis=0)[::-1]
for usl in range(num_pool - 1):
if self.upscale_logits:
self.upscale_logits_ops.append(Upsample(scale_factor=tuple([int(i) for i in cum_upsample[usl + 1]]),
mode=upsample_mode))
else:
self.upscale_logits_ops.append(lambda x: x)
if not dropout_in_localization:
self.dropout_op_kwargs['p'] = old_dropout_p
# register all modules properly
self.conv_blocks_localization = nn.ModuleList(self.conv_blocks_localization)
self.conv_blocks_context = nn.ModuleList(self.conv_blocks_context)
self.td = nn.ModuleList(self.td)
self.tu = nn.ModuleList(self.tu)
self.seg_outputs = nn.ModuleList(self.seg_outputs)
if self.upscale_logits:
self.upscale_logits_ops = nn.ModuleList(
self.upscale_logits_ops) # lambda x:x is not a Module so we need to distinguish here
if self.weightInitializer is not None:
self.apply(self.weightInitializer)
# self.apply(print_module_training_status)
def forward(self, x):
skips = []
seg_outputs = []
for d in range(len(self.conv_blocks_context) - 1):
x = self.conv_blocks_context[d](x)
skips.append(x)
if not self.convolutional_pooling:
x = self.td[d](x)
x = self.conv_blocks_context[-1](x)
for u in range(len(self.tu)):
x = self.tu[u](x)
x = torch.cat((x, skips[-(u + 1)]), dim=1)
x = self.conv_blocks_localization[u](x)
seg_outputs.append(torch.softmax(self.seg_outputs[u](x), 1))
if self._deep_supervision and self.do_ds:
return tuple([seg_outputs[-1]] + [i(j) for i, j in
zip(list(self.upscale_logits_ops)[::-1], seg_outputs[:-1][::-1])])
else:
return seg_outputs[-1]
@staticmethod
def compute_approx_vram_consumption(patch_size, num_pool_per_axis, base_num_features, max_num_features,
num_modalities, num_classes, pool_op_kernel_sizes, deep_supervision=False,
conv_per_stage=2):
"""
This only applies for num_conv_per_stage and convolutional_upsampling=True
not real vram consumption. just a constant term to which the vram consumption will be approx proportional
(+ offset for parameter storage)
:param deep_supervision:
:param patch_size:
:param num_pool_per_axis:
:param base_num_features:
:param max_num_features:
:param num_modalities:
:param num_classes:
:param pool_op_kernel_sizes:
:return:
"""
if not isinstance(num_pool_per_axis, np.ndarray):
num_pool_per_axis = np.array(num_pool_per_axis)
npool = len(pool_op_kernel_sizes)
map_size = np.array(patch_size)
tmp = np.int64((conv_per_stage * 2 + 1) * np.prod(map_size, dtype=np.int64) * base_num_features +
num_modalities * np.prod(map_size, dtype=np.int64) +
num_classes * np.prod(map_size, dtype=np.int64))
num_feat = base_num_features
for p in range(npool):
for pi in range(len(num_pool_per_axis)):
map_size[pi] /= pool_op_kernel_sizes[p][pi]
num_feat = min(num_feat * 2, max_num_features)
num_blocks = (conv_per_stage * 2 + 1) if p < (npool - 1) else conv_per_stage # conv_per_stage + conv_per_stage for the convs of encode/decode and 1 for transposed conv
tmp += num_blocks * np.prod(map_size, dtype=np.int64) * num_feat
if deep_supervision and p < (npool - 2):
tmp += np.prod(map_size, dtype=np.int64) * num_classes
# print(p, map_size, num_feat, tmp)
return tmp
# norm_op_kwargs = {'eps': 1e-5, 'affine': True}
# dropout_op_kwargs = {'p': 0, 'inplace': True}
# net_nonlin = nn.LeakyReLU
# net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
# net_num_pool_op_kernel_sizes = [(2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2), (1, 2, 2)]
# net_conv_kernel_sizes = [(3, 3, 3),(3, 3, 3),(3, 3, 3),(3, 3, 3),(3, 3, 3),(3, 3, 3)]
# # deep supervision false
# network = Generic_UNet(1, 16, 4, 5, 2, 2, nn.Conv3d, nn.InstanceNorm3d, norm_op_kwargs, nn.Dropout3d,
# dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, False, False, lambda x: x, InitWeights_He(1e-2),
# net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, False, True, True)
# print(network)
# import torch
# import numpy as np
# network = network.cuda()
# data = torch.from_numpy(np.random.randn(1, 1, 96, 128, 160)).float().cuda()
# result = network(data)
# print(result.shape)
# parms = 0
# for k, v in network.state_dict().items():
# print(k, v.cpu().numpy().shape)
# parms += np.prod(v.cpu().numpy().shape)
# print(parms)
# network.cuda()
# data = torch.FloatTensor(1, 1, 96, 96, 96).cuda()
# preds = network(data)
# for i in preds:
# print(i.shape)